Peptide Triazole Thiol Irreversibly Inactivates Metastable HIV-1 Env by Accessing Conformational Triggers Intrinsic to Virus–Cell Entry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production and Validation of KR13 and KR13b
2.2. Cell Preparation
2.3. Flow Cytometry Assays
2.4. Virus Production for V504E Mutants
2.5. ELISA Detection of p24 for Quantification of Virolysis
2.6. Data Plotting and Statistical Analysis
3. Results
3.1. PTT KR13 Treatment Causes Transformation of Cell-Presented Env, Resulting in Membrane Disruption, Calcein Leakage, and Specific Epitope Exposure Changes in Env
3.2. Fusion Peptide Can Be Functionally Disabled while Retaining KR13-Induced Virolysis
3.3. MPER Exposure and Membrane Disruption Occur Downstream of 6-Helix-Bundle Formation
4. Discussion
4.1. Env-Transfected Cells Function as Suitable Models for Evaluating Transformations of Surface Env and Membrane
4.2. Proposed Sinking Trimer Model for PTT-Induced Env Transformation and Exposure of Native-Fusion-Like Phenotypes
4.3. Grouping of Epitope Responses into Low- and High-Dose Effects May Reflect Required Stoichiometries of Env/Ptt Interactions and Asymmetries in Trimer Transformation
4.4. Differential Inhibition of PTT-Induced MPER Exposure and Membrane Disruption by 6-Helix-Bundle Inhibitor T20 Suggests More Complex Transformations
4.5. Incomplete Conversion of Env Observed on PT and PTT Treated Cell Surfaces
4.6. Transient Membrane Disruption Implies Temporary and Size-Limited Poration by PTT
4.7. Impact and Future Directions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sengupta, S.; Siliciano, R.F. Targeting the Latent Reservoir for HIV-1. Immunity 2018, 48, 872–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez-Vargas, E.A. Modeling Kick-Kill Strategies toward HIV Cure. Front. Immunol. 2017, 8, 995. [Google Scholar] [CrossRef] [Green Version]
- Gravatt, L.A.H.; Leibrand, C.R.; Patel, S.; McRae, M. New Drugs in the Pipeline for the Treatment of HIV: A Review. Curr. Infect. Dis. Rep. 2017, 19, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Acosta, E.P.; Liang, L.; He, Y.; Yang, J.; Kerstner-Wood, C.; Zheng, Q.; Huang, J.; Wang, K. Current Status of the Pharmacokinetics and Pharmacodynamics of HIV-1 Entry Inhibitors and HIV Therapy. Curr. Drug Metab. 2017, 18, 769–781. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kaur, P.; Sun, Z.-Y.J.; Elbahnasawy, M.; Hayati, Z.; Qiao, Z.-S.; Bui, N.N.; Chile, C.; Nasr, M.L.; Wagner, G.; et al. Topological analysis of the gp41 MPER on lipid bilayers relevant to the metastable HIV-1 envelope prefusion state. Proc. Natl. Acad. Sci. USA 2019, 116, 22556–22566. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Ma, X.; Castillo-Menendez, L.R.; Gorman, J.; Alsahafi, N.; Ermel, U.; Terry, D.S.; Chambers, M.; Peng, D.; Zhang, B.; et al. Associating HIV-1 envelope glycoprotein structures with states on the virus observed by smFRET. Nat. Cell Biol. 2019, 568, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Alsahafi, N.; Bakouche, N.; Kazemi, M.; Richard, J.; Ding, S.; Bhattacharyya, S.; Das, D.; Anand, S.P.; Prévost, J.; Tolbert, W.D.; et al. An Asymmetric Opening of HIV-1 Envelope Mediates Antibody-Dependent Cellular Cytotoxicity. Cell Host Microbe 2019, 25, 578–587. [Google Scholar] [CrossRef] [Green Version]
