Whole-Genome SNP Analysis Identifies Putative Mycobacterium bovis Transmission Clusters in Livestock and Wildlife in Catalonia, Spain
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. MTBC Isolation and Identification
2.3. DNA Extraction
2.4. Whole-Genome Sequencing and SNP Analysis
2.5. Characterization of Antibiotic-Resistant Mutations and SNP on Virulence Genes
2.6. In Silico DVR-Spoligotyping
2.7. Epidemiological Associations
Animal Movements
3. Results
3.1. Spoligotyping
3.2. WGS-Based Phylogenetic Structure of MTBC Isolates from Catalonia
3.3. Epidemiological Investigations and Putative Transmission Clusters
3.4. Cross-Sectional Data Analysis in a World Context
3.5. Virulence and Antimicrobial Resistance Traits
4. Discussion
4.1. Isolates’ Demographic Attributes
4.2. Genetic Diversity
4.3. Transmission Clusters
4.4. Catalonia M. bovis in a World Context
4.5. Virulence and Antibiotic Resistance Factors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, A.R.; Skuce, R.A.; Byrne, A.W. Bovine Tuberculosis in Britain and Ireland—A Perfect Storm? The Confluence of Potential Ecological and Epidemiological Impediments to Controlling a Chronic Infectious Disease. Front. Vet. Sci. 2018, 5, 109. [Google Scholar] [CrossRef]
- Gordejo, F.J.; Vermeersch, J.P. Towards eradication of bovine tuberculosis in the European Union. Vet. Microbiol. 2006, 112, 101–109. [Google Scholar] [CrossRef]
- Livingstone, P.G.; Hancox, N.; Nugent, G.; de Lisle, G.W. Toward eradication: The effect of Mycobacterium bovis infection in wildlife on the evolution and future direction of bovine tuberculosis management in New Zealand. N. Z. Vet. J. 2015, 63 (Suppl. S1), 4–18. [Google Scholar] [CrossRef] [PubMed]
- More, S.J.; Radunz, B.; Glanville, R.J. Lessons learned during the successful eradication of bovine tuberculosis from Australia. Vet. Rec. 2015, 177, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Olmstead, A.L.; Rhode, P.W. An Impossible Undertaking: The Eradication of Bovine Tuberculosis in the United States. J. Econ. Hist. 2004, 64, 734–772. [Google Scholar] [CrossRef]
- DGSPA. Informe Final Tecnico-Financiero Programa Nacional de la Tuberculosis Bovina Año 2019; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 2019. [Google Scholar]
- MAPA. Programa Nacional de Erradicación de Tuberculosis Bovina Presentado por España para el Año 2019; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 2019; Available online: https://www.mapa.gob.es/es/ganaderia/temas/sanidad-animal-higiene-ganadera/programatb2019verdefinitiva_tcm30-500265.pdf (accessed on 29 July 2021).
- Rodriguez-Campos, S.; Smith, N.H.; Boniotti, M.B.; Aranaz, A. Overview and phylogeny of Mycobacterium tuberculosis complex organisms: Implications for diagnostics and legislation of bovine tuberculosis. Res. Vet. Sci. 2014, 97, S5–S19. [Google Scholar] [CrossRef] [PubMed]
- Trewby, H.; Wright, D.; Breadon, E.L.; Lycett, S.J.; Mallon, T.R.; McCormick, C.; Johnson, P.; Orton, R.J.; Allen, A.R.; Galbraith, J.; et al. Use of bacterial whole-genome sequencing to investigate local persistence and spread in bovine tuberculosis. Epidemics 2016, 14, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Aranaz, A.; Liébana, E.; Mateos, A.; Dominguez, L.; Vidal, D.; Domingo, M.; Gonzolez, O.; Rodriguez-Ferri, E.F.; Bunschoten, A.E.; Van Embden, J.D.; et al. Spacer oligonucleotide typing of Mycobacterium bovis strains from cattle and other animals: A tool for studying epidemiology of tuberculosis. J. Clin. Microbiol. 1996, 34, 2734–2740. [Google Scholar] [CrossRef]
