Beating the Bio-Terror Threat with Rapid Antimicrobial Susceptibility Testing
Abstract
1. Introduction
2. Bacterial Bioterror Agents—B. anthracis, Y. pestis, and F. tularensis
2.1. Traditional ASTs
2.2. Isolation Procedures
2.2.1. Selective Culturing
B. anthracis
Yersinia pestis
Francisella tularensis
2.2.2. Rapid Bacterial Isolation: Plasma Purification and Immunomagnetic Separation
2.2.3. Rapid Bacterial Isolation by Fluorescent Activated Cell Sorter (FACS)
2.3. New Rapid ASTs
2.3.1. Genotypic-Based Assays—High Throughput Sequencing
2.3.2. Phenotypic Based ASTs
2.3.2.1. Live/Dead Fluorescent Detection
2.3.2.2. Rapid Molecular mRNA-Based AST
2.3.2.3. Optical and Microscopic Screening
2.3.2.4. Phage Based ASTs
2.3.2.5. Micro-Agar-PCR-Test (MAPt)
2.4. Intracellular ASTs
2.5. Avoiding the Latter-ASTs of Environmental Samples
3. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Abbreviations
AI | Artificial Intelligence |
AST | Antibiotic susceptibility test |
BMD | Broth microdilution |
caMHB | cation-adjusted Mueller–Hinton broth |
CDC | Centers of Disease control and presentation |
CHA | Cysteine Heart Agar |
CHAB | CHA with 9% sheep blood |
CHAB | A-CHAB with ampicillin |
CIN | Cefsulodin-irgasan-novobiocin |
CFU | Colony-forming unit |
CLSI | Clinical and Laboratory Standards Institute |
EUCAST | European Committee on Antimicrobial Susceptibility Testing |
FACS | Fluorescent Activated Cell Sorter |
FRET | Fluorescence Resonance Energy Transfer |
HTS | High-throughput Sequencing |
IMS | Immunomagnetic Separation |
LB | Luria-Bertani |
LRN | Laboratory Response Network |
MAPt | Micro-Agar-PCR Test |
MH | Mueller–Hinton |
MIC | Minimal Inhibitory Concentration |
MIEC | Minimal Inhibitory Extracellular Concentration |
PO | per os |
RAST | Rapid Antimicrobial Susceptibility Testing |
RNA | seq-RNA sequencing |
SIR | Spectral Intensity Ratio |
WHO | World Health Organization |
References
- Clemente-Suárez, V.J.; Dalamitros, A.A.; Beltran-Velasco, A.I.; Mielgo-Ayuso, J.; Tornero-Aguilera, J.F. Social and Psychophysiological Consequences of the COVID-19 Pandemic: An Extensive Literature Review. Front. Psychol. 2020, 11, 580225. [Google Scholar] [CrossRef]
- Aloni-Grinstein, R.; Rotem, S. COVID-19 Pandemic: A Lesson for Antibiotic and Antiseptic Stewardship. Am. J. Public Health Res. 2021, 9, 48–51. [Google Scholar] [CrossRef]
- Trevisanato, S.I. The ‘Hittite plague’, an epidemic of tularemia and the first record of biological warfare. Med. Hypotheses 2007, 69, 1371–1374. [Google Scholar] [CrossRef] [PubMed]
- Barras, V.; Greub, G. History of biological warfare and bioterrorism. Clin. Microbiol. Infect. 2014, 20, 497–502. [Google Scholar] [CrossRef] [PubMed]
- CDC. Bioterrorism Agents/Diseases. Available online: https://emergency.cdc.gov/agent/agentlist-category.asp (accessed on 12 February 2021).
- National Academies of Sciences, Engineering, and Medicine. Biodefense in the Age of Synthetic Biology; National Academies Press: Washington, DC, USA, 2018. [Google Scholar]
- Dixon, T.C. Anthrax. N. Engl. J. Med. 1999, 341, 815–826. [Google Scholar] [CrossRef]
- Holty, J.E.C.; Bravata, D.M.; Liu, H.; Olshen, R.A.; McDonald, K.M.; Owens, D.K. Systemic review: A century of inhalational anthrax cases from 1900 to 2005. Ann. Intern. Med. 2006, 21, 270–280. [Google Scholar] [CrossRef]
- Darling, R.G.; Catlett, C.L.; Huebner, K.D.; Jarrett, D.G. Threats in bioterrorism I: CDC category A agents. Emerg. Med. Clin. North Am. 2002, 20, 273–309. [Google Scholar] [CrossRef]
- Goal, A.K. Anthrax: A disease of biowarfare and public health importance. World J. Clin. Cases 2015, 16, 20–23. [Google Scholar] [CrossRef]
- Respicio-Kingry, L.B.; Yockey, B.M.; Acayo, S.; Kaggwa, J.; Apangu, T.; Kugeler, K.J.; Eisen, R.J.; Griffith, K.S.; Mead, P.S.; Schriefer, M.E. Two distinct Yersinia pestis populations causing plague among humans in the West Nile region of Uganda. PLoS Negl. Trop. Dis. 2016, 10, e0004360. [Google Scholar] [CrossRef]
- Andrianaivoarimanana, V.; Piola, P.; Wagner, D.M.; Rakotomanana, F.; Maheriniaina, V.; Andrianalimanana, S.; Chanteau, S.; Rahalison, L.; Ratsitorahina, M.; Rajerison, M. Trends in human plague, Madagascar, 1998–2016. Emerg. Infect. Dis. 2019, 25, 220. [Google Scholar] [CrossRef]
- Shi, L.; Yang, G.; Zhang, Z.; Xia, L.; Liang, Y.; Tan, H.; He, J.; Xu, J.; Song, Z.; Li, W.; et al. Reemergence of human plague in Yunnan, China in. PLoS ONE 2018, 13, e0198067. [Google Scholar] [CrossRef]
- Inglesby, T.V.; Dennis, D.T.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Fine, A.D.; Friedlander, A.M.; Hauer, J.; Koerner, J.F.; et al. Plague as a Biological Weapon. JAMA 2000, 283, 2281–2290. [Google Scholar] [CrossRef]
- WHO. Health Aspects of Chemical and Biological Weapons; World Health Organization: Geneva, Switzeland, 1970; pp. 98–109. [Google Scholar]
- CDC. CDC, Plague. Available online: https://www.cdc.gov/plague/index.html (accessed on 15 March 2021).