- Flemming, J.; Wiesen, L.; Herschhorn, A. Conformation-Dependent Interactions Between HIV-1 Envelope Glycoproteins and Broadly Neutralizing Antibodies. AIDS Res. Hum. Retrovir. 2018, 34, 794–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, L.; He, L.; De Val, N.; Vora, N.; Morris, C.D.; Azadnia, P.; Sok, D.; Zhou, B.; Burton, D.R.; Ward, A.B.; et al. Uncleaved prefusion-optimized gp140 trimers derived from analysis of HIV-1 envelope metastability. Nat. Commun. 2016, 7, 12040. [Google Scholar] [CrossRef] [Green Version]
- Chen, B. Molecular Mechanism of HIV-1 Entry. Trends Microbiol. 2019, 27, 878–891. [Google Scholar] [CrossRef]
- Selhorst, P.; Grupping, K.; Tong, T.; Crooks, E.T.; Martin, L.; Vanham, G.; Binley, J.M.; Ariën, K.K. M48U1 CD4 mimetic has a sustained inhibitory effect on cell-associated HIV-1 by attenuating virion infectivity through gp120 shedding. Retrovirology 2013, 10, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teixeira, C.; Gomes, J.; Gomes, P.; Maurel, F. Viral surface glycoproteins, gp120 and gp41, as potential drug targets against HIV-1: Brief overview one quarter of a century past the approval of zidovudine, the first anti-retroviral drug. Eur. J. Med. Chem. 2011, 46, 979–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacheco, B.; Alsahafi, N.; Debbeche, O.; Prévost, J.; Ding, S.; Chapleau, J.-P.; Herschhorn, A.; Madani, N.; Princiotto, A.; Melillo, B.; et al. Residues in the gp41 Ectodomain Regulate HIV-1 Envelope Glycoprotein Conformational Transitions Induced by gp120-Directed Inhibitors. J. Virol. 2017, 91, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acharya, P.; Lusvarghi, S.; Bewley, C.A.; Kwong, P.D. HIV-1 gp120 as a therapeutic target: Navigating a moving labyrinth. Expert Opin. Ther. Targets 2015, 19, 765–783. [Google Scholar] [CrossRef] [Green Version]
- Finzi, A.; Pacheco, B.; Xiang, S.-H.; Pancera, M.; Herschhorn, A.; Wang, L.; Zeng, X.; Desormeaux, A.; Kwong, P.D.; Sodroski, J. Lineage-Specific Differences between Human and Simian Immunodeficiency Virus Regulation of gp120 Trimer Association and CD4 Binding. J. Virol. 2012, 86, 8974–8986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kesavardhana, S.; Varadarajan, R. Stabilizing the Native Trimer of HIV-1 Env by Destabilizing the Heterodimeric Interface of the gp41 Postfusion Six-Helix Bundle. J. Virol. 2014, 88, 9590–9604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markovic, I.; Stantchev, T.S.; Fields, K.H.; Tiffany, L.J.; Tomiç, M.; Weiss, C.D.; Broder, C.C.; Strebel, K.; Clouse, K.A. Thiol/disulfide exchange is a prerequisite for CXCR4-tropic HIV-1 envelope-mediated T-cell fusion during viral entry. Blood 2004, 103, 1586–1594. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Chen, X.; Huang, J.; Jiang, S.; Chen, Y.-H. Identification of critical antibody-binding sites in the HIV-1 gp41 six-helix bundle core as potential targets for HIV-1 fusion inhibitors. Immunobiology 2009, 214, 51–60. [Google Scholar] [CrossRef]
