Determination of Antimicrobial Resistance Patterns in Salmonella from Commercial Poultry as Influenced by Microbiological Culture and Antimicrobial Susceptibility Testing Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Preparation
2.3. PCR Screening
2.4. Salmonella Direct Plating and Enrichment
2.5. Broth Breakpoint Assay
2.6. Automated AST System
2.7. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Antunes, P.; Mourao, J.; Campos, J.; Peixe, L. Salmonellosis: The role of poultry meat. Clin. Microbiol. Infect. 2015, 22, 110–121. [Google Scholar] [CrossRef] [Green Version]
- Cosby, D.E.; Cox, N.A.; Harrison, M.A.; Wilson, J.L.; Buhr, R.J.; Fedorka-Cray, P.J. Salmonella and antimicrobial resistance in broilers: A review. J. Appl. Poult. Res. 2015, 24, 408–426. [Google Scholar] [CrossRef]
- Pan, Z.; Wang, X.; Zhang, X.; Geng, S.; Chen, X.; Pan, X.W.; Cong, Q.; Liu, X.; Jiao, X.; Liu, X. Changes in antimicrobial resistance among Salmonella enterica subspecies enterica serovar Pullorum isolates in China from 1962 to 2007. Vet. Microbiol. 2009, 136, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Nhung, N.T.; Chansiripornchai, N.; Carrique-Mas, J.J. Antimicrobial resistance in bacterial poultry pathogens: A review. Front. Vet. Sci. 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Drug Administration. FDA Releases Five-Year Plan for Supporting Antimicrobial Stewardship in Veterinary Settings. Available online: https://www.fda.gov/animal-veterinary/cvm-updates/fda-releases-five-year-plan-supporting-antimicrobial-stewardship-veterinary-settings (accessed on 28 October 2020).
- Jajere, S.M. A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Vet. World 2019, 12, 504–521. [Google Scholar] [CrossRef] [Green Version]
- Chuanchuen, R.; Padungtod, P. Antimicrobial resistance genes in Salmonella enterica isolates from poultry and swine in Thailand. J. Vet. Med. Sci. 2009, 71, 1349–1355. [Google Scholar] [CrossRef] [Green Version]
- United State Department of Agriculture. National Antimicrobial Resistance Monitoring System (NARMS). 2019. Available online: https://www.fsis.usda.gov/wps/portal/fsis/topics/data-collection-and-reports/microbiology/antimicrobial-resistance/narms (accessed on 20 October 2020).
- Food and Drug Administration. NARMS Genomic Data; Department of Health and Human Services: Rockville, MD, USA, 2017. Available online: https://www.fda.gov/animal-veterinary/national-antimicrobial-resistance-monitoring-system/narms-genomic-data (accessed on 31 October 2020).
- Pornsukarom, S.; van Vliet, A.H.M.; Thakur, S. Whole genome sequencing analysis of multiple Salmonella serovars provides insights into phylogenetic relatedness, antimicrobial resistance, and virulence markers across humans, food animals and agriculture environmental sources. BMC Genom. 2018, 19, 801. [Google Scholar] [CrossRef] [PubMed]
- Louie, M.; Cockerill, F.R. Susceptibility testing. Phenotypic and genotypic tests for bacteria and mycobacteria. Infect. Dis. Clin. North Am. 2002, 15, 1205–1226. [Google Scholar] [CrossRef]
- Reller, L.B.; Weinstein, M.; Jorgensen, J.H.; Ferraro, M.J. Antimicrobial susceptibility testing: A review of general principles and contemporary practices, clinical infectious diseases. Clin. Infect. Dis. 2009, 49, 1749–1755. [Google Scholar]
- National Antimicrobial Resistance Monitoring System (NARMS). In Manual of Laboratory Methods, 3rd ed.; 2016. Available online: https://www.fda.gov/media/101423/download. (accessed on 20 February 2021).