- Sebbane, F.; Lemaître, N. Antibiotic Therapy of Plague: A Review. Biomolecules 2021, 11, 724. [Google Scholar] [CrossRef]
- Guiyoule, A. Transferable Plasmid-Mediated Resistance to Streptomycin in Clinical Isolate of Yersinia pestis. Emerg. Infect. Dis. 2001, 7, 43–48. [Google Scholar] [CrossRef]
- Galimand, M.; Carniel, E.; Courvalin, P. Resistance of Yersinia pestis to Antimicrobial Agents. Antimicrob. Agents Chemother. 2006, 50, 3233–3236. [Google Scholar] [CrossRef]
- Lindler, L.E.; Fan, W.; Jahan, N. Detection of Ciprofloxacin-Resistant Yersinia pestis by Fluorogenic PCR Using the LightCycler. J. Clin. Microbiol. 2001, 39, 3649–3655. [Google Scholar] [CrossRef]
- Steinberger-Levy, I.; Shifman, O.; Zvi, A.; Ariel, N.; Beth-Din, A.; Israeli, O.; Gur, D.; Aftalion, M.; Maoz, S.; Ber, R. A rapid molecular test for deternining Yersinia pestis susceptibility to ciprofloxacin by the quantification of differntially expressed marker genes. Front. Microbiol. 2016, 7, 763. [Google Scholar] [CrossRef] [PubMed]
- Louie, A.; Heine, H.S.; VanScoy, B.; Eichas, A.; Files, K.; Fikes, S.; Brown, D.L.; Liu, W.; Kinzig-Schippers, M.; Sorgel, F.; et al. Use of an in vitro pharmacodynamic model to derive a moxifloxacin regimen that optimizes kill of Yersinia pestis and prevents emergence of resistance. Antimicrob. Agents Chemother. 2011, 55, 822–830. [Google Scholar] [CrossRef]
- Louie, A.; Deziel, M.R.; Liu, W.; Drusano, G.L. Impact of Resistance Selection and Mutant Growth Fitness on the Relative Efficacies of Streptomycin and Levofloxacin for Plague Therapy. Antimicrob. Agents Chemother. 2007, 51, 2661–2667. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Shifman, O.; Steinberger-Levy, I.; Aloni-Grinstein, R.; Gur, D.; Aftalion, M.; Ron, I.; Mamroud, E.; Ber, R.; Rotem, S. A Rapid Antimicrobial Susceptibility Test for Determining Yersinia pestis Susceptibility to Doxycycline by RT-PCR Quantification of RNA Markers. Front. Microbiol. 2019, 10, 754. [Google Scholar] [CrossRef] [PubMed]
- McLendon, M.K.; Apicella, M.A.; Allen, L.A. Francisella tularensis: Taxonomy, genetics, and Immunopathogenesis of a po-tential agent of biowarfare. Annu. Rev. Microbiol. 2006, 60, 167–185. [Google Scholar] [CrossRef]
- Maurin, M. Francisella tularensis as a potential agent of bioterrorism? Expert Rev. Anti-Infect. Ther. 2015, 13, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Egan, J.R.; Hall, I.M.; Leach, S. Modeling Inhalational Tularemia: Deliberate Release and Public Health Response. Biosecurity Bioterrorism Biodefense Strat. Pr. Sci. 2011, 9, 331–343. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Guidelines on Tularaemia. In Epidemic and Pandemic Alert and Response; WHO: Geneva, Switzerland, 2007. [Google Scholar]
- Fàbrega, A.; Madurga, S.; Giralt, E.; Vila, J. Mechanism of action of and resistance to quinolones. Microb. Biotechnol. 2009, 2, 40–61. [Google Scholar] [CrossRef] [PubMed]
- Aloni-Grinstein, R.; Shifman, O.; Lazar, S.; Steinberger-Levy, I.; Maoz, S.; Ber, R. A rapid real-time quantitative PCR assay to determine the minimal inhibitory extracellular concentration of antibiotics against an intracellular Francisella tularensis Live Vaccine Strain. Front. Microbiol. 2015, 6, 1213. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kassinger, S.J.; van Hoek, M.L. Genetic Determinants of Antibiotic Resistance in Francisella. Front. Microbiol. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Loveless, B.M.; Yermakova, A.; Christensen, D.R.; Kondig, J.P.; Heine, H.S.; Wasieloski, L.P.; Kulesh, D.A. Identification of ciprofloxacin resistance by SimpleProbe™, High Resolution Melt and Pyrosequencing™ nucleic acid analysis in biothreat agents: Bacillus anthracis, Yersinia pestis and Francisella tularensis. Mol. Cell. Probes 2010, 24, 154–160. [Google Scholar] [CrossRef]