- Rujas, E.; Insausti, S.; García-Porras, M.; Sánchez-Eugenia, R.; Tsumoto, K.; Nieva, J.L.; Caaveiro, J.M. Functional Contacts between MPER and the Anti-HIV-1 Broadly Neutralizing Antibody 4E10 Extend into the Core of the Membrane. J. Mol. Biol. 2017, 429, 1213–1226. [Google Scholar] [CrossRef] [Green Version]
- Cerutti, N.; Loredo-Varela, J.L.; Caillat, C.; Weissenhorn, W. Antigp41 membrane proximal external region antibodies and the art of using the membrane for neutralization. Curr. Opin. HIV AIDS 2017, 12, 250–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Q.; Shaik, M.M.; Cai, Y.; Ghantous, F.; Piai, A.; Peng, H.; Rits-Volloch, S.; Liu, Z.; Harrison, S.C.; Seaman, M.S.; et al. Structure of the membrane proximal external region of HIV-1 envelope glycoprotein. Proc. Natl. Acad. Sci. USA 2018, 115, E8892–E8899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastian, A.R.; Kantharaju; McFadden, K.; Duffy, C.; Rajagopal, S.; Contarino, M.R.; Papazoglou, E.; Chaiken, I. Cell-Free HIV-1 Virucidal Action by Modified Peptide Triazole Inhibitors of Env gp120. ChemMedChem 2011, 6, 1335–1339. [Google Scholar] [CrossRef] [PubMed]
- Bastian, A.R.; Contarino, M.; Bailey, L.D.; Aneja, R.; Moreira, D.R.M.; Freedman, K.; McFadden, K.; Duffy, C.; Emileh, A.; Leslie, G.; et al. Interactions of peptide triazole thiols with Env gp120 induce irreversible breakdown and inactivation of HIV-1 virions. Retrovirology 2013, 10, 153. [Google Scholar] [CrossRef] [Green Version]
- Umashankara, M.; McFadden, K.; Zentner, I.; Schön, A.; Rajagopal, S.; Tuzer, F.; Kuriakose, S.A.; Contarino, M.; LaLonde, J.; Freire, E.; et al. The Active Core in a Triazole Peptide Dual-Site Antagonist of HIV-1 gp120. ChemMedChem 2010, 5, 1871–1879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McFadden, K.; Fletcher, P.; Rossi, F.; Kantharaju; Umashankara, M.; Pirrone, V.; Rajagopal, S.; Gopi, H.; Krebs, F.C.; Martin-Garcia, J.; et al. Antiviral Breadth and Combination Potential of Peptide Triazole HIV-1 Entry Inhibitors. Antimicrob. Agents Chemother. 2011, 56, 1073–1080. [Google Scholar] [CrossRef] [Green Version]
- Bailey, L.D.; Sundaram, R.V.K.; Li, H.; Duffy, C.; Aneja, R.; Bastian, A.R.; Holmes, A.P.; Kamanna, K.; Rashad, A.A.; Chaiken, I. Disulfide Sensitivity in the Env Protein Underlies Lytic Inactivation of HIV-1 by Peptide Triazole Thiols. ACS Chem. Biol. 2015, 10, 2861–2873. [Google Scholar] [CrossRef]
- Aneja, R.; Rashad, A.A.; Caitlin, D.; Sundaram, R.V.K.; Duffy, C.; Bailey, L.D.; Chaiken, I. Peptide Triazole Inactivators of HIV-1 Utilize a Conserved Two-Cavity Binding Site at the Junction of the Inner and Outer Domains of Env gp120. J. Med. Chem. 2015, 58, 3843–3858. [Google Scholar] [CrossRef] [Green Version]
- Montefiori, D.C. Evaluating Neutralizing Antibodies Against HIV, SIV, and SHIV in Luciferase Reporter Gene Assays. Curr. Protoc. Immunol. 2004, 64, 12.11.1–12.11.17. [Google Scholar] [CrossRef] [PubMed]
- OriginPro 8, version 8.0724; OriginLab Corporation: Northampton, MA, USA, 2007.