- Rodríguez, S.; Romero, B.; Bezos, J.; de Juan, L.; Alvarez, J.; Castellanos, E.; Moya, N.; Lozano, F.; González, S.; Sáez-Llorente, J.L.; et al. High spoligotype diversity within a Mycobacterium bovis population: Clues to understanding the demography of the pathogen in Europe. Vet. Microbiol. 2010, 141, 89–95. [Google Scholar] [CrossRef]
- Rodriguez-Campos, S.; Navarro, Y.; Romero, B.; de Juan, L.; Bezos, J.; Mateos, A.; Golby, P.; Smith, N.H.; Hewinson, G.R.; Domínguez, L.; et al. Splitting of a Prevalent Mycobacterium bovis Spoligotype by Variable-Number Tandem-Repeat Typing Reveals High Heterogeneity in an Evolving Clonal Group. J. Clin. Microbiol. 2013, 51, 3658. [Google Scholar] [CrossRef]
- Smith, N.H.; Berg, S.; Dale, J.; Allen, A.; Rodriguez, S.; Romero, B.; Matos, F.; Ghebremichael, S.; Karoui, C.; Donati, C.; et al. European 1: A globally important clonal complex of Mycobacterium bovis. Infect. Genet. Evol. 2011, 11, 1340–1351. [Google Scholar] [CrossRef]
- Rodriguez-Campos, S.; Schürch, A.C.; Dale, J.; Lohan, A.J.; Cunha, M.V.; Botelho, A.; De Cruz, K.; Boschiroli, M.L.; Boniotti, M.B.; Pacciarini, M.; et al. European 2—A clonal complex of Mycobacterium bovis dominant in the Iberian Peninsula. Infect. Genet. Evol. 2012, 12, 866–872. [Google Scholar] [CrossRef]
- Müller, B.; Hilty, M.; Berg, S.; Garcia-Pelayo, M.C.; Dale, J.; Boschiroli, M.L.; Cadmus, S.; Ngandolo, B.N.R.; Godreuil, S.; Diguimbaye-Djaibé, C.; et al. African 1, an Epidemiologically Important Clonal Complex of Mycobacterium bovis Dominant in Mali, Nigeria, Cameroon, and Chad. J. Bacteriol. 2009, 191, 1951. [Google Scholar] [CrossRef] [PubMed]
- Berg, S.; Garcia-Pelayo, M.C.; Müller, B.; Hailu, E.; Asiimwe, B.; Kremer, K.; Dale, J.; Boniotti, M.B.; Rodriguez, S.; Hilty, M.; et al. African 2, a Clonal Complex of Mycobacterium bovis Epidemiologically Important in East Africa. J. Bacteriol. 2011, 193, 670. [Google Scholar] [CrossRef] [PubMed]
- Branger, M.; Loux, V.; Cochard, T.; Boschiroli, M.L.; Biet, F.; Michelet, L. The complete genome sequence of Mycobacterium bovis Mb3601, a SB0120 spoligotype strain representative of a new clonal group. Infect. Genet. Evol. 2020, 82, 104309. [Google Scholar] [CrossRef] [PubMed]
- Smith, N.H. The global distribution and phylogeography of Mycobacterium bovis clonal complexes. Infect. Genet. Evol. 2012, 12, 857–865. [Google Scholar] [CrossRef] [PubMed]
- Ciaravino, G.; Laranjo-González, M.; Casal, J.; Sáez-Llorente, J.L.; Allepuz, A. Most likely causes of infection and risk factors for tuberculosis in Spanish cattle herds. Vet. Rec. 2021, e140. [Google Scholar] [CrossRef]
- Gortazar, C.; Vicente, J.; Boadella, M.; Ballesteros, C.; Galindo, R.C.; Garrido, J.; Aranaz, A.; de la Fuente, J. Progress in the control of bovine tuberculosis in Spanish wildlife. Vet. Microbiol. 2011, 151, 170–178. [Google Scholar] [CrossRef]
- Guta, S.; Casal, J.; Napp, S.; Saez, J.L.; Garcia-Saenz, A.; Pérez de Val, B.; Romero, B.; Alvarez, J.; Allepuz, A. Epidemiological investigation of bovine tuberculosis herd breakdowns in Spain 2009/2011. PLoS ONE 2014, 9, e104383. [Google Scholar] [CrossRef]
- Naranjo, V.; Gortazar, C.; Vicente, J.; de la Fuente, J. Evidence of the role of European wild boar as a reservoir of Mycobacterium tuberculosis complex. Vet. Microbiol. 2008, 127, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Parra, A.; García, A.; Tato, A.; Alonso, J.M.; Hermoso de Mendoza, M.; Hermoso de Mendoza, J.; Larrasa, J. An epidemiological evaluation of Mycobacterium bovis infections in wild game animals of the Spanish Mediterranean ecosystem. Res. Vet. Sci. 2006, 80, 140–146. [Google Scholar] [CrossRef]