- Sutera, V.; Levert, M.; Burmeister, W.; Schneider, D.; Maurin, M. Evolution toward high-level fluoroquinolone resistance in Francisella species. J. Antimicrob. Chemother. 2014, 69, 101–110. [Google Scholar] [CrossRef]
- Gestin, B.; Valade, E.; Thibault, F.; Schneider, D.; Maurin, M. Phenotypic and genetic characterization of macrolide resistance in Francisella tularensis subsp. holarctica biovar I. J. Antimicrob. Chemother. 2010, 65, 2359–2367. [Google Scholar] [CrossRef]
- Sutera, V.; Hennebique, A.; Lopez, F.; Fernandez, N.; Schneider, D.; Maurin, M. Genomic trajectories to fluoroquinolone resistance in Francisella tularensis subsp. holarctica live vaccine strain. Int. J. Antimicrob. Agents 2020, 56, 106153. [Google Scholar] [CrossRef]
- Biot, F.V.; Bachert, B.A.; Mlynek, K.D.; Toothman, R.G.; Koroleva, G.I.; Lovett, S.P.; Klimko, C.P.; Palacios, G.F.; Cote, C.K.; Ladner, J.T.; et al. Evolution of Antibiotic Resistance in Surrogates of Francisella tularensis (LVS and Francisella novicida): Effects on Biofilm Formation and Fitness. Front. Microbiol. 2020, 11, 593542. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria, 3rd ed.; CLSI Document M45-A, Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015; Volume 9. [Google Scholar]
- Mohammed, M.J.; Marston, C.K.; Popovic, T.; Weyant, R.S.; Tenover, F.C. Antimicrobial Susceptibility Testing of Bacillus anthracis: Comparison of Results Obtained by Using the National Committee for Clinical Laboratory Standards Broth Microdilution Reference and Etest Agar Gradient Diffusion Methods. J. Clin. Microbiol. 2002, 40, 1902–1907. [Google Scholar] [CrossRef] [PubMed]
- Scheel, O.; Hoel, T.; Sandvik, T.; Berdal, B.P. Susceptibility pattern of Scandinavian Francisella tularensis isolates with regard to oral and parenteral antimi-crobial agents. APMIS 1993, 101, 33–36. [Google Scholar] [CrossRef]
- Ikaheimo, I.; Syrjälä, H.; Karhukorpi, J.; Schildt, R.; Koskela, M. In vitro antibiotic susceptibility of Francisella tularensis isolated from humans and animals. J. Antimicrob. Chemother. 2000, 46, 287–290. [Google Scholar] [CrossRef]
- Johansson, A.F.; Urich, S.K.; Chu, M.C.; Sjöstedt, A.; Tärnvik, A. In Vitro Susceptibility to Quinolones of Francisella tularensis subspecies tularensis. Scand. J. Infect. Dis. 2002, 34, 327–330. [Google Scholar] [CrossRef] [PubMed]
- Tomaso, H.; Al Dahouk, S.; Hofer, E.; Splettstoesser, W.D.; Treu, T.M.; Dierich, M.P.; Neubauer, H. Antimicrobial susceptibilities of Austrian Francisella tularensis holarctica biovar II strains. Int. J. Antimicrob. Agents 2005, 26, 279–284. [Google Scholar] [CrossRef]
- Del Blanco, N.G. In vitro susceptibility of field isolates of Francisella tularensis subsp. holarctica recovered in Spain to several antimicrobial agents. Res. Veter. Sci. 2004, 76, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Urich, S.K.; Petersen, J.M. In Vitro Susceptibility of Isolates of Francisella tularensis Types A and B from North America. Antimicrob. Agents Chemother. 2008, 52, 2276–2278. [Google Scholar] [CrossRef]
- Valade, E.; Vaissaire, J.; Mérens, A.; Hernandez, E.; Gros, C.; Le Doujet, C.; Paucod, J.-C.; Thibault, F.M.; Durand, B.; Lapalus, M.; et al. Susceptibility of 71 French isolates of Francisella tularensis subsp. holarctica to eight antibiotics and accuracy of the Etest® method. J. Antimicrob. Chemother. 2008, 62, 208–210. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Velinov, T.; Nicolova, M.; Kuzmanov, A. In vitro antimicrobioal susceptibility of Francisella tularensis isolated in Bulgaria. Probl. Inf. Parasit. Dis. 2011, 39, 7–9. [Google Scholar]
- Yeşilyurt, M.; Kilic, S.; Çelebi, B.; Çelik, M.; Gül, S.; Erdoğan, F.; Özel, G.; Kılıç, S. Antimicrobial susceptibilities of Francisella tularensis subsp. holarctica strains isolated from humans in the Central Anatolia region of Turkey. J. Antimicrob. Chemother. 2011, 66, 2588–2592. [Google Scholar] [CrossRef][Green Version]