- Checkley, M.A.; Luttge, B.G.; Freed, E.O. HIV-1 Envelope Glycoprotein Biosynthesis, Trafficking, and Incorporation. J. Mol. Biol. 2011, 410, 582–608. [Google Scholar] [CrossRef] [Green Version]
- Huarte, N.; Carravilla, P.; Cruz, A.; Lorizate, M.; Nieto-Garai, J.A.; Kräusslich, H.-G.; Pérez-Gil, J.; Requejo-Isidro, J.; Nieva, J.L. Functional organization of the HIV lipid envelope. Sci. Rep. 2016, 6, srep34190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brügger, B.; Glass, B.; Haberkant, P.; Leibrecht, I.; Wieland, F.T.; Kräusslich, H.-G. The HIV lipidome: A raft with an unusual composition. Proc. Natl. Acad. Sci. USA 2006, 103, 2641–2646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieto-Garai, J.A.; Arboleya, A.; Otaegi, S.; Chojnacki, J.; Casas, J.; Fabriàs, G.; Contreras, F.; Kräusslich, H.; Lorizate, M. Cholesterol in the Viral Membrane is a Molecular Switch Governing HIV-1 Env Clustering. Adv. Sci. 2021, 8, 2003468. [Google Scholar] [CrossRef]
- Wang, C.; Cheng, S.; Zhang, Y.; Ding, Y.; Chong, H.; Xing, H.; Jiang, S.; Li, X.; Ma, L. Long-Acting HIV-1 Fusion Inhibitory Peptides and their Mechanisms of Action. Viruses 2019, 11, 811. [Google Scholar] [CrossRef] [Green Version]
- Narasimhulu, V.G.S.; Bellamy-McIntyre, A.K.; Laumaea, A.E.; Lay, C.-S.; Harrison, D.N.; King, H.A.D.; Drummer, H.; Poumbourios, P. Distinct functions for the membrane-proximal ectodomain region (MPER) of HIV-1 gp41 in cell-free and cell–cell viral transmission and cell–cell fusion. J. Biol. Chem. 2018, 293, 6099–6120. [Google Scholar] [CrossRef] [Green Version]
- Zaitseva, E.; Zaitsev, E.; Melikov, K.; Arakelyan, A.; Marin, M.; Villasmil, R.; Margolis, L.B.; Melikyan, G.B.; Chernomordik, L.V. Fusion Stage of HIV-1 Entry Depends on Virus-Induced Cell Surface Exposure of Phosphatidylserine. Cell Host Microbe 2017, 22, 99–110.e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ang, C.G.; Hossain, A.; Rajpara, M.; Bach, H.; Acharya, K.; Dick, A.; Rashad, A.A.; Kutzler, M.; Abrams, C.F.; Chaiken, I. Metastable HIV-1 Surface Protein Env Sensitizes Cell Membranes to Transformation and Poration by Dual-Acting Virucidal Entry Inhibitors. Biochemistry 2020, 59, 818–828. [Google Scholar] [CrossRef] [PubMed]
- Holló, Z.; Homolya, L.; Davis, C.; Sarkadi, B. Calcein accumulation as a fluorometric functional assay of the multidrug transporter. Biochim. Biophys. Acta (BBA) Biomembr. 1994, 1191, 384–388. [Google Scholar] [CrossRef]
- Huang, J.; Kang, B.H.; Pancera, M.; Lee, J.H.; Tong, T.; Feng, Y.; Imamichi, H.; Georgiev, I.S.; Chuang, G.-Y.; Druz, A.; et al. Broad and potent HIV-1 neutralization by a human antibody that binds the gp41–gp120 interface. Nat. Cell Biol. 2014, 515, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Pancera, M.; Zhou, T.; Druz, A.; Georgiev, I.S.; Soto, C.; Gorman, J.; Huang, J.; Acharya, P.; Chuang, G.Y.; Ofek, G.; et al. Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature 2014, 514, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Su, X.; Si, L.; Lu, L.; Jiang, S. The development of HIV vaccines targeting gp41 membrane-proximal external region (MPER): Challenges and prospects. Protein Cell 2018, 9, 596–615. [Google Scholar] [CrossRef]