- Crispell, J.; Zadoks, R.N.; Harris, S.R.; Paterson, B.; Collins, D.M.; de-Lisle, G.W.; Livingstone, P.; Neill, M.A.; Biek, R.; Lycett, S.J.; et al. Using whole genome sequencing to investigate transmission in a multi-host system: Bovine tuberculosis in New Zealand. BMC Genom. 2017, 18, 180. [Google Scholar] [CrossRef] [PubMed]
- Price-Carter, M.; Brauning, R.; de Lisle, G.W.; Livingstone, P.; Neill, M.; Sinclair, J.; Paterson, B.; Atkinson, G.; Knowles, G.; Crews, K.; et al. Whole Genome Sequencing for Determining the Source of Mycobacterium bovis Infections in Livestock Herds and Wildlife in New Zealand. Front. Vet. Sci. 2018, 5, 272. [Google Scholar] [CrossRef]
- Hauer, A.; Michelet, L.; Cochard, T.; Branger, M.; Nunez, J.; Boschiroli, M.L.; Biet, F. Accurate Phylogenetic Relationships Among Mycobacterium bovis Strains Circulating in France Based on Whole Genome Sequencing and Single Nucleotide Polymorphism Analysis. Front. Microbiol. 2019, 10, 955. [Google Scholar] [CrossRef]
- Kohl, T.A.; Kranzer, K.; Andres, S.; Wirth, T.; Niemann, S.; Moser, I. Population Structure of genus-species Mycobacterium bovis in Germany: A Long-Term Study Using Whole-Genome Sequencing Combined with Conventional Molecular Typing Methods. J. Clin. Microbiol. 2020, 58, e01573-20. [Google Scholar] [CrossRef] [PubMed]
- Biek, R.; O’Hare, A.; Wright, D.; Mallon, T.; McCormick, C.; Orton, R.J.; McDowell, S.; Trewby, H.; Skuce, R.A.; Kao, R.R. Whole Genome Sequencing Reveals Local Transmission Patterns of Mycobacterium bovis in Sympatric Cattle and Badger Populations. PLOS Pathog. 2012, 8, e1003008. [Google Scholar] [CrossRef] [PubMed]
- Orloski, K.; Robbe-Austerman, S.; Stuber, T.; Hench, B.; Schoenbaum, M. Whole Genome Sequencing of Mycobacterium bovis Isolated from Livestock in the United States, 1989–2018. Front. Vet. Sci. 2018, 5, 253. [Google Scholar] [CrossRef]
- Ciaravino, G.; Vidal, E.; Cortey, M.; Martín, M.; Sanz, A.; Mercader, I.; Perea, C.; Robbe-Austerman, S.; Allepuz, A.; Pérez de Val, B. Phylogenetic relationships investigation of Mycobacterium caprae strains from sympatric wild boar and goats based on whole genome sequencing. Transbound. Emerg. Dis. 2020, 68, 1476–1486. [Google Scholar] [CrossRef]
- Allepuz, A.; Casal, J.; Napp, S.; Saez, M.; Alba, A.; Vilar, M.; Domingo, M.; González, M.A.; Duran-Ferrer, M.; Vicente, J.; et al. Analysis of the spatial variation of Bovine tuberculosis disease risk in Spain (2006–2009). Prev. Vet. Med. 2011, 100, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Ciaravino, G.; García-Saenz, A.; Cabras, S.; Allepuz, A.; Casal, J.; García-Bocanegra, I.; De Koeijer, A.; Gubbins, S.; Sáez, J.L.; Cano-Terriza, D.; et al. Assessing the variability in transmission of bovine tuberculosis within Spanish cattle herds. Epidemics 2018, 23, 110–120. [Google Scholar] [CrossRef]
- Ciaravino, G.; Ibarra, P.; Casal, E.; Lopez, S.; Espluga, J.; Casal, J.; Napp, S.; Allepuz, A. Farmer and Veterinarian Attitudes towards the Bovine Tuberculosis Eradication Programme in Spain: What Is Going on in the Field? Front. Vet. Sci. 2017, 4, 202. [Google Scholar] [CrossRef]
- Garcia-Saenz, A.; Napp, S.; Lopez, S.; Casal, J.; Allepuz, A. Estimation of the individual slaughterhouse surveillance sensitivity for bovine tuberculosis in Catalonia (North-Eastern Spain). Prev. Vet. Med. 2015, 121, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Napp, S.; Ciaravino, G.; Pérez de Val, B.; Casal, J.; Saéz, J.L.; Alba, A. Evaluation of the effectiveness of the surveillance system for tuberculosis in cattle in Spain. Prev. Vet. Med. 2019, 173, 104805. [Google Scholar] [CrossRef] [PubMed]
- Pozo, P.; Romero, B.; Bezos, J.; Grau, A.; Nacar, J.; Saez, J.L.; Minguez, O.; Alvarez, J. Evaluation of Risk Factors Associated with Herds with an Increased Duration of Bovine Tuberculosis Breakdowns in Castilla y Leon, Spain (2010–2017). Front. Vet. Sci. 2020, 7, 668. [Google Scholar] [CrossRef] [PubMed]