- Georgi, E.; Schacht, E.; Scholz, H.C.; Splettstoesser, W.D. Standardized broth microdilution antimicrobial susceptibility testing of Francisella tularensis subsp. holarctica strains from Europe and rare Francisella species. J. Antimicrob. Chemother. 2012, 67, 2429–2433. [Google Scholar] [CrossRef] [PubMed]
- Hotta, A.; Fujita, O.; Uda, A.; Sharma, N.; Tanabayashi, K.; Yamamoto, Y.; Yamada, A.; Morikawa, S. In vitro antibiotic susceptibility of Francisella tularensis isolates from Japan. Jpn. J. Infect. Dis. 2013, 66, 534–536. [Google Scholar] [CrossRef] [PubMed]
- Kilic, S.; Celebi, B.; Acar, B.; Ataş, M. In vitro susceptibility of isolates of Francisella tularensis from Turkey. Scand. J. Infect. Dis. 2012, 45, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Origgi, F.C.; Pilo, P.; Origgi, F.C.; Pilo, P. Francisella Tularensis Clades B.FTN002-00 and B.13 Are Associated with Distinct Pathology in the European Brown Hare (Lepus europaeus). Veter. Pathol. 2016, 53, 1220–1232. [Google Scholar] [CrossRef]
- Kreizinger, Z.; Makrai, L.; Helyes, G.; Magyar, T.; Erdélyi, K.; Gyuranecz, M. Antimicrobial susceptibility of Francisella tularensis subsp. holarctica strains from Hungary, Central Europe. J. Antimicrob. Chemother. 2012, 68, 370–373. [Google Scholar] [CrossRef]
- Caspar, Y.; Maurin, M. Francisella tularensis Susceptibility to Antibiotics: A Comprehensive Review of the Data Obtained In vitro and in Animal Models. Front. Cell. Infect. Microbiol. 2017, 7, 122. [Google Scholar] [CrossRef]
- Jonasson, E.; Matuschek, E.; Kahlmeter, G. The EUCAST rapid disc diffusion method for antimicrobial susceptibility testing directly from positive blood culture bottles. J. Antimicrob. Chemother. 2020, 75, 968–978. [Google Scholar] [CrossRef]
- Shifman, O.; Aminov, T.; Aftalion, M.; Gur, D.; Cohen, H.; Bar-David, E.; Cohen, O.; Mamroud, E.; Levy, H.; Aloni-Grinstein, R.; et al. Evaluation of the European Committee on Antimicrobial Susceptibility Testing Guidelines for Rapid Antimi-crobial Susceptibility Testing of Bacillus anthracis-, Yersinia pestis- and Francisella tularensis-Positive Blood Cultures. Microor. Ganisms. 2021, 9, 1055. [Google Scholar] [CrossRef]
- Pearce, T.W.; Powell, E.O. A Selective Medium for Bacillus anthracis. J. Gen. Microbiol. 1951, 5, 387–390. [Google Scholar] [CrossRef]
- Knisely, R.F. A Selective Medium for Bacillus Anthracis. Sel. Medium Bacillus Anthracis 1966, 92, 784–786. [Google Scholar] [CrossRef]
- Zasada, A.A. Detection and Identification of Bacillus anthracis: From Conventional to Molecular Microbiology Methods. Microorganism 2020, 8, 125. [Google Scholar] [CrossRef]
- Tomaso, H.; Bartling, C.; Al Dahouk, S.; Hagen, R.M.; Scholz, H.C.; Beyer, W.; Neubauer, H. Growth characteristics of Bacillus anthracis compared to other Bacillus spp. on the selective nutrient media Anthrax Blood Agar® and Cereus Ident Agar®. Syst. Appl. Microbiol. 2006, 29, 24–28. [Google Scholar] [CrossRef]
- Klee, S.; Nattermann, H.; Becker, S.; Urban-Schriefer, M.; Franz, T.; Jacob, D.; Appel, B. Evaluation of different methods to discriminate Bacillus anthracis from other bacteria of the Bacillus cereus group. J. Appl. Microbiol. 2006, 100, 673–681. [Google Scholar] [CrossRef]
- Dragon, D.; Rennie, R. Evaluation of spore extraction and purification methods for selective recovery of viable Bacillus anthracis spores. Lett. Appl. Microbiol. 2001, 33, 100–105. [Google Scholar] [CrossRef]
- Rohde, A.; Papp, S.; Feige, P.; Grunow, R.; Kaspari, O. Development of a novel selective agar for the isolation and detection of Bacillus anthracis. J. Appl. Microbiol. 2020, 129, 311–318. [Google Scholar] [CrossRef]
- Meyer, K.F.; Batchelder, A.P. Selective Mediums in the Diagnosis of Rodent Plague: Plague Studies. J. Infect. Dis. 1926, 39, 370–385. [Google Scholar] [CrossRef]