- Feye, K.M.; Anderson, K.L.; Scott, M.F.; Mcintyre, D.R.; Carlson, S.A. Inhibition of the virulence, antibiotic resistance, and fecal shedding of multiple antibiotic resistant Salmonella Typhimurium in broilers fed original XPCTM. Poult. Sci. 2016, 95, 2902–2910. [Google Scholar] [CrossRef]
- SAS Institute. SAS Proprietary Software Release 9.2; SAS Inst. Inc.: Cary, NC, USA, 2010. [Google Scholar]
- Andoh, L.A.; Dalsgaard, A.; Obiri-danso, K.; Newman, M.J.; Barco, L.; Olsen, J.E. Prevalence and antimicrobial resistance of Salmonella serovars isolated from poultry in Ghana. Epidemiol. Infect. 2016, 144, 3288–3299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdi, R.D.; Mengstie, F.; Beyi, A.F.; Beyene, T.; Waktole, H.; Mammo, B.; Ayana, D.; Abunna, F. Determination of the sources and antimicrobial resistance patterns of Salmonella isolated from the poultry industry in Southern Ethiopia. BMC Infect. Dis. 2017, 17, 352. [Google Scholar] [CrossRef] [PubMed]
- Food Safety and Inspection Service. National Antimicrobial Resistance Monitoring System Cecal Sampling Program. 2014. Salmonella Report. Available online: https://www.fsis.usda.gov/node/1974 (accessed on 25 March 2021).
- Food Safety and Inspection Service. FSIS Data: Sampling Project Results. 2021. Available online: https://www.fsis.usda.gov/sites/default/files/media_file/2021-03/sampling_project_results_data.pdf (accessed on 25 March 2021).
- Obe, T.; Nannapaneni, R.; Shilling, W.; Zhang, L.; McDaniel, C.; Kiess, A. Prevalence of Salmonella enterica on poultry processing equipment after completion of sanitization procedures. Poult. Sci. 2020, 99, 4539–4548. [Google Scholar] [CrossRef] [PubMed]
- Velasquez, C.G.; Macklin, K.S.; Kumar, S.; Bailey, M.; Ebner, P.E.; Olive, H.S.; Martin-Gonzalez, F.S.; Singh, M. Prevalence and antimicrobial resistance patterns of Salmonella isolated from poultry farms in southeastern United States. Poult. Sci. 2018, 97, 2144–2152. [Google Scholar] [CrossRef]
- Food and Drug Administration. 2016–2017 NARMS Integrated Summary. 2017. Available online: https://www.fda.gov/animal-veterinary/national-antimicrobial-resistance-monitoring-system/2016-2017-narms-integrated-summary (accessed on 25 March 2021).
- Cameron, P.T.; Doak, A.N.; Amirani, N.; Schroeder, E.A.; Wright, J.; Kariyawasam, S.; Lamendella, S.; Shariat, N.W. High-resolution identification of multiple Salmonella serovars in a single sample by using CRISPR-SeroSeq. Food Microbiol. 2018. [Google Scholar] [CrossRef] [Green Version]
- Chew, K.L.; La, M.; Lin, R.T.P.; Teo, J.W.P. Colistin and polymyxin B susceptibility testing for carbapenem-resistant and mcr-positive Enterobacteriaceae: Comparison of Sensititre, MicroScan, Vitek2, and E-test with broth microdilution. J. Clin. Microbiol. 2017, 55, 2609–2616. [Google Scholar] [CrossRef] [Green Version]
- Jayol, A.; Nordmann, P.; Andre, C.; Poirel, L.; Dubois, V. Evaluation of three broth microdilution systems to determine colistin susceptibility of Gram-negative bacilli. J. Antimicrob. Chemother. 2018, 73, 1272–1278. [Google Scholar] [CrossRef] [Green Version]