- Vidal, E.; Grasa, M.; Perálvarez, T.; Martín, M.; Mercader, I.; Pérez de Val, B. Transmission of tuberculosis caused by Mycobacterium caprae between dairy sheep and goats. Small Rumin. Res. 2018, 158, 22–25. [Google Scholar] [CrossRef]
- Wilton, S.; Cousins, D. Detection and identification of multiple mycobacterial pathogens by DNA amplification in a single tube. PCR Methods Appl. 1992, 1, 269–273. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Garrison, E.; Marth, G. Haplotype-based variant detection from short-read sequencing. arXiv 2012, arXiv:1207.3907. [Google Scholar]
- Robinson, J.T.; Thorvaldsdóttir, H.; Winckler, W.; Guttman, M.; Lander, E.S.; Getz, G.; Mesirov, J.P. Integrative genomics viewer. Nat. Biotechnol. 2011, 29, 24–26. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics 2006, 23, 127–128. [Google Scholar] [CrossRef] [PubMed]
- Francisco, A.P.; Vaz, C.; Monteiro, P.T.; Melo-Cristino, J.; Ramirez, M.; Carriço, J.A. PHYLOViZ: Phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinform. 2012, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zankari, E.; Allesøe, R.; Joensen, K.G.; Cavaco, L.M.; Lund, O.; Aarestrup, F.M. PointFinder: A novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J. Antimicrob. Chemother. 2017, 72, 2764–2768. [Google Scholar] [CrossRef]
- Walker, T.M.; Ip, C.L.C.; Harrell, R.H.; Evans, J.T.; Kapatai, G.; Dedicoat, M.J.; Eyre, D.W.; Wilson, D.J.; Hawkey, P.M.; Crook, D.W.; et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: A retrospective observational study. Lancet Infect. Dis. 2013, 13, 137–146. [Google Scholar] [CrossRef]
- Aranaz, A.; Cousins, D.; Mateos, A.; Domínguez, L. Elevation of Mycobacterium tuberculosis subsp. caprae Aranaz et al. 1999 to species rank as Mycobacterium caprae comb. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 2003, 53, 1785–1789. [Google Scholar] [CrossRef]
- Napp, S.; Allepuz, A.; Mercader, I.; Nofrarías, M.; López-Soria, S.; Domingo, M.; Romero, B.; Bezos, J.; Pérez de Val, B. Evidence of goats acting as domestic reservoirs of bovine tuberculosis. Vet. Rec. 2013, 172, 663. [Google Scholar] [CrossRef]
- Allepuz, A.; EIdal, V.; Pérez, B. Evolución del plan de erradicación de Tuberculosis bovina y brotes de los últimos años en Catalunya. In Proceedings of the XX Congreso Internacional sobre Tuberculosis, Barcelona, Spain, 21–22 November 2016. [Google Scholar]
- Martín-Hernando, M.P.; Höfle, U.; Vicente, J.; Ruiz-Fons, F.; Vidal, D.; Barral, M.; Garrido, J.M.; de la Fuente, J.; Gortazar, C. Lesions associated with Mycobacterium tuberculosis complex infection in the European wild boar. Tuberculosis 2007, 87, 360–367. [Google Scholar] [CrossRef]
- González-Salazar, D.; Díaz-Otero, F.; Jaramillo-Meza, L.; Santillán-Flores, M.A.; Erazo-García, R.; Díaz-Arriaga, C. Detection and anatomopathological description of tuberculosis in an Ankole-Watusi colony. Técnica Pecuaria en México 2007, 45, 101–109. [Google Scholar]
- Reis, A.C.; Tenreiro, R.; Albuquerque, T.; Botelho, A.; Cunha, M.V. Long-term molecular surveillance provides clues on a cattle origin for Mycobacterium bovis in Portugal. Sci. Rep. 2020, 10, 20856. [Google Scholar] [CrossRef]
- Hauer, A.; De Cruz, K.; Cochard, T.; Godreuil, S.; Karoui, C.; Henault, S.; Bulach, T.; Bañuls, A.-L.; Biet, F.; Boschiroli, M.L. Genetic Evolution of Mycobacterium bovis Causing Tuberculosis in Livestock and Wildlife in France since 1978. PLoS ONE 2015, 10, e0117103. [Google Scholar] [CrossRef] [PubMed]
- Ministerio de Agricultura y Pesca. Plan de Actuación Sobre Tuberculosis en Especies Silvestre; Ministerio de Agricultura y Pesca: Madrid, Spain, 2017. [Google Scholar]
- Kao, R.R.; Price-Carter, M.; Robbe-Austerman, S. Use of genomics to track bovine tuberculosis transmission. Rev. Sci. Tech. 2016, 35, 241–258. [Google Scholar] [CrossRef]
- Ministerio de la Presidencia. Real Decreto 138/2020, de 28 de Enero, por el que se Establece la Normativa Básica en Materia de Actuaciones Sanitarias en Especies Cinegéticas Que Actúan Como Reservorio de la Tuberculosis (Complejo Mycobacterium tuberculosis); Ministerio de la Presidencia: Madrid, Spain, 2020. [Google Scholar]
- Bessell, P.R.; Orton, R.; White, P.C.L.; Hutchings, M.R.; Kao, R.R. Risk factors for bovine tuberculosis at the national level in Great Britain. BMC Vet. Res. 2012, 8, 51. [Google Scholar] [CrossRef]
- Griffin, J.M.; Martin, S.W.; Thorburn, M.A.; Eves, J.A.; Hammond, R.F. A case-control study on the association of selected risk factors with the occurrence of bovine tuberculosis in the Republic of Ireland. Prev. Vet. Med. 1996, 27, 217–229. [Google Scholar] [CrossRef]
- Skuce, R.A.; Allen, A.R.; McDowell, S.W. Herd-Level Risk Factors for Bovine Tuberculosis: A Literature Review. Vet. Med. Int. 2012, 2012, 621210. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C.J.C.; Foster, C.R.W.; Morris, P.A.; Teverson, R. The transmission of Mycobacterium bovis infection to cattle. Res. Vet. Sci. 2003, 74, 1–15. [Google Scholar] [CrossRef]
- Francis, J. Bovine Tuberculosis, Including a Contrast with Human Tuberculosis; Staples Press Ltd.: London, UK, 1947; p. 220. [Google Scholar]
- Ribeiro, L.; Tosti Narciso, M.R.; Hoshida Felipe, T.; Ramirez Starikoff, K.; Oliveira de Souza, G.; Soares Ferreira Neto, J.; Ferreira, F.; Amaku, M.; Días, R.A.; Picão Gonçalves, V.S.; et al. Decay of Mycobacterium bovis in whole milk submitted to pasteurization parameters. Semin. Cienc. Agrar. 2016, 37, 3727–3736. [Google Scholar] [CrossRef]
- White, P.W.; Martin, S.W.; De Jong, M.C.M.; O´Keeffe, J.J.; More, S.J.; Frankena, K. The importance of ‘neighbourhood’ in the persistence of bovine tuberculosis in Irish cattle herds. Prev. Vet. Med. 2013, 110, 346–355. [Google Scholar] [CrossRef]
- Barasona, J.A.; Vicente, J.; Díez-Delgado, I.; Aznar, J.; Gortázar, C.; Torres, M.J. Environmental Presence of Mycobacterium tuberculosis Complex in Aggregation Points at the Wildlife/Livestock Interface. Transbound. Emerg. Dis. 2017, 64, 1148–1158. [Google Scholar] [CrossRef]
- Rossi, G.; Aubry, P.; Dubé, C.; Smith, R.L. The spread of bovine tuberculosis in Canadian shared pastures: Data, model, and simulations. Transbound. Emerg. Dis. 2019, 66, 562–577. [Google Scholar] [CrossRef]
- Harris, N.R.; Johnson, D.E.; McDougald, N.K.; George, M.R. Social Associations and Dominance of Individuals in Small Herds of Cattle. Ecol. Manag. 2007, 60, 339–349. [Google Scholar] [CrossRef]
- Stephenson, M.B.; Bailey, D.W.; Jensen, D. Association patterns of visually-observed cattle on Montana, USA foothill rangelands. Appl. Anim. Behav. Sci. 2016, 178, 7–15. [Google Scholar] [CrossRef]
- Rodríguez-Prieto, V.; Martínez-López, B.; Barasona, J.A.; Acevedo, P.; Romero, B.; Rodriguez-Campos, S.; Gortázar, C.; Sánchez-Vizcaíno, J.M.; Vicente, J. A Bayesian approach to study the risk variables for tuberculosis occurrence in domestic and wild ungulates in South Central Spain. BMC Vet. Res. 2012, 8, 148. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Campos, S. Molecular Epidemiology of Mycobacterium bovis and Mycobacterium caprae in Spain; Facultad de Veterinaria, Universidad Complutense de Madrid: Madrid, Spain, 2012. [Google Scholar]