- Markenson, J.; Ben-Efraim, S. Oxgall Medium for Identification of Pasteurella Pestis. J. Bacteriol. 1963, 85, 1443–1445. [Google Scholar] [CrossRef] [PubMed]
- Morris, E.J. Selective Media for some Pasteurella Species. J. Gen. Microbiol. 1958, 19, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Ber, R.; Mamroud, E.; Aftalion, M.; Tidhar, A.; Gur, D.; Flashner, Y.; Cohen, S. Development of an Improved Selective Agar Medium for Isolation of Yersinia pestis. Appl. Environ. Microbiol. 2003, 69, 5787–5792. [Google Scholar] [CrossRef]
- Schiemann, D.A. Synthesis of a selective agar medium for Yersinia enterocolitica. Can. J. Microbiol. 1979, 25, 1298–1304. [Google Scholar] [CrossRef] [PubMed]
- Aleksic, S.; Bockemuhl, J. Yersinia and other Enterobacteriaceae. In Manual of Clinical Microbiology, 7th ed.; Murray, P.R., Baron, E.J., Pfaller, M.A., Tenover, F.C., Yolken, R.H., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 1999; pp. 483–496. [Google Scholar]
- Aftalion, M.; Aloni-Grinstein, R.; Andrianaivoarimanana, V.; Iharisoa, A.L.; Shmaya, S.; Gur, D.; Laskar, O.; Rajerison, M.; Mamroud, E. Improved selective BIN agar for a better rate of Yersinia pestis isolation from primary clinical specimens in suspected Madagascar’s plague cases. J. Clin. Microbiol. 2021, 59. [Google Scholar] [CrossRef]
- Suna, G. Francisella tularensis isolation from various clinical specimens. Clin. Microbiol. Infert. 1996, 2, 233–235. [Google Scholar]
- Petersen, J.M.; Schriefer, M.E.; Gage, K.L.; Montenieri, J.A.; Carter, L.G.; Stanley, M.; Chu, M.C. Methods for Enhanced Culture Recovery of Francisella tularensis. Appl. Environ. Microbiol. 2004, 70, 3733–3735. [Google Scholar] [CrossRef] [PubMed]
- Petersen, J.M.; Carlson, J.; Yockey, B.; Pillai, S.; Kuske, C.; Garbalena, G.; Pottumarthy, S.; Chalcraft, L. Direct isolation of Francisella spp. from environmental samples. Lett. Appl. Microbiol. 2009, 48, 663–667. [Google Scholar] [PubMed]
- Humrighouse, B.W.; Adcock, N.J.; Rice, E.W. Use of Acid Treatment and a Selective Medium to Enhance the Recovery of Francisella tularensis from Water. Appl. Environ. Microbiol. 2011, 77, 6729–6732. [Google Scholar] [CrossRef] [PubMed]
- Aloni-Grinstein, R.; Schuster, O.; Yitzhaki, S.; Aftalion, M.; Maoz, S.; Steinberger-Levy, I.; Ber, R. Isolation of Francisella tularensis and Yersinia pestis from Blood Cultures by Plasma Purification and Immunomagnetic Separation Accelerates Antibiotic Susceptibility Determination. Front. Microbiol. 2017, 8, 312. [Google Scholar] [CrossRef][Green Version]
- Ber, R.; Aftalion, M.; Cohen, S.; Flashner, Y.; Mamroud, E.; Gur, D.; Steinberger-Levy, I.; Zahavy, E. Enrichment of Yersinia pestis from Blood Cultures Enables Rapid Antimicrobial Susceptibility Determination by Flow Cytometry. Chem. Biol. Pteridines Folates 2007, 603, 339–350. [Google Scholar] [CrossRef]
- Zahavy, E.; Fisher, M.; Bromberg, A.; Olshevsky, U. Detection of Frequency Resonance Energy Transfer Pair on Double-Labeled Microsphere and Bacillus anthracis Spores by Flow Cytometry. Appl. Environ. Microbiol. 2003, 69, 2330–2339. [Google Scholar] [CrossRef]
- Zahavy, E.; Heleg-Shabtai, V.; Zafrani, Y.; Marciano, D.; Yitzhaki, S. Application of Fluorescent Nanocrystals (q-dots) for the Detection of Pathogenic Bacteria by Flow-Cytometry. J. Fluoresc. 2009, 20, 389–399. [Google Scholar] [CrossRef]
- Zahavy, E.; Ber, R.; Gur, D.; Abramovich, H.; Freeman, E.; Maoz, S.; Yitzhaki, S. Application of Nanoparticles for the Detection and Sorting of Pathogenic Bacteria by Flow-Cytometry. Adv. Exp. Med. Biol. 2011, 733, 23–36. [Google Scholar] [CrossRef]