- West, A.P.; Scharf, L.; Scheid, J.F.; Klein, F.; Bjorkman, P.J.; Nussenzweig, M.C. Structural Insights on the Role of Antibodies in HIV-1 Vaccine and Therapy. Cell 2014, 156, 633–648. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Lin, K.; Lu, M. A Conformation-Specific Monoclonal Antibody Reacting with Fusion-Active gp41 from the Human Immunodeficiency Virus Type 1 Envelope Glycoprotein. J. Virol. 1998, 72, 10213–10217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, W.; Li, X.; Kasterka, M.; Gorny, M.K.; Zolla-Pazner, S.; Sodroski, J. Oligomer-Specific Conformations of the Human Immunodeficiency Virus (HIV-1) gp41 Envelope Glycoprotein Ectodomain Recognized by Human Monoclonal Antibodies. AIDS Res. Hum. Retrovir. 2009, 25, 319–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maerz, A.L.; Drummer, H.E.; Wilson, K.A.; Poumbourios, P. Functional Analysis of the Disulfide-Bonded Loop/Chain Reversal Region of Human Immunodeficiency Virus Type 1 gp41 Reveals a Critical Role in gp120-gp41 Association. J. Virol. 2001, 75, 6635–6644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peisajovich, S.G.; Blank, L.; Epand, R.F.; Epand, R.M.; Shai, Y. On the Interaction Between gp41 and Membranes: The Immunodominant Loop Stabilizes gp41 Helical Hairpin Conformation. J. Mol. Biol. 2003, 326, 1489–1501. [Google Scholar] [CrossRef]
- Sen, J.; Jacobs, A.; Jiang, H.; Rong, L.; Caffrey, M. The disulfide loop of gp41 is critical to the furin recognition site of HIV gp160. Protein Sci. 2007, 16, 1236–1241. [Google Scholar] [CrossRef] [PubMed]
- Kong, R.; Xu, K.; Zhou, T.; Acharya, P.; Lemmin, T.; Liu, K.; Ozorowski, G.; Soto, C.; Taft, J.D.; Bailer, R.T.; et al. Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody. Science 2016, 352, 828–833. [Google Scholar] [CrossRef] [Green Version]
- Yuan, M.; Cottrell, C.; Ozorowski, G.; van Gils, M.J.; Kumar, S.; Wu, N.C.; Sarkar, A.; Torres, J.L.; de Val, N.; Copps, J.; et al. Conformational Plasticity in the HIV-1 Fusion Peptide Facilitates Recognition by Broadly Neutralizing Antibodies. Cell Host Microbe 2019, 25, 873–883.e5. [Google Scholar] [CrossRef] [Green Version]
- Tristram-Nagle, S.; Chan, R.; Kooijman, E.; Uppamoochikkal, P.; Qiang, W.; Weliky, D.P.; Nagle, J.F. HIV Fusion Peptide Penetrates, Disorders, and Softens T-Cell Membrane Mimics. J. Mol. Biol. 2010, 402, 139–153. [Google Scholar] [CrossRef] [Green Version]
- Tuzer, F.; Madani, N.; Kamanna, K.; Zentner, I.; LaLonde, J.; Holmes, A.; Upton, E.; Rajagopal, S.; McFadden, K.; Contarino, M.; et al. HIV-1 ENV gp120 structural determinants for peptide triazole dual receptor site antagonism. Proteins Struct. Funct. Bioinform. 2013, 81, 271–290. [Google Scholar] [CrossRef] [Green Version]
- Kamanna, K.; Aneja, R.; Duffy, C.; Kubinski, P.; Moreira, D.R.; Bailey, L.D.; McFadden, K.; Schön, A.; Holmes, A.; Tuzer, F.; et al. Non-natural Peptide Triazole Antagonists of HIV-1 Envelope gp120. ChemMedChem 2012, 8, 322–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freed, E.O.; Delwart, E.L.; Buchschacher, G.L.; Panganiban, A.T. A mutation in the human immunodeficiency virus type 1 transmembrane glycoprotein gp41 dominantly interferes with fusion and infectivity. Proc. Natl. Acad. Sci. USA 1992, 89, 70–74. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Kurteva, S.; Ren, X.; Lee, S.; Sodroski, J. Stoichiometry of Envelope Glycoprotein Trimers in the Entry of Human Immunodeficiency Virus Type 1. J. Virol. 2005, 79, 12132–12147. [Google Scholar] [CrossRef] [Green Version]
- Melikyan, G.B. Common principles and intermediates of viral protein-mediated fusion: The HIV-1 paradigm. Retrovirology 2008, 5, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herschhorn, A.; Finzi, A.; Jones, D.M.; Courter, J.R.; Sugawara, A.; Smith, A.B.; Sodroski, J.G. An Inducible Cell-Cell Fusion System with Integrated Ability to Measure the Efficiency and Specificity of HIV-1 Entry Inhibitors. PLoS ONE 2011, 6, e26731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finnegan, C.M.; Berg, W.; Lewis, G.K.; DeVico, A.L. Antigenic Properties of the Human Immunodeficiency Virus Transmembrane Glycoprotein during Cell-Cell Fusion. J. Virol. 2002, 76, 12123–12134. [Google Scholar] [CrossRef] [Green Version]
- Pascual, R.; Moreno, M.R.; Villalaín, J. A Peptide Pertaining to the Loop Segment of Human Immunodeficiency Virus gp41 Binds and Interacts with Model Biomembranes: Implications for the Fusion Mechanism. J. Virol. 2005, 79, 5142–5152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashkenazi, A.; Faingold, O.; Kaushansky, N.; Ben-Nun, A.; Shai, Y. A highly conserved sequence associated with the HIV gp41 loop region is an immunomodulator of antigen-specific T cells in mice. Blood 2013, 121, 2244–2252. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Ashkenazi, A.; Liu, S.; Shai, Y. Structural and Functional Properties of the Membranotropic HIV-1 Glycoprotein gp41 Loop Region Are Modulated by Its Intrinsic Hydrophobic Core. J. Biol. Chem. 2013, 288, 29143–29150. [Google Scholar] [CrossRef] [Green Version]
- Ashkenazi, A.; Merklinger, E.; Shai, Y. Intramolecular Interactions within the Human Immunodeficiency Virus-1 gp41 Loop Region and Their Involvement in Lipid Merging. Biochemistry 2012, 51, 6981–6989. [Google Scholar] [CrossRef]
- Reuven, E.M.; Dadon, Y.; Viard, M.; Manukovsky, N.; Blumenthal, R.; Shai, Y. HIV-1 gp41 Transmembrane Domain Interacts with the Fusion Peptide: Implication in Lipid Mixing and Inhibition of Virus–Cell Fusion. Biochemistry 2012, 51, 2867–2878. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, K.; Weliky, D.P. Folded Monomers and Hexamers of the Ectodomain of the HIV gp41 Membrane Fusion Protein: Potential Roles in Fusion and Synergy Between the Fusion Peptide, Hairpin, and Membrane-Proximal External Region. Biochemistry 2014, 53, 7184–7198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ananthaswamy, N.; Fang, Q.; AlSalmi, W.; Jain, S.; Chen, Z.; Klose, T.; Sun, Y.; Liu, Y.; Mahalingam, M.; Chand, S.; et al. A sequestered fusion peptide in the structure of an HIV-1 transmitted founder envelope trimer. Nat. Commun. 2019, 10, 873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Sarkar, A.; Pugach, P.; Sanders, R.W.; Moore, J.P.; Ward, A.B.; Wilson, I.A. Capturing the inherent structural dynamics of the HIV-1 envelope glycoprotein fusion peptide. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef]
- Doms, R.W.; Moore, J.P. HIV-1 Membrane Fusion. J. Cell Biol. 2000, 151, F9–F14. [Google Scholar] [CrossRef] [Green Version]
- Wesolowski, J.; Paumet, F. SNARE motif: A common motif used by pathogens to manipulate membrane fusion. Virulence 2010, 1, 319–324. [Google Scholar] [CrossRef] [Green Version]
- Ivan, B.; Sun, Z.; Subbaraman, H.; Friedrich, N.; Trkola, A. CD4 occupancy triggers sequential pre-fusion conformational states of the HIV-1 envelope trimer with relevance for broadly neutralizing antibody activity. PLoS Biol. 2019, 17, e3000114. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Barnes, C.O.; Yang, Z.; Nussenzweig, M.C.; Bjorkman, P.J. Partially Open HIV-1 Envelope Structures Exhibit Conformational Changes Relevant for Coreceptor Binding and Fusion. Cell Host Microbe 2018, 24, 579–592.e4. [Google Scholar] [CrossRef] [Green Version]
- Herschhorn, A.; Ma, X.; Gu, C.; Ventura, J.D.; Castillo-Menendez, L.; Melillo, B.; Terry, D.S.; Smith, A.B.; Blanchard, S.C.; Munro, J.B.; et al. Release of gp120 Restraints Leads to an Entry-Competent Intermediate State of the HIV-1 Envelope Glycoproteins. mBio 2016, 7, e01598-16. [Google Scholar] [CrossRef] [Green Version]
- Herschhorn, A.; Sodroski, J. An entry-competent intermediate state of the HIV-1 envelope glycoproteins. Recept. Clin. Investig. 2017, 4, e1544. [Google Scholar] [CrossRef] [Green Version]
- Bastian, A.R.; Nangarlia, A.; Bailey, L.D.; Holmes, A.; Sundaram, R.V.K.; Ang, C.; Moreira, D.R.; Freedman, K.; Duffy, C.; Contarino, M.; et al. Mechanism of Multivalent Nanoparticle Encounter with HIV-1 for Potency Enhancement of Peptide Triazole Virus Inactivation. J. Biol. Chem. 2015, 290, 529–543. [Google Scholar] [CrossRef] [Green Version]
- Finsel, I.; Ragaz, C.; Hoffmann, C.; Harrison, C.F.; Weber, S.; van Rahden, V.A.; Johannes, L.; Hilbi, H. The Legionella Effector RidL Inhibits Retrograde Trafficking to Promote Intracellular Replication. Cell Host Microbe 2013, 14, 38–50. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Yang, F.; Sun, X.; Wang, S.; Gan, N.; Liu, Q.; Liu, D.; Zhang, X.; Niu, D.; Wei, Y.; et al. Mechanism of inhibition of retromer transport by the bacterial effector RidL. Proc. Natl. Acad. Sci. USA 2018, 115, E1446–E1454. [Google Scholar] [CrossRef] [Green Version]
- Arakelyan, A.; Fitzgerald, W.; King, D.F.; Rogers, P.; Cheeseman, H.; Grivel, J.-C.; Shattock, R.J.; Margolis, L. Flow virometry analysis of envelope glycoprotein conformations on individual HIV virions. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef]
- Chakrabarti, B.K.; Pancera, M.; Phogat, S.; O’Dell, S.; McKee, K.; Guenaga, J.; Robinson, J.; Mascola, J.; Wyatt, R.T. HIV Type 1 Env Precursor Cleavage State Affects Recognition by Both Neutralizing and Nonneutralizing gp41 Antibodies. AIDS Res. Hum. Retrovir. 2011, 27, 877–887. [Google Scholar] [CrossRef] [Green Version]
- Tong, T.; Osawa, K.; Robinson, J.E.; Crooks, E.T.; Binley, J.M. Topological Analysis of HIV-1 Glycoproteins Expressed In Situ on Virus Surfaces Reveals Tighter Packing but Greater Conformational Flexibility than for Soluble gp120. J. Virol. 2013, 87, 9233–9249. [Google Scholar] [CrossRef] [Green Version]
- Bonnafous, P.; Stegmann, T. Pore Formation in Target Liposomes by Viral Fusion Proteins. In Biomembranes Part K: Membrane Biogenesis: Assembly and Targeting (Prokaryotes, Mitochondria, and Chloroplasts); Elsevier: Amsterdam, The Netherlands, 2003; Volume 372, pp. 408–418. [Google Scholar]
- Ratner, A.J.; Hippe, K.R.; Aguilar, J.L.; Bender, M.H.; Nelson, A.L.; Weiser, J. Epithelial Cells Are Sensitive Detectors of Bacterial Pore-forming Toxins. J. Biol. Chem. 2006, 281, 12994–12998. [Google Scholar] [CrossRef] [Green Version]
- Tomita, N.; Abe, K.; Kamio, Y.; Ohta, M. Cluster-forming property correlated with hemolytic activity by staphylococcal γ-hemolysin transmembrane pores. FEBS Lett. 2011, 585, 3452–3456. [Google Scholar] [CrossRef] [Green Version]
- Azimi, I.; Matthias, L.J.; Center, R.J.; Wong, J.W.; Hogg, P.J. Disulfide Bond That Constrains the HIV-1 gp120 V3 Domain Is Cleaved by Thioredoxin. J. Biol. Chem. 2010, 285, 40072–40080. [Google Scholar] [CrossRef] [Green Version]
- Abrahamyan, L.G.; Markosyan, R.M.; Moore, J.P.; Cohen, F.S.; Melikyan, G.B. Human Immunodeficiency Virus Type 1 Env with an Intersubunit Disulfide Bond Engages Coreceptors but Requires Bond Reduction after Engagement to Induce Fusion. J. Virol. 2003, 77, 5829–5836. [Google Scholar] [CrossRef] [Green Version]
- Stantchev, T.S.; Paciga, M.; Lankford, C.R.; Schwartzkopff, F.; Broder, C.C.; A Clouse, K. Cell-type specific requirements for thiol/disulfide exchange during HIV-1 entry and infection. Retrovirology 2012, 9, 97. [Google Scholar] [CrossRef] [Green Version]
Antibody/Epitope | KR13 | KR13b |
---|---|---|
Calcein Membrane Disruption | 1.15 ± 0.02 µM Decrease | No Change |
35O22 gp120 Shedding | 0.33 ± 0.02 µM Decrease | 0.28 ± 0.05 µM Decrease |
10E8 MPER | 1.42 ± 0.32 µM Increase | No Change |
NC-1 6-Helix-Bundle | 1.49 ± 0.26 µM Increase | No Change |
50-69 Immunodominant Loop | 0.24 ± 0.05 µM Decrease | 1.02 ± 0.13 µM Increase |
VRC34.01 Fusion Peptide | 0.28 ± 0.06 µM Decrease | 1.26 ± 0.10 µM Increase |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ang, C.G.; Carter, E.; Haftl, A.; Zhang, S.; Rashad, A.A.; Kutzler, M.; Abrams, C.F.; Chaiken, I.M. Peptide Triazole Thiol Irreversibly Inactivates Metastable HIV-1 Env by Accessing Conformational Triggers Intrinsic to Virus–Cell Entry. Microorganisms 2021, 9, 1286. https://doi.org/10.3390/microorganisms9061286
Ang CG, Carter E, Haftl A, Zhang S, Rashad AA, Kutzler M, Abrams CF, Chaiken IM. Peptide Triazole Thiol Irreversibly Inactivates Metastable HIV-1 Env by Accessing Conformational Triggers Intrinsic to Virus–Cell Entry. Microorganisms. 2021; 9(6):1286. https://doi.org/10.3390/microorganisms9061286
Chicago/Turabian StyleAng, Charles Gotuaco, Erik Carter, Ann Haftl, Shiyu Zhang, Adel A. Rashad, Michele Kutzler, Cameron F. Abrams, and Irwin M. Chaiken. 2021. "Peptide Triazole Thiol Irreversibly Inactivates Metastable HIV-1 Env by Accessing Conformational Triggers Intrinsic to Virus–Cell Entry" Microorganisms 9, no. 6: 1286. https://doi.org/10.3390/microorganisms9061286
APA StyleAng, C. G., Carter, E., Haftl, A., Zhang, S., Rashad, A. A., Kutzler, M., Abrams, C. F., & Chaiken, I. M. (2021). Peptide Triazole Thiol Irreversibly Inactivates Metastable HIV-1 Env by Accessing Conformational Triggers Intrinsic to Virus–Cell Entry. Microorganisms, 9(6), 1286. https://doi.org/10.3390/microorganisms9061286