- Zumarraga, M.; Arriaga, C.; Barandiaran, S.; Cobos-Marín, L.; de Waard, J.; Estrada-García, I.; Figueiredo, T.; Figueroa, A.; Giménez, F.; Gomes, H.M.; et al. Understanding the relationship between Mycobacterium bovis spoligotypes from cattle in Latin American Countries. Res. Vet. Sci. 2012, 94, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Inlamea, O.F.; Soares, P.; Ikuta, C.Y.; Heinemann, M.B.; Achá, S.J.; Machado, A.; Ferreira Neto, J.S.; Correia-Neves, M.; Rito, T. Evolutionary analysis of Mycobacterium bovis genotypes across Africa suggests co-evolution with livestock and humans. PLOS Negl. Trop. Dis. 2020, 14, e0008081. [Google Scholar] [CrossRef] [PubMed]
- Loiseau, C.; Menardo, F.; Aseffa, A.; Hailu, E.; Gumi, B.; Ameni, G.; Berg, S.; Rigouts, L.; Robbe-Austerman, S.; Zinsstag, J.; et al. An African origin for Mycobacterium bovis. Evol. Med. Public Health 2020, 2020, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Zimpel, C.K.; Patané, J.; Guedes, A.; de Souza, R.F.; Silva-Pereira, T.T.; Camargo, N.; de Souza Filho, A.F.; Ikuta, C.Y.; Neto, J.; Setubal, J.C.; et al. Global Distribution and Evolution of Mycobacterium bovis Lineages. Front. Microbiol. 2020, 11, 843. [Google Scholar] [CrossRef] [PubMed]
- Milian-Suazo, F.; Garcia-Casanova, L.; Robbe-Austerman, S.; Canto-Alarcon, G.J.; Barcenas-Reyes, I.; Stuber, T.; Rodriguez-Hernandez, E.; Flores-Villalva, S. Molecular Relationship between Strains of M. bovis from Mexico and Those from Countries with Free Trade of Cattle with Mexico. PLoS ONE 2016, 11, e0155207. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Aixelà-Cabré, Y. Exploring Euro-African pasts through an analysis of Spanish colonial practices in Africa (Morocco and Spanish Guinea). Can. J. Afr. Stud. 2017, 51, 23–42. [Google Scholar] [CrossRef]
- Pitt, D.; Sevane, N.; Nicolazzi, E.L.; MacHugh, D.E.; Park, S.; Colli, L.; Martinez, R.; Bruford, M.W.; Orozco-terWengel, P. Domestication of cattle: Two or three events? Evol. Appl. 2018, 12, 123–136. [Google Scholar] [CrossRef]
- Gopal, P.; Yee, M.; Sarathy, J.; Low, J.L.; Sarathy, J.P.; Kaya, F.; Dartois, V.; Gengenbacher, M.; Dick, T. Pyrazinamide Resistance Is Caused by Two Distinct Mechanisms: Prevention of Coenzyme A Depletion and Loss of Virulence Factor Synthesis. ACS Infect. Dis. 2016, 2, 616–626. [Google Scholar] [CrossRef]
- Forrellad, M.A.; Forrellad, M.A.; Klepp, L.I.; Gioffré, A.; Sabio y García, J.; Morbidoni, H.R.; de la Paz Santangelo, M.; Cataldi, A.A.; Bigi, F. Virulence factors of the Mycobacterium tuberculosis complex. Virulence 2013, 4, 3–66. [Google Scholar] [CrossRef] [PubMed]
- Arruda, S.; Bomfim, G.; Knights, R.; Huima-Byron, T.; Riley, L.W. Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science 1993, 261, 1454–1457. [Google Scholar] [CrossRef]
- O’Donohue, W.J., Jr.; Bedi, S.; Bittner, M.J.; Preheim, L.C. Short-course chemotherapy for pulmonary infection due to Mycobacterium bovis. Arch. Intern. Med. 1985, 145, 703–705. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Chen, J.; Feng, J.; Cui, P.; Zhang, S.; Weng, X.; Zhang, W.; Zhang, Y. Aspartate decarboxylase (PanD) as a new target of pyrazinamide in Mycobacterium tuberculosis. Emerg. Microbes Infect. 2014, 3, 1–8. [Google Scholar] [CrossRef]
- Franco, M.M.J.; Ribeiro, M.G.; Pavan, F.R.; Miyata, M.; Heinemann, M.B.; de Souza Filho, A.F.; Cardoso, R.F.; de Almeida, A.L.; Sakate, R.I.; Paes, A.C. Genotyping and rifampicin and isoniazid resistance in Mycobacterium bovis strains isolated from the lymph nodes of slaughtered cattle. Tuberculosis 2017, 104, 30–37. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, A.M.; Gibbons, N.; Fitzgibbon, M.; Power, J.T.; Foley, S.C.; Hayes, J.P.; Rogers, T.; Keane, J. Primary Isoniazid Resistance in Mycobacterium bovis Disease: A Prospect of Concern. Am. J. Respir. Crit. Care Med. 2012, 186, 110–111. [Google Scholar] [CrossRef] [PubMed]
- Sechi, L.A.; Zanetti, S.; Sanguinetti, M.; Molicotti, P.; Romano, L.; Leori, G.; Delogu, G.; Boccia, S.; La Sorda, M.; Fadda, G. Molecular basis of rifampin and isoniazid resistance in Mycobacterium bovis strains isolated in Sardinia, Italy. Antimicrob. Agents Chemother. 2001, 45, 1645–1648. [Google Scholar] [CrossRef]
- Vázquez-Chacón, C.A.; Rodríguez-Gaxiola, F.J.; López-Carrera, C.F.; Cruz-Rivera, M.; Martínez-Guarneros, A.; Parra-Unda, R.; Arámbula-Meraz, E.; Fonseca-Coronado, S.; Vaughan, G.; López-Durán, P.A. Identification of drug resistance mutations among Mycobacterium bovis lineages in the Americas. PLOS Negl. Trop. Dis. 2021, 15, e0009145. [Google Scholar] [CrossRef]
- Pérez de Val, B.; Romero, B.; Tórtola, M.T.; León, L.H.; Pozo, P.; Mercader, I.; Sáez, J.L.; Domingo, M.; Vidal, E. Polyresistant Mycobacterium bovis Infection in Human and Sympatric Sheep, Spain, 2017–2018. Emerg. Infect. Dis. 2021, 27, 1241–1243. [Google Scholar] [CrossRef]
Host Type | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beef (87) | Fattening (24) | Dairy (5) | Bullfighting (4) | Wild Boar (3) | Watusi (1) | Goat (1) | ||||||||
SB | % | SB | % | SB | % | SB | % | SB | % | SB | % | SB | % | |
Spoligotypes | SB0121 | 24.1 | SB0134 | 25.0 | SB0121 | 40.0 | SB1685 | 50.0 | SB0121 | 33.3 | SB0339 | 100 | SB0121 | 100 |
SB0134 | 16.1 | SB0121 | 20.8 | SB1016 | 40.0 | SB1095 | 25.0 | SB0119 | 33.3 | |||||
SB1337 | 14.9 | SB0140 | 12.5 | SB0140 | 20.0 | SB1192 | 25.0 | SB1337 | 33.3 | |||||
SB0832 | 8.0 | SB0120 | 8.3 | |||||||||||
SB0828 | 6.9 | SB0832 | 8.3 | |||||||||||
SB0120 | 6.9 | SB0124 | 4.2 | |||||||||||
SB1016 | 4.6 | SB2312 | 4.2 | |||||||||||
SB0295 | 3.4 | SB0130 | 4.2 | |||||||||||
SB1341 | 3.4 | SB0142 | 4.2 | |||||||||||
SB1257 | 2.3 | SB0295 | 4.2 | |||||||||||
SB1873 | 1.1 | SB1259 | 4.2 | |||||||||||
SB0124 | 1.1 | |||||||||||||
SB1142 | 1.1 | |||||||||||||
SB0294 | 1.1 | |||||||||||||
SB0152 | 1.1 | |||||||||||||
SB0140 | 1.1 | |||||||||||||
SB0119 | 1.1 | |||||||||||||
SB0265 | 1.1 |
Clade | Classification by [29] | Defining SNP | Product/Gene/Locus Tag | No. of Isolates | Consensus SNPs | Associated Genes * | |
---|---|---|---|---|---|---|---|
I | 9 | NC_002945.4:57046 | G > C | Probable conserved transmembrane protein, None, BQ2027_MB0052 | 11 | 38 | cmaA2, ecccb1, lpq, lipU, gabD2, mycp2, argS, gdh, phoH1, fadD36, dppD, smc |
II | 29 | NC_002945.4:1969776 | C > T | Probable oxidoreductase, None, BQ2027_MB1780 | 31 | 5 | pks7 |
III | 11 | NC_002945.4:3209992 | C > T | Phenolpthiocerol synthesis type-I polyketide synthase, ppsA, BQ2027_MB2956 | 18 | 1 | fadD34 |
IV | 13 | NC_002945.4:1814064 | C > T | Probable integral membrane cytochrome D ubiquinol oxidase (subunit II), cydB, BQ2027_MB1648C | 5 | 3 | eccb2 |
V | 14 | NC_002945.4:139460 | C > T | No annotated product | 7 | 1 | No annotated gene |
VI | 12 | NC_002945.4:1254487 | C > T | Probable transcriptional regulator protein, None, BQ2027_MB1160C | 35 | 4 | eccb2, esxL |
VII | 21 | NC_002945.4:3353644 | A > C | Alpha (1 → 4) glucosyltransferase, None, BQ2027_MB3058 | 16 | 96 | chaA, ctaB, dnaE1, esxQ, fadD23, fadD34, fadE22b, fadE24, fas, htpG, infB, kdpD, lipN, lppC, lppL, lppOb, ltp3, mdh, mmsA, mntH, murD, nadA, oplA, pca, pepE, pepR, pks12, ks8, PPE55a, PPE55b, PPE70, pptt, proA, purB, recC, rpsl, sigJ, sigL, thyx, truB, ugpB, vapc22, secY, pks6b, mmpL11, gyrA |
Cluster | Number of Isolates | Years of Isolation | Host Types | Average SNP Distance between Isolates | Movement Links 1 | Type of Movement |
---|---|---|---|---|---|---|
I.1 | 2 | 2010 | Dairy cattle | 2 | 2 | MIC |
I.2 | 2 | 2010, 2011 | Beef cattle | 4 | 0 | MIC |
I.3 | 2 | 2011, 2016 | Beef and dairy cattle | 1 | 0 | MIC |
II.1 | 2 | 2010 | Beef and fattening cattle | 0 | 1 | MIC |
II.2 | 2 | 2008, 2015 | Beef cattle | 4 | 0 | MIC |
II.3 | 3 | 2014, 2015 | Beef cattle | 2.3 | 2 | MIC |
II.4 | 3 | 2009, 2011, 2016 | Beef cattle | 2.3 | 1 | MIC, IOSC |
II.5 | 13 | 2008, 2010, 2011 | Beef and fattening cattle | 5.5 | 4 | MIC, IOSC |
III.1 | 3 | 2008 | Bullfighting cattle | 3.7 | 1 | MIC |
III.2 | 3 | 2010, 2012 | Beef and fattening cattle | 5.7 | 2 | MIC |
III.3 | 2 | 2011, 2016 | Beef and wild boar | 2 | 1 | MIC |
V.1 | 5 | 2008, 2011, 2016 | Beef cattle | 7 | 3 | MIC |
VI.1 | 3 | 2010 | Beef cattle | 2.7 | 3 | MIC |
VI.2 | 2 | 2014 | Beef cattle | 1.5 | 1 | MIC |
VI.3 | 2 | 2015, 2016 | Beef and wild boar | 1.5 | 1 | MIC |
VI.4 | 3 | 2010-2012 | Beef cattle | 0.7 | 1 | MIC |
VI.5 | 14 | 2017, 2018 | Beef and wild boar | 4.7 | 1 | MIC, IOSC |
VI.6 | 2 | 2009 | Beef and fattening cattle | 0 | 1 | MIC |
VII.1 | 2 | 2009 | Beef and fattening cattle | 3.5 | 1 | MIC |
VII.2 | 3 | 2009 | Beef cattle | 3.3 | 2 | MIC |
VII.3 | 5 | 2015 | Beef cattle | 0.4 | 0 | MIC |
Most Likely Explanatory Factor | Cluster/Sub-Cluster | |||||
---|---|---|---|---|---|---|
Residual infection | I.1 | III.1 | V.1a | VI.2 | ||
Neighborhood | V.1b | VI.4 | VI.5a | VI.5b | VII.1 | VII.2 |
Proximity | I.3 | II.4 | III.2 | |||
Movement | II.1 | II.3 | VI.1 | VI.6 | ||
Shared pasture | II.5 | VI.5 | VII.3 | |||
Livestock-wildlife interaction | III.3 | VI.3 | VI.5a | VI.5c | ||
Unknown | I.2 | II.2 |
Predicted Mutation | Nucleotide | Amino Acid Change | Resistance | No. of Isolates |
---|---|---|---|---|
pncA p.H57D | CAC > GAC | His57Asp | Pyrazinamide | 125 |
fabG1 promoter | −8T > C | Promoter mutation | Isoniazid | 5 |
Guta et al., 2014 | Ciaravino et al., 2021 | This Study | |
---|---|---|---|
Residual infection | 22.3% | 36.0% | 15.0% |
Wildlife interaction | 13.1% | 35.6% | 15.0% |
Introduction of cattle | 5.1% | 13.8% | 15.0% |
Sharing of pastures | 7.1% | 5.8% | 12.0% |
Contiguous spread | 8.0% | 3.0% | 35.0% |
Humans | 0.3% | 0.0% | ND |
Goats | 2.5% | 0.0% | 0.0% |
Unknown | 41.6% | 5.8% | 8.0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perea, C.; Ciaravino, G.; Stuber, T.; Thacker, T.C.; Robbe-Austerman, S.; Allepuz, A.; Val, B.P.d. Whole-Genome SNP Analysis Identifies Putative Mycobacterium bovis Transmission Clusters in Livestock and Wildlife in Catalonia, Spain. Microorganisms 2021, 9, 1629. https://doi.org/10.3390/microorganisms9081629
Perea C, Ciaravino G, Stuber T, Thacker TC, Robbe-Austerman S, Allepuz A, Val BPd. Whole-Genome SNP Analysis Identifies Putative Mycobacterium bovis Transmission Clusters in Livestock and Wildlife in Catalonia, Spain. Microorganisms. 2021; 9(8):1629. https://doi.org/10.3390/microorganisms9081629
Chicago/Turabian StylePerea, Claudia, Giovanna Ciaravino, Tod Stuber, Tyler C. Thacker, Suelee Robbe-Austerman, Alberto Allepuz, and Bernat Pérez de Val. 2021. "Whole-Genome SNP Analysis Identifies Putative Mycobacterium bovis Transmission Clusters in Livestock and Wildlife in Catalonia, Spain" Microorganisms 9, no. 8: 1629. https://doi.org/10.3390/microorganisms9081629
APA StylePerea, C., Ciaravino, G., Stuber, T., Thacker, T. C., Robbe-Austerman, S., Allepuz, A., & Val, B. P. d. (2021). Whole-Genome SNP Analysis Identifies Putative Mycobacterium bovis Transmission Clusters in Livestock and Wildlife in Catalonia, Spain. Microorganisms, 9(8), 1629. https://doi.org/10.3390/microorganisms9081629