- Peruski, L.F.; Peruski, A.H. Rapid diagnostic assays in the genomic biology era: Detection and identification of infectious disease and biological weapon agents. Biotechnology 2003, 35, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Seiner, D.R.; Colburn, H.A.; Baird, C.; Bartholomew, R.A.; Straub, T.; Victry, K.; Hutchison, J.R.; Valentine, N.; Bruckner-Lea, C.J. Evaluation of the FilmArray(R) system for detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis. J. Appl. Microbiol. 2013, 114, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Kozińska, A.; Seweryn, P.; Sitkiewicz, I. A crash course in sequencing for a microbiologist. J. Appl. Genet. 2019, 60, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Buermans, H.P.; den Dunnen, J.T. Next generation sequencing technology: Advances and applications. Biochim. Biophys Acta 2014, 1842, 1932–1941. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, E.L.; Auger, H.; Jaszczyszyn, Y.; Thermes, C. Ten years of next-generation sequencing technology. Trends Genet. 2014, 30, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Israeli, O.; Makdasi, E.; Cohen-Gihon, I.; Zvi, A.; Lazar, S.; Shifman, O.; Levy, H.; Gur, D.; Laskar, O.; Beth-Din, A. A rapid high-throughput sequencing-based approach for the identification of unknown bacterial pathogens in whole blood. Futur. Sci. OA 2020, 6, FSO476. [Google Scholar] [CrossRef]
- Israeli, O.; Cohen-Gihon, I.; Zvi, A.; Lazar, S.; Shifman, O.; Levy, H.; Tidhar, A.; Beth-Din, A. Rapid identification of unknown pathogens in environmental samples using a high-throughput sequencing-based approach. Heliyon 2019, 5, e01793. [Google Scholar] [CrossRef] [PubMed]
- Didelot, X.; Bowden, R.; Wilson, D.; Peto, T.E.A.; Crook, D.W. Transforming clinical microbiology with bacterial genome sequencing. Nat. Rev. Genet. 2012, 13, 601–612. [Google Scholar] [CrossRef]
- Fricke, W.F.; Rasko, D.A. Bacterial genome sequencing in the clinic: Bioinformatic challenges and solutions. Nat. Rev. Genet. 2014, 15, 49–55. [Google Scholar] [CrossRef]
- Hendriksen, R.S.; Bortolaia, V.; Tate, H.; Tyson, G.H.; Aarestrup, F.; McDermott, P.F. Using Genomics to Track Global Antimicrobial Resistance. Front. Public Health 2019, 7, 242. [Google Scholar] [CrossRef]
- Matamoros, S.; Hendriksen, R.S.; Pataki, B.A.; Pakseresht, N.; Rossello, M.; Silvester, N.; Amid, C.; Aarestrup, F.M.; Koopmans, M.; Cochrane, G.; et al. Accelerating surveillance and research of antimicrobial resistance—An online repository for sharing of anti-microbial susceptibility data associated with whole-genome sequences. Microb. Genom. 2020, 6. [Google Scholar]
- McArthur, A.; Tsang, K.K. Antimicrobial resistance surveillance in the genomic age. Ann. N. Y. Acad. Sci. 2016, 1388, 78–91. [Google Scholar] [CrossRef]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef]
- Kim, J.; Greenberg, D.E.; Pifer, R.; Jiang, S.; Xiao, G.; Shelburne, S.A.; Koh, A.; Xie, Y.; Zhan, X. VAMPr: VAriant Mapping and Prediction of antibiotic resistance via explainable features and machine learning. PLoS Comput. Biol. 2020, 16, e1007511. [Google Scholar] [CrossRef]
- Hunt, M.; Mather, A.E.; Sánchez-Busó, L.; Page, A.J.; Parkhill, J.; Keane, J.A.; Harris, S.R. ARIBA: Rapid antimicrobial resistance genotyping directly from sequencing reads. Microb. Genom. 2017, 3, e000131. [Google Scholar] [CrossRef]
- Feldgarden, M.; Brover, V.; Haft, D.H.; Prasad, A.B.; Slotta, D.J.; Tolstoy, I.; Tyson, G.H.; Zhao, S.; Hsu, C.; McDermott, P.F.; et al. Validating the AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance Geno-type-Phenotype Correlations in a Collection of Isolates. Antimicrob. Agents Chemother. 2019, 63, e00483-19. [Google Scholar] [CrossRef]
- Doster, E.; Lakin, S.M.; Dean, C.J.; Wolfe, C.; Young, J.G.; Boucher, C.; Belk, K.E.; Noyes, N.R.; Morley, P.S. MEGARes 2.0: A database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data. Nucleic Acids Res. 2020, 48, D561–D569. [Google Scholar] [CrossRef]
- Gargis, A.S.; Cherney, B.; Conley, A.B.; McLaughlin, H.P.; Sue, D. Rapid Detection of Genetic Engineering, Structural Variation, and Antimicrobial Resistance Markers in Bacterial Biothreat Pathogens by Nanopore Sequencing. Sci. Rep. 2019, 9, 13501–13514. [Google Scholar] [CrossRef]
- Chen, Y.; Succi, J.; Tenover, F.C.; Koehler, T.M. Beta-lactamase genes of the penicillin-susceptible Bacillus anthracis Sterne strain. J. Bacteriol. 2003, 185, 823–830. [Google Scholar] [CrossRef]
- Nuding, S.; Zabel, L.T. Detection, identification, and susceptibility testing of bacteria by flow cytometry. J. Bacteriol. Parasitol. 2013, 5. [Google Scholar] [CrossRef]
- Müller, S.; Nebe-Von-Caron, G. Functional single-cell analyses: Flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol. Rev. 2010, 34, 554–587. [Google Scholar] [CrossRef]
- Nebe-Von-Caron, G.; Stephens, P.; Hewitt, C.; Powell, J.; Badley, R. Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting. J. Microbiol. Methods 2000, 42, 97–114. [Google Scholar] [CrossRef]
- Eran, Z. Spectral Intensity Ratio (SIR) Analysis for Rapid Live Microbial Enumeration. U.S. Patent Application No 15/542,922; pending, EP3245295, 14 August 2019. [Google Scholar]
- Ingber, G.; Ben-David, M.; Fridman, M.; Gluckman, Y.; Gohman, D.; Munz, O.H.; Shinderman, A.; Zahavy, E. Rapid Antimicrobial Susceptibility Testing based on A Unique Spectral Intensity Ratio Analysis via Single Fluorescence Membrane Dye Staining and Flow Cytometry. U.S. Patent No 10,995,357, 4 May 2021. [Google Scholar]
- Zahavy, E.; Rotem, S.; Gur, D.; Aloni-Grinstein, R.; Aftalion, M.; Ber, R. Rapid Antibiotic Susceptibility Determination for Yersinia pestis Using Flow Cytometry Spectral Intensity Ratio (SIR) Fluorescence Analysis. J. Fluoresc. 2018, 28, 1151–1161. [Google Scholar] [CrossRef]
- Khazaei, T.; Barlow, J.; Schoepp, N.; Ismagilov, R.F. RNA markers enable phenotypic test of antibiotic susceptibility in Neisseria gonorrhoeae after 10 minutes of ciprofloxacin exposure. Sci. Rep. 2018, 8, 11606. [Google Scholar] [CrossRef] [PubMed]
- Fredborg, M.; Andersen, K.R.; Jørgensen, E.; Droce, A.; Olesen, T.; Jensen, B.B.; Rosenvinge, F.S.; Sondergaard, T.E. Real-Time Optical Antimicrobial Susceptibility Testing. J. Clin. Microbiol. 2013, 51, 2047–2053. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, H.P.; Gargis, A.; Michel, P.; Sue, D.; Weigel, L.M. Optical Screening for Rapid Antimicrobial Susceptibility Testing and for Observation of Phenotypic Diversity among Strains of the Genetically Clonal Species Bacillus anthracis. J. Clin. Microbiol. 2017, 55, 959–970. [Google Scholar] [CrossRef]
- Bugrysheva, J.V.; Lascols, C.; Sue, D.; Weigel, L.M. Rapid Antimicrobial Susceptibility Testing of Bacillus anthracis, Yersinia pestis, and Burkholderia pseu-domallei by Use of Laser Light Scattering Technology. J. Clin. Microbiol. 2016, 54, 1462–1471. [Google Scholar] [CrossRef][Green Version]
- Chu, M.C. Laboratory Manual Pf Plague Diagnostic Tests; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2000; pp. 1–19. [Google Scholar]
- Abshire, T.G.; Brown, J.E.; Ezzell, J.W.; Mandal, P.; Banerjee, U.; Casadevall, A.; Nosanchuk, J.D. Production and Validation of the Use of Gamma Phage for Identification of Bacillus anthracis. J. Clin. Microbiol. 2005, 43, 4766–4772. [Google Scholar] [CrossRef]
- Schofield, D.A.; Molineux, I.J.; Westwater, C. Rapid identification and antibiotic susceptibility testing of Yersinia pestis using bioluminescent reporter phage. J. Microbiol. Methods 2012, 90, 80–82. [Google Scholar] [CrossRef]
- Schofield, D.A.; Sharp, N.J.; Vandamm, J.; Molineux, I.J.; Spreng, K.A.; Rajanna, C.; Westwater, C.; Stewart, G.C. Bacillus anthracis diagnostic detection and rapid antibiotic susceptibility determination using ’biolumines-cent’ reporter phage. J. Microbiol. Methods 2013, 95, 156–161. [Google Scholar] [CrossRef]
- Vandamm, J.P.; Rajanna, C.; Sharp, N.J.; Molineux, I.J.; Schofield, D.A. Rapid Detection and Simultaneous Antibiotic Susceptibility Analysis of Yersinia pestis Directly from Clinical Specimens by Use of Reporter Phage. J. Clin. Microbiol. 2014, 52, 2998–3003. [Google Scholar] [CrossRef][Green Version]
- Moses, S.; Aftalion, M.; Mamroud, E.; Rotem, S.; Steinberger-Levy, I. Reporter-Phage-Based Detection and Antibiotic Susceptibility Testing of Yersinia pestis for a Rapid Plague Outbreak Response. Microorganism 2021, 9, 1278. [Google Scholar] [CrossRef]
- Aloni-Grinstein, R.; Shifman, O.; Gur, D.; Aftalion, M.; Rotem, S. MAPt: A Rapid Antibiotic Susceptibility Testing for Bacteria in Environmental Samples as a Means for Bioterror Preparedness. Front. Microbiol. 2020, 11, 592194. [Google Scholar] [CrossRef] [PubMed]
- Rotem, S.; Shifman, O.; Aftalion, M.; Gur, D.; Aminov, T.; Aloni-Grinstein, R. Rapid antibiotic susceptibility testing of Tier-1 agents Bacillus anthracis, Yersinia pestis, and Francisella tularensis directly from whole blood samples. Front. Microbiol. 2021, 12, 1822. [Google Scholar] [CrossRef]
- Sutera, V.; Caspar, Y.; Boisset, S.; Maurin, M. A new dye uptake assay to test the activity of antibiotics against intracellular Francisella tularensis. Front. Cell. Infect. Microbiol. 2014, 4, 36. [Google Scholar] [CrossRef]
Available ASTs for Bioterror Bacterial Agents (B. anthracis, Y. pestis, and F. tularensis) | Process Features | Sample Type | |||||||
---|---|---|---|---|---|---|---|---|---|
Isolation/Enrichment Steps | Bacteria Concentration Dependence | Preceding Preparation Time | AST Time | Total Time (h) | Bacterial Culture | Clinical (Blood, Blood Culture) | Environmental | ||
Genotypic | High-throughput sequencing [84,85] | DNA extraction | Yes (min. 1 ng DNA) | 1 h | 10–16 h | 11–17 h * | + | + Blood, blood culture | + |
Phenotypic | Broth medium dilution [37] | Blood culture enrichment/isolation from environment | Yes | 24–48 h | 24–48 h | 48–96 h | + | + | + |
Molecular mRNA based [21,24] | Blood culture enrichment/isolation from environment | Yes | 18 h | Y. pestis- 7 h | ~25 h | + | + Blood culture | N.D | |
Live/Dead fluorescent detection (SIR) [103] | Yet to be determined | No (Minimal 5 × 104) | Yet to be determined | Y. pestis- 7 h | Yet to be determined | + | N.D | N.D | |
Optical and microscopic screening [106] | Yet to be determined | Yes | Yet to be determined | B. anthracis 4 h | Yet to be determined | + | N.D | N.D | |
Reporter-phage [111,112,113] | No need | No (Minimal 102 cfu/mL) | No need | B. anthracis 80–160 min Y. pestis 5–16 h | B. anthracis 80–160 min Y. pestis 5–16 h | + | + Blood, blood culture | + | |
MAPt [114,115] | No need | No (Minimal 5 × 102 cfu/mL) | No need | B. anthracis −7 h, Y. pestis 13 h, F. tularemia 17 h | B. anthracis −7 h, Y. pestis 13 h, F. tularemia 17 h | + | + Blood, blood culture | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rotem, S.; Steinberger-Levy, I.; Israeli, O.; Zahavy, E.; Aloni-Grinstein, R. Beating the Bio-Terror Threat with Rapid Antimicrobial Susceptibility Testing. Microorganisms 2021, 9, 1535. https://doi.org/10.3390/microorganisms9071535
Rotem S, Steinberger-Levy I, Israeli O, Zahavy E, Aloni-Grinstein R. Beating the Bio-Terror Threat with Rapid Antimicrobial Susceptibility Testing. Microorganisms. 2021; 9(7):1535. https://doi.org/10.3390/microorganisms9071535
Chicago/Turabian StyleRotem, Shahar, Ida Steinberger-Levy, Ofir Israeli, Eran Zahavy, and Ronit Aloni-Grinstein. 2021. "Beating the Bio-Terror Threat with Rapid Antimicrobial Susceptibility Testing" Microorganisms 9, no. 7: 1535. https://doi.org/10.3390/microorganisms9071535
APA StyleRotem, S., Steinberger-Levy, I., Israeli, O., Zahavy, E., & Aloni-Grinstein, R. (2021). Beating the Bio-Terror Threat with Rapid Antimicrobial Susceptibility Testing. Microorganisms, 9(7), 1535. https://doi.org/10.3390/microorganisms9071535