Parallel Evolution of Enhanced Biofilm Formation and Phage-Resistance in Pseudomonas aeruginosa during Adaptation Process in Spatially Heterogeneous Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain and Medium
2.2. Evolution Experiment
2.3. Viable Cell Number and Colony Discrimination
2.4. Isolation and Phenotypic Characterization of CMVs
2.5. Genome Resequencing Analysis
2.6. Analysis of Diversity and Evolutionary Trajectories
3. Results
3.1. Emergence of Colony Morphology Variants (CMVs) of P. aeruginosa PAO1
3.2. Genomic and Phenotypic Characterization of CMVs
3.3. Selection of Sm Variants by Phage Lysis
3.4. Evolutionary Trajectory of PAO1 Population
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arai, H. Regulation and function of versatile aerobic and anaerobic respiratory metabolism in Pseudomonas aeruginosa. Front. Microbiol. 2011, 2, 103. [Google Scholar] [CrossRef][Green Version]
- Moradali, M.F.; Ghods, S.; Rehm, B.H.A. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front. Cell. Infect. Microbiol. 2017, 7, 39. [Google Scholar] [CrossRef] [PubMed][Green Version]
- McDougald, D.; Klebensberger, J.; Tolker-Nielsen, T.; Webb, J.S.; Conibear, T.; Rice, S.A.; Kirov, S.M.; Matz, C.; Kjelleberg, S. Pseudomonas aeruginosa: A Model for Biofilm Formation. In Pseudomonas; Rehm, B.H.A., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2008; pp. 215–253. ISBN 978-3-527-62200-9. [Google Scholar]
- Valentini, M.; Gonzalez, D.; Mavridou, D.A.; Filloux, A. Lifestyle transitions and adaptive pathogenesis of Pseudomonas aeruginosa. Curr. Opin. Microbiol. 2018, 41, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Folkesson, A.; Jelsbak, L.; Yang, L.; Johansen, H.K.; Ciofu, O.; Høiby, N.; Molin, S. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: An evolutionary perspective. Nat. Rev. Genet. 2012, 10, 841–851. [Google Scholar] [CrossRef]
- Winstanley, C.; O’Brien, S.; Brockhurst, M.A. Pseudomonas aeruginosa Evolutionary Adaptation and Diversification in Cystic Fibrosis Chronic Lung Infections. Trends Microbiol. 2016, 24, 327–337. [Google Scholar] [CrossRef][Green Version]
- Noble, W.C. Pseudomonas Infection and Alginates: Biochemistry, Genetics and Pathology. Ed. P. Gacesa and N. J. Russell. pp. 233. London: Chapman and Hall. 1990. £45. Epidemiology Infect. 1991, 107, 466. [Google Scholar] [CrossRef][Green Version]
- Boles, B.R.; Thoendel, M.; Singh, P.K. Self-generated diversity produces "insurance effects" in biofilm communities. Proc. Natl. Acad. Sci. USA 2004, 101, 16630–16635. [Google Scholar] [CrossRef][Green Version]
- Nadell, C.D.; Bassler, B.L. A fitness trade-off between local competition and dispersal in Vibrio cholerae biofilms. Proc. Natl. Acad. Sci. USA 2011, 108, 14181–14185. [Google Scholar] [CrossRef][Green Version]
- Yan, J.; Nadell, C.D.; Bassler, B.L. Environmental fluctuