Metagenomic Analysis of Bacterial Communities in Agricultural Soils from Vietnam with Special Attention to Phosphate Solubilizing Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description, Soil Sampling and Analysis
2.2. Analysis of Soil Acid and Alkaline Phosphatase Activity
2.3. Soil DNA Extraction and Quantification of phoD Gene Abundance
2.4. Isolation of Inorganic and Organic Phosphate Solubilizing Microbes (PSM)
2.5. Isolation of phoD-Harbouring Bacterial Strains
2.6. 16S rRNA Gene Sequencing and Analysis
2.7. Next Generation Sequencing (NGS) and Bioinformatics Pipeline
2.8. Statistical Analysis
3. Results
3.1. Soil Bacterial Community
3.2. Correlation between Soil Characteristics, Alkaline and Acid Phosphatase Activities, and the phoD Gene Copy Number
3.3. Isolation of Putative P-Solubilizing and phoD Gene-Harbouring Strains
4. Discussion
4.1. Total P, TN, Soil Organic Carbon, Phosphatase Activities and phoD Gene Abundance
4.2. Bacterial Community Composition and Correlations with Soil Properties
4.3. Potential PSB Strains
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walker, T.W.; Syers, J.K. The Fate of Phosphorus during Pedogenesis. Geoderma 1976, 15, 1–19. [Google Scholar] [CrossRef]
- Newman, E.I. Phosphorus Inputs to Terrestrial Ecosystems. J. Ecol. 1995, 83, 713–726. [Google Scholar] [CrossRef]
- Fixen, P.E.; Johnston, A.M. World Fertilizer Nutrient Reserves: A View to the Future. J. Sci. Food Agric. 2012, 92, 1001–1005. [Google Scholar] [CrossRef]
- Zhu, F.; Qu, L.; Hong, X.; Sun, X. Isolation and Characterization of a Phosphate-Solubilizing Halophilic Bacterium Kushneria Sp. YCWA18 from Daqiao Saltern on the Coast of Yellow Sea of China. Evid.-Based Complement. Altern. Med. 2011, 2011, 615032. [Google Scholar] [CrossRef] [Green Version]
- Roberts, T.L.; Johnston, A.E. Phosphorus Use Efficiency and Management in Agriculture. Resour. Conserv. Recycl. 2015, 105, 275–281. [Google Scholar] [CrossRef]
- Withers, P.J.; Haygarth, P.M. Agriculture, Phosphorus and Eutrophication: A European Perspective. Soil Use Manag. 2007, 23, 1–4. [Google Scholar] [CrossRef]
- Alori, E.T.; Glick, B.R.; Babalola, O.O. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Front. Microbiol. 2017, 8, 971. [Google Scholar] [CrossRef] [Green Version]
- Kalayu, G. Phosphate Solubilizing Microorganisms: Promising Approach as Biofertilizers. Int. J. Agron. 2019, 2019, 4917256. [Google Scholar] [CrossRef]
- Margalef, O.; Sardans, J.; Fernández-Martínez, M.; Molowny-Horas, R.; Janssens, I.A.; Ciais, P.; Goll, D.; Richter, A.; Obersteiner, M.; Asensio, D.; et al. Global Patterns of Phosphatase Activity in Natural Soils. Sci. Rep. 2017, 7, 1337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ragot, S.A.; Kertesz, M.A.; Bünemann, E.K. phoD Alkaline Phosphatase Gene Diversity in Soil. Appl. Environ. Microbiol. 2015, 81, 7281–7289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez, P.F.; Ingram, L.O. Cloning, Sequencing and Characterization of the Alkaline Phosphatase Gene (phoD) from Zymomonas Mobilis. FEMS Microbiol. Lett. 1995, 125, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, A.; Ghatak, A.; Ghosh, R.K. Identification of the Gene for the Monomeric Alkaline Phosphatase of Vibrio Cholerae Serogroup O1 Strain. Gene 2005, 344, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Michel, G.P.; Alvarez, E.; Guzzo, J.; Cami, B.; Baratti, J. Cloning and Expression in Escherichia Coli of a phoA Gene Encoding a Phosphate-Irrepressible Alkaline Phosphatase of Zymomonas Mobilis. FEMS Microbiol. Lett. 1992, 77, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Karunakaran, T.; Gunasekaran, P. Cloning and Expression in Escherichia Coli of an Alkaline Phosphatase (phoA) Gene from Zymomonas Mobilis. Curr. Microbiol. 1992, 25, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Barret, M.; Mooij, M.J.; Rice, O.; Morrissey, J.P.; Dobson, A.; Griffiths, B.; O’Gara, F. Long-Term Phosphorus Fertilisation Increased the Diversity of the Total Bacterial Community and the phoD Phosphorus Mineraliser Group in Pasture Soils. Biol. Fertil. Soils 2013, 49, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Vershinina, O.A.; Znamenskaia, L.V. The Pho regulons of bacteria. Mikrobiologiia 2002, 71, 581–595. [Google Scholar] [PubMed]
- Wan, W.; Qin, Y.; Wu, H.; Zuo, W.; He, H.; Tan, J.; Wang, Y.; He, D. Isolation and Characterization of Phosphorus Solubilizing Bacteria with Multiple Phosphorus Sources Utilizing Capability and Their Potential for Lead Immobilization in Soil. Front. Microbiol. 2020, 11, 752. [Google Scholar] [CrossRef] [Green Version]
- Fraser, T.D.; Lynch, D.H.; Bent, E.; Entz, M.H.; Dunfield, K.E. Soil Bacterial phoD Gene Abundance and Expression in Response to Applied Phosphorus and Long-Term Management. Soil Biol. Biochem. 2015, 88, 137–147. [Google Scholar] [CrossRef]
- Fraser, T.D.; Lynch, D.H.; Gaiero, J.; Khosla, K.; Dunfield, K.E. Quantification of Bacterial Non-Specific Acid (phoC) and Alkaline (phoD) Phosphatase Genes in Bulk and Rhizosphere Soil from Organically Managed Soybean Fields. Appl. Soil Ecol. 2017, 111, 48–56. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, N.; Chen, Z.; Tian, J.; Sun, N.; Xu, M.; Chen, L. Response of Soil phoD Phosphatase Gene to Long-Term Combined Applications of Chemical Fertilizers and Organic Materials. Appl. Soil Ecol. 2017, 119, 197–204. [Google Scholar] [CrossRef]
- Vien, T.D. Climate change and its impact on agriculture in Vietnam. J. Int. Soc. Southeast Asian Agric. Sci. 2011, 17, 17–21. [Google Scholar]
- Hiện Trạng sử Dụng Đất. Available online: https://www.quangtri.gov.vn/chi-tiet-tin/-/view-article/1/1606723345443/1606789034635 (accessed on 24 July 2021).
- Diễn Biến ô Nhiễm Đất. Available online: https://www.quangtri.gov.vn/chi-tiet-tin/-/view-article/1/1606723345443/1606788950979 (accessed on 24 July 2021).
- Meena, R.S.; Kumar, S.; Datta, R.; Lal, R.; Vijayakumar, V.; Brtnicky, M.; Sharma, M.P.; Yadav, G.S.; Jhariya, M.K.; Jangir, C.K.; et al. Impact of Agrochemicals on Soil Microbiota and Management: A Review. Land 2020, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Van Dung, T.; Diep, C.N.; Springael, D. Diversity of the Bacterial Community in Rice Straw Residues in Soil Undergoing Rice-Monoculture versus Crop Rotation Systems in the Mekong Delta of Vietnam. World J. Pharm. Pharm. Sci. 2016, 6, 109–123. [Google Scholar] [CrossRef]
- Xuan, D.T. Microbial Communities in Paddy Fields in the Mekong Delta of Vietnam Functional and Molecular Diversity. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2012. Available online: https://pub.epsilon.slu.se/9243/1/do_thi_xuan_121119.pdf (accessed on 9 February 2021).
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen—Total. Methods Soil Anal. 1983, 5, 595–624. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A Modified Single Solution Method for the Determination of Phosphate in Natural Waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Scholl, C. The Perchloric Method of Determining Potassium, as Applied to Water Analysis. J. Am. Chem. Soc. 1914, 36, 2085–2089. [Google Scholar] [CrossRef]
- Tyner, E.H. The Use of Sodium Metaphosphate for Dispersion of Soils for Mechanical Analysis. Soil Sci. Soc. Am. J. 1940, 4, 106–113. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. Use of P-Nitrophenyl Phosphate for Assay of Soil Phosphatase Activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Pikovskaya, R.I. Mobilization of Phosphorus in Soil Connection with the Vital Activity of Some Microbial Species. Microbiology 1948, 17, 362–370. [Google Scholar]
- Tao, G.C.; Tian, S.J.; Cai, M.Y.; Xie, G.H. Phosphate-Solubilizing and -Mineralizing Abilities of Bacteria Isolated from Soils. Pedosphere 2008, 18, 515–523. [Google Scholar] [CrossRef]
- Lane, D. 16S/23S rRNA Sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Goodfelloe, M., Stackebrandt, E., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 1991; pp. 115–176. [Google Scholar]
- Escudie, F.; Auer, L.; Bernard, M.; Mariadassou, M.; Cauquil, L.; Vidal, K.; Maman, S.; Hernandez-Raquet, G.; Combes, S.; Pascal, G. FROGS: Find, Rapidly, OTUs with Galaxy Solution. Bioinformatics 2018, 34, 1287–1294. [Google Scholar] [CrossRef]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A Versatile Open Source Tool for Metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef]
- Mahé, F.; Rognes, T.; Quince, C.; de Vargas, C.; Dunthorn, M. Swarm: Robust and Fast Clustering Method for Amplicon-Based Studies. PeerJ 2014, 2, e593. [Google Scholar] [CrossRef] [Green Version]
- McGinnis, S.; Madden, T.L. BLAST: At the Core of a Powerful and Diverse Set of Sequence Analysis Tools. Nucleic Acids Res. 2004, 32 (Suppl. 2), W20–W25. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Fraser, T.; Lynch, D.H.; Entz, M.H.; Dunfield, K.E. Linking Alkaline Phosphatase Activity with Bacterial phoD Gene Abundance in Soil from a Long-Term Management Trial. Geoderma 2014, 257–258, 115–122. [Google Scholar] [CrossRef]
- Hu, Y.; Xia, Y.; Sun, Q.; Liu, K.; Chen, X.; Ge, T.; Zhu, B.; Zhu, Z.; Zhang, Z.; Su, Y. Effects of Long-Term Fertilization on phoD-Harboring Bacterial Community in Karst Soils. Sci. Total Environ. 2018, 628–629, 53–63. [Google Scholar] [CrossRef]
- Lemanowicz, J. Dynamics of Phosphorus Content and the Activity of Phosphatase in Forest Soil in the Sustained Nitrogen Compounds Emissions Zone. Environ. Sci. Pollut. Res. 2018, 25, 33773–33782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kizilkaya, R.; Bayrakli, F.; Surucu, A. Relationship between Phosphatase Activity and Phosphorus Fractions in Agricultural Soils. Int. J. Soil Sci. 2007, 2, 107–118. [Google Scholar]
- Wei, Z.; Hu, X.; Li, X.; Zhang, Y.; Jiang, L.; Li, J.; Guan, Z.; Cai, Y.; Liao, X. The Rhizospheric Microbial Community Structure and Diversity of Deciduous and Evergreen Forests in Taihu Lake Area, China. PLoS ONE 2017, 12, e0174411. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Peng, C.; Yang, B.; Song, H.; Li, Q.; Jiang, L.; Wei, G.; Wang, K.; Wang, H.; Liu, S.; et al. Contrasting Soil Bacterial Community, Diversity, and Function in Two Forests in China. Front. Microbiol. 2018, 9, 1693. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.J.; Deng, J.; Yin, Y.; Qin, S.J.; Zhu, W.X.; Zhou, Y.B.; Wang, B.; Ruan, H.; Jin, L. Bacterial Community Changes Associated with Land Use Type in the Forest Montane Region of Northeast China. Forests 2019, 11, 40. [Google Scholar] [CrossRef] [Green Version]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an Ecological Classification of Soil Bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, C.; Yu, W.; Turak, A.; Chen, D.; Huang, Y.; Ao, J.; Jiang, Y.; Huang, Z. Effects of Nitrogen and Phosphorus Inputs on Soil Bacterial Abundance, Diversity, and Community Composition in Chinese Fir Plantations. Front. Microbiol. 2018, 9, 1543. [Google Scholar] [CrossRef]
- Liu, M.; Sui, X.; Hu, Y.; Feng, F. Microbial Community Structure and the Relationship with Soil Carbon and Nitrogen in an Original Korean Pine Forest of Changbai Mountain, China. BMC Microbiol. 2019, 19, 218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, Y.; Wang, M.; Zhang, W.; Ni, Z.; Hashidoko, Y.; Shen, W. Ammonium Nitrogen Content Is a Dominant Predictor of Bacterial Community Composition in an Acidic Forest Soil with Exogenous Nitrogen Enrichment. Sci. Total Environ. 2018, 624, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Seaton, F.M.; George, P.B.; Lebron, I.; Jones, D.L.; Creer, S.; Robinson, D.A. Soil Textural Heterogeneity Impacts Bacterial but Not Fungal Diversity. Soil Biol. Biochem. 2020, 144, 107766. [Google Scholar] [CrossRef]
- Hemkemeyer, M.; Dohrmann, A.B.; Christensen, B.T.; Tebbe, C.C. Bacterial Preferences for Specific Soil Particle Size Fractions Revealed by Community Analyses. Front. Microbiol. 2018, 9, 149. [Google Scholar] [CrossRef] [Green Version]
- Ragot, S.A.; Huguenin-Elie, O.; Kertesz, M.A.; Frossard, E.; Bünemann, E.K. Total and Active Microbial Communities and phoD as Affected by Phosphate Depletion and pH in Soil. Plant Soil 2016, 408, 15–30. [Google Scholar] [CrossRef]
- Ragot, S.A.; Kertesz, M.A.; Mészáros, É.; Frossard, E.; Bünemann, E.K. Soil phoD and phoX Alkaline Phosphatase Gene Diversity Responds to Multiple Environmental Factors. FEMS Microbiol. Ecol. 2017, 93, fiw212. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.H. Studies on the Oxidation of Ammonia by Nitrosomonas. Biochem. J. 1965, 95, 688–698. [Google Scholar] [CrossRef] [Green Version]
- Daims, H.; Lebedeva, E.V.; Pjevac, P.; Han, P.; Herbold, C.; Albertsen, M.; Jehmlich, N.; Palatinszky, M.; Vierheilig, J.; Bulaev, A.; et al. Complete Nitrification by Nitrospira Bacteria. Nature 2015, 528, 504–509. [Google Scholar] [CrossRef]
- Oren, A. The Family Rhodocyclaceae. In The Prokaryotes: Alphaproteobacteria and Betaproteobacteria, 4th ed.; DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 975–998. [Google Scholar] [CrossRef]
- Reinhold-Hurek, B.; Hurek, T.; Gillis, M.; Hoste, B.; Vancanneyt, M.; Kersters, K.; Ley, J. Azoarcus Gen. Nov., Nitrogen-Fixing Proteobacteria Associated with Roots of Kallar Grass (Leptochloa Fusca (L.) Kunth), and Description of Two Species, Azoarcus Indigens Sp. Nov. and Azoarcus Communis Sp. Nov. Int. J. Syst. Evol. Microbiol. 1993, 43, 574–584. [Google Scholar] [CrossRef]