- Richter, S.S.; Karichu, J.; Otiso, J.; Heule, H.; Keller, G.; Cober, E.; Rojas, L.J.; Hujer, A.M.; Hujer, K.M.; Marshall, S.; et al. Evaluation of Sensititre broth microdilution plate for determining the susceptibility of carbapenem-resistance Klesiella pneumoniae to polymyxins. Diagn. Microbiol. Infect. Dis. 2018, 91, 89–92. [Google Scholar] [CrossRef]
- Yusuf, E.; Westreenen, M.; Goessens, W.; Croughs, P. The accuracy of four commercial broth microdilution tests in the determination of the minimum inhibitory concentration of colistin. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 42. [Google Scholar] [CrossRef]
- Ogata, S.K.; Gales, A.C.; Kawakami, E. Antimicrobial susceptibility testing for Helicobacter pylori isolates from Brazilian children and adolescents: Comparing agar dilution, E-test, and disk diffusion. Braz. J. Microbiol. 2014, 45, 1439–1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barberis, C.M.; Sandoval, E.; Rodriguez, C.H.; Ramires, M.S.; Famiglietti, A.; Almuzara, M.; Vay, C. Comparison between disk diffusion and agar dilution methods to determine in vitro susceptibility of Coryebacterium spp. clinical isolates and update of their susceptibility. J. Glob. Antimicrob. Resist. 2018, 14, 246–252. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 27th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Singer, R.S.; Mayer, A.E.; Hanson, T.E.; Issacson, R.E. Do microbial interactions and cultivation media decrease the accuracy of Salmonella surveillance systems and outbreak investigations? J. Food Prot. 2009, 72, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Cox, N.A.; Berrang, M.E.; House, S.L.; Medina, D.; Cook, K.L.; Shariat, N.W. Population analyses reveal pre-enrichment method and selective enrichment media affect Salmonella serovars detected on broiler carcasses. J. Food Prot. 2019, 8, 1688–1696. [Google Scholar] [CrossRef] [PubMed]
- Goriski, L. Selective enrichment media bias the types of Salmonella enterica strains isolated from mixed strain cultures and complex enrichment broths. PLoS ONE 2012, 7, 4. [Google Scholar] [CrossRef] [PubMed]
- Pettengill, J.B.; McAvoy, E.; White, J.R.; Allard, M.; Brown, E.; Ottesen, A. Using metagenomic analyses to estimate the consequences of enrichment bias for pathogen detection. BMC Res. Notes 2012, 5, 378. [Google Scholar] [CrossRef] [Green Version]
Antimicrobial Agent | Resistant Breakpoint (µg/mL) |
---|---|
Amoxicillin/Clavulanic Acid 1 | 32/16 |
Ampicillin | 32 |
Azithromycin | 32 |
Cefoxitin | 32 |
Ceftriaxone | 4 |
Chloramphenicol | 32 |
Ciprofloxacin | 1 |
Gentamicin | 16 |
Meropenem | 4 |
Nalidixic Acid | 32 |
Streptomycin | 32 |
Sulfisoxazole | 512 |
Tetracycline | 16 |
Trimethoprim/Sulfamethoxazole 2 | 4/76 |
Antibiotics | Broth Breakpoint | Sensititre® | X2 | p Value |
---|---|---|---|---|
n = 1748 | n = 55 | |||
Amoxicillin/Clavulanic acid | 1140 (63.9%) | 32 (58.2%) | 0.755 | 0.396 |