- Ye, D.; Siddiqi, M.A.; Maccubbin, A.E.; Kumar, S.; Sikka, H.C. Degradation of Polynuclear Aromatic Hydrocarbons by Sphingomonas Paucimobilis. Environ. Sci. Technol. 1996, 30, 136–142. [Google Scholar] [CrossRef]
- Sahoo, N.K.; Pakshirajan, K.; Ghosh, P.K.; Ghosh, A. Biodegradation of 4-Chlorophenol by Arthrobacter Chlorophenolicus A6: Effect of Culture Conditions and Degradation Kinetics. Biodegradation 2011, 22, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Kong, X.; Lan, L.; Tadda, M.A.; Liu, D. Effects of Carbon Sources on 17 Beta-Estradiol Degradation by Sphingomonas Sp. and the Analysis of the Involved Intracellular Metabolomics. Environ. Sci. Process. Impacts 2020, 22, 197–206. [Google Scholar] [CrossRef]
- Jatoth, K.; Shantipriya, A.; Mangilal, T.; Junapudi, S. Optimization for the Production of Extracellular Alkaline Phosphatase from Bacillus Subtilis. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 829–838. [Google Scholar]
- Parhamfar, M.; Badoei-Dalfard, A.; Milad, P.; Fahimi Rad, S. Purification and Characterization of an Extracellular Phosphatase Enzyme from Bacillus Spp. J. Cell Mol. Res. 2016, 8, 90–92. [Google Scholar]
- Bahadir, P.S.; Liaqat, F.; Eltem, R. Plant Growth Promoting Properties of Phosphate Solubilizing Bacillus Species Isolated from the Aegean Region of Turkey. Turk. J. Bot. 2018, 42, 183–196. [Google Scholar] [CrossRef]
- Eder, S.; Shi, L.; Jensen, K.; Yamane, K.; Hulett, F.M. A Bacillus Subtilis Secreted Phosphodiesterase/alkaline Phosphatase Is the Product of a Pho Regulon Gene, phoD. Microbiology 1996, 142, 2041–2047. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, C.; Bakshi, U.; Mallick, I.; Mukherji, S.; Bera, B.; Ghosh, A. Genome-Guided Insights into the Plant Growth Promotion Capabilities of the Physiologically Versatile Bacillus Aryabhattai Strain AB211. Front. Microbiol. 2017, 8, 411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Priya, D.; Kumar, M.; Kalaichelvan, P. Optimization and Production of Extracellular Alkaline Phosphatase from Bacillus Megaterium. Int. J. ChemTech Res. 2014, 6, 4251–4258. [Google Scholar]
- Wang, J.; Li, R.; Zhang, H.; Wei, G.; Li, Z. Beneficial Bacteria Activate Nutrients and Promote Wheat Growth under Conditions of Reduced Fertilizer Application. BMC Microbiol. 2020, 20, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moura, R.S.; Martín, J.F.; Martín, A.; Liras, P. Substrate Analysis and Molecular Cloning of the Extracellular Alkaline Phosphatase of Streptomyces griseus. The GenBank Accession Number for the Sequence Reported in This Paper Is AJ278740. Microbiology 2001, 147, 1525–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nitta, M.; Goto, M.; Shibuya, N.; Okawa, Y. A Novel Protein with Alkaline Phosphatase and Protease Inhibitor Activities in Streptomyces Hiroshimensis. Biol. Pharm. Bull. 2002, 25, 833–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozegowski, J.H.; Müller, P.J. Metabolism of Phosphate-Limited Streptomyces Cultures. I. Purification and Characterization of Alkaline Phosphatase Produced by Streptomyces Hygroscopicus. Zentralbl. Bakteriol. Mikrobiol. Hyg. A 1984, 258, 141–155. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Monroy, A.M.; Santana-Martínez, J.C.; Dussán, J. Lysinibacillus Sphaericus as a Nutrient Enhancer during Fire-Impacted Soil Replantation. Appl. Environ. Soil Sci. 2019, 2019, 3075153. [Google Scholar] [CrossRef] [Green Version]
- Rafique, M.; Sultan, T.; Ortas, I.; Chaudhary, H.J. Enhancement of Maize Plant Growth with Inoculation of Phosphate-Solubilizing Bacteria and Biochar Amendment in Soil. Soil Sci. Plant Nutr. 2017, 63, 460–469. [Google Scholar] [CrossRef]
- Monds, R.D.; Newell, P.D.; Schwartzman, J.A.; O’Toole, G.A. Conservation of the Pho Regulon in Pseudomonas Fluorescens Pf0-1. Appl. Environ. Microbiol. 2006, 72, 1910–1924. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Pal, J.; Kaur, M. Isolation of Phosphate Solubilizing Pseudomonas Strains from Apple Rhizosphere in the Trans Himalayan Region of Himachal Pradesh, India. bioRxiv 2017, 193672. [Google Scholar] [CrossRef] [Green Version]
- Oteino, N.; Lally, R.D.; Kiwanuka, S.; Lloyd, A.; Ryan, D.; Germaine, K.J.; Dowling, D.N. Plant Growth Promotion Induced by Phosphate Solubilizing Endophytic Pseudomonas Isolates. Front. Microbiol. 2015, 6, 745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, T.; Li, M.; Saleem, M.; Zhang, X.; Zhang, Q. The Fungicide “fluopyram” Promotes Pepper Growth by Increasing the Abundance of P-Solubilizing and N-Fixing Bacteria. Ecotoxicol. Environ. Saf. 2020, 188, 109947. [Google Scholar] [CrossRef] [PubMed]
Samples | CL01 | CL02 | CL03 | VL01 | VL02 | VL03 |
---|---|---|---|---|---|---|
pHKCl | 7.00 ± 0.022 | 3.90 ± 0.036 | 4.60 ± 0.033 | 4.00 ± 0.031 | 5.70 ± 0.051 | 6.50 ± 0.032 |
Particle size distribution (%) | ||||||
sand | 42.45 ± 0.5 | 37.72 ± 0.5 | 74.62 ± 0.3 | 55.66 ± 0.2 | 73.95 ± 0.2 | 63.08 ± 0.3 |
silt | 31.43 ± 0.5 | 40.57 ± 0.5 | 19.35 ± 0.4 | 0.98 ± 0.2 | 1.49 ± 0.2 | 2.49 ± 0.3 |
clay | 26.12 ± 0.5 | 21.71 ± 0.5 | 6.03 ± 0.3 | 43.36 ± 0.3 | 24.57 ± 0.4 | 34.43 ± 0.5 |
SOC (g kg−1) | 9.30 ± 0.115 | 20.90 ± 0.120 | 7.50 ± 0.210 | 15.20 ± 0.223 | 20.50 ± 0.300 | 12.00 ± 0.300 |
TN (%) | 0.17 ± 0.010 | 0.19 ± 0.010 | 0.083 ± 0.010 | 0.14 ± 0.021 | 0.13 ± 0.024 | 0.10 ± 0.013 |
TP (% P2O5) | 0.09 ± 0.001 | 0.132 ± 0.004 | 0.032 ± 0.002 | 0.212 ± 0.001 | 0.22 ± 0.003 | 0.069 ± 0.003 |
TK (%) | 0.25 ± 0.022 | 0.22 ± 0.013 | 0.028 ± 0.010 | 0.14 ± 0.010 | 0.15 ± 0.013 | 0.31 ± 0.020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hegyi, A.; Nguyen, T.B.K.; Posta, K. Metagenomic Analysis of Bacterial Communities in Agricultural Soils from Vietnam with Special Attention to Phosphate Solubilizing Bacteria. Microorganisms 2021, 9, 1796. https://doi.org/10.3390/microorganisms9091796
Hegyi A, Nguyen TBK, Posta K. Metagenomic Analysis of Bacterial Communities in Agricultural Soils from Vietnam with Special Attention to Phosphate Solubilizing Bacteria. Microorganisms. 2021; 9(9):1796. https://doi.org/10.3390/microorganisms9091796
Chicago/Turabian StyleHegyi, Anna, Tran Bao Khuyen Nguyen, and Katalin Posta. 2021. "Metagenomic Analysis of Bacterial Communities in Agricultural Soils from Vietnam with Special Attention to Phosphate Solubilizing Bacteria" Microorganisms 9, no. 9: 1796. https://doi.org/10.3390/microorganisms9091796