Ampicillin | 1173 (65.8%) | 39 (70.9%) | 0.632 | 0.473 |
Azithromycin | 277 (15.5%) | 18 (32.7%) | 11.72 | 0.002 |
Cefoxitin | 1344 (75.3%) | 37 (67.3%) | 1.86 | 0.204 |
Ceftriaxone | 1129 (63.3%) | 31 (56.4%) | 1.09 | 0.322 |
Chloramphenicol | 1075(60.3%) | 14 (25.5%) | 26.76 | <0.001 |
Ciprofloxacin | 298 (16.7%) | 3 (5.5%) | 4.93 | 0.025 |
Gentamicin | 113 (6.33%) | 3 (5.5%) | 0.070 | 0.990 |
Nalidixic Acid | 477 (26.7%) | 12 (21.8%) | 0.662 | 0.535 |
Meropenem | 295 (16.5%) | 24 (43.6%) | 27.33 | <0.001 |
Streptomycin | 239 (13.4%) | 18 (32.7%) | 16.58 | <0.001 |
Sulfisoxazole | 1104 (61.9%) | 5 (9.1%) | 62.12 | <0.001 |
Tetracycline | 393 (22.0%) | 13 (23.6%) | 0.080 | 0.743 |
Trimethoprim/Sulfamethoxazole | 1176 (65.9%) | 7 (12.7%) | 65.79 | <0.001 |
Antibiotics | Broth Breakpoint | Sensititre® | X2 | p Value |
---|---|---|---|---|
n = 55 | n = 55 | |||
Amoxicillin/Clavulanic acid | 33 (60.0%) | 32 (58.2%) | 0.038 | 0.999 |
Ampicillin | 32 (58.2%) | 39 (70.9%) | 1.96 | 0.232 |
Azithromycin | 8 (14.5%) | 18 (32.7%) | 5.04 | 0.043 |
Cefoxitin | 41 (74.5%) | 37 (67.3%) | 0.705 | 0.529 |
Ceftriaxone | 33 (60.0%) | 31 (56.4%) | 0.149 | 0.847 |
Chloramphenicol | 33 (60.0%) | 14 (25.5%) | 13.41 | <0.001 |
Ciprofloxacin | 15 (27.3%) | 3 (5.5%) | 9.56 | 0.004 |
Gentamicin | 4 (7.3%) | 3 (5.5%) | 0.153 | 0.999 |
Nalidixic Acid | 14 (25.5%) | 12 (21.8%) | 0.202 | 0.823 |
Meropenem | 7 (12.7%) | 24 (43.6%) | 12.98 | <0.001 |
Streptomycin | 7 (12.7%) | 18 (32.7%) | 6.26 | 0.022 |
Sulfisoxazole | 40 (72.7%) | 5 (9.1%) | 46.06 | <0.001 |
Tetracycline | 16 (29.1%) | 13 (23.6%) | 0.422 | 0.666 |
Trimethoprim/Sulfamethoxazole | 34 (61.8%) | 7 (12.7%) | 28.35 | <0.001 |
Antibiotics | Broth Breakpoint | Sensititre® | ||
---|---|---|---|---|
n = 108 | n = 114 | X2 | p Value | |
Amoxicillin/Clavulanic acid | 34 (32.1%) | 6 (5.3%) | 26.54 | <0.001 |
Ampicillin | 60 (56.6%) | 6 (5.3%) | 68.94 | <0.001 |
Azithromycin | 13 (12.3%) | 6 (5.3%) | 3.41 | 0.091 |
Cefoxitin | 63 (59.4%) | 6 (5.3%) | 74.88 | <0.001 |
Ceftriaxone | 5 (4.7%) | 9 (7.9%) | 0.93 | 0.413 |
Chloramphenicol | 71 (67.0%) | 6 (5.3%) | 91.97 | <0.001 |
Ciprofloxacin | 4 (3.8%) | 0 (0%) | NA | NA |
Gentamicin | 0 (0%) | 0 (0%) | NA | NA |
Nalidixic Acid | 6 (5.7%) | 0 (0%) | NA | NA |
Meropenem | 79 (74.5%) | 6 (5.3%) | 111.15 | <0.001 |
Streptomycin | 80 (75.5%) | 111 (97.4%) | 23.01 | <0.001 |
Sulfisoxazole | 104 (98.1%) | 6 (5.3%) | 189.41 | <0.001 |
Tetracycline | 106 (100%) | 109 (95.6%) | NA | NA |
Trimethoprim/Sulfamethoxazole | 33 (31.1%) | 6 (5.3%) | 25.20 | <0.001 |
Wilcoxon Score | |||
---|---|---|---|
Antibiotics | Direct Plating | Enrichment | p Value |
Amoxicillin/Clavulanic acid | 18.93 | 10.07 | 0.001 |
Ampicillin | 18.96 | 10.04 | 0.001 |
Azithromycin | 17.36 | 11.64 | 0.023 |
Cefoxitin | 18.96 | 10.04 | 0.001 |
Ceftriaxone | 18.89 | 10.11 | 0.001 |
Chloramphenicol | 16.39 | 12.61 | 0.096 |
Ciprofloxacin | 15.00 | 14.00 | 0.353 |
Gentamicin | 15.50 | 13.50 | 0.165 |
Nalidixic Acid | 17.00 | 12.00 | 0.017 |
Meropenem | 17.86 | 11.14 | 0.010 |
Streptomycin | 9.29 | 19.71 | <.001 |
Sulfisoxazole | 14.96 | 14.04 | 0.608 |
Tetracycline | 8.61 | 20.39 | <.001 |
Trimethoprim/Sulfamethoxazole | 15.89 | 13.11 | 0.191 |
p Value | |||||||||
---|---|---|---|---|---|---|---|---|---|
Methodology | Sensititre® | Broth Breakpoint | SEM | Direct Plating | Enrichment | SEM | Method | Culture | Method × Culture |
Amoxicillin/Clavulanic acid | 12.1% | 10.0% | 3.65% | 10.8% | 11.3% | 3.65% | 0.688 | 0.936 | 0.574 |
Ampicillin | 7.9% | 2.9% | 2.16% | 5.8% | 5.0% | 2.16% | 0.107 | 0.786 | 0.587 |
Azithromycin | 35.8% | 37.9% | 7.79% | 43.3% | 30.4% | 7.79% | 0.851 | 0.246 | 0.910 |
Ceftriaxone | 5.4% | 0.8% | 1.96% | 2.9% | 3.3% | 1.96% | 0.103 | 0.881 | 0.881 |
Cefoxitin | 0.4% | 0.0% | 0.30% | 0.0% | 0.4% | 0.30% | 0.322 | 0.322 | 0.322 |
Chloramphenicol | 2.08% a | 0.00% b | 0.62% | 0.8% | 1.3% | 0.62% | 0.021 | 0.637 | 0.637 |
Gentamicin | 3.75% a | 0.00% b | 1.03% | 2.9% | 0.8% | 1.03% | 0.013 | 0.159 | 0.159 |
Meropenem | 2.5% | 4.2% | 1.73% | 1.7% | 5.0% | 1.73% | 0.498 | 0.178 | 0.498 |
Nalidixic acid | 0.83% b | 5.00% a | 1.31% | 3.3% | 2.5% | 1.31% | 0.028 | 0.654 | 0.182 |
Streptomycin | 72.1% | 75.0% | 5.43% | 70.4% | 76.7% | 5.43% | 0.705 | 0.419 | 0.705 |
Trimethoprim/Sulphamethoxazole | 4.6% | 4.6% | 3.35% | 8.3% | 0.8% | 3.35% | 0.999 | 0.119 | 0.990 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Chaney, W.E.; Pavlidis, H.O.; McGinnis, J.P.; Byrd, J.A.; Farnell, Y.Z.; Johnson, T.J.; McElroy, A.P.; Farnell, M.B. Determination of Antimicrobial Resistance Patterns in Salmonella from Commercial Poultry as Influenced by Microbiological Culture and Antimicrobial Susceptibility Testing Methods. Microorganisms 2021, 9, 1319. https://doi.org/10.3390/microorganisms9061319
Wang X, Chaney WE, Pavlidis HO, McGinnis JP, Byrd JA, Farnell YZ, Johnson TJ, McElroy AP, Farnell MB. Determination of Antimicrobial Resistance Patterns in Salmonella from Commercial Poultry as Influenced by Microbiological Culture and Antimicrobial Susceptibility Testing Methods. Microorganisms. 2021; 9(6):1319. https://doi.org/10.3390/microorganisms9061319
Chicago/Turabian StyleWang, Xi, W. Evan Chaney, Hilary O. Pavlidis, James P. McGinnis, J. Allen Byrd, Yuhua Z. Farnell, Timothy J. Johnson, Audrey P. McElroy, and Morgan B. Farnell. 2021. "Determination of Antimicrobial Resistance Patterns in Salmonella from Commercial Poultry as Influenced by Microbiological Culture and Antimicrobial Susceptibility Testing Methods" Microorganisms 9, no. 6: 1319. https://doi.org/10.3390/microorganisms9061319
APA StyleWang, X., Chaney, W. E., Pavlidis, H. O., McGinnis, J. P., Byrd, J. A., Farnell, Y. Z., Johnson, T. J., McElroy, A. P., & Farnell, M. B. (2021). Determination of Antimicrobial Resistance Patterns in Salmonella from Commercial Poultry as Influenced by Microbiological Culture and Antimicrobial Susceptibility Testing Methods. Microorganisms, 9(6), 1319. https://doi.org/10.3390/microorganisms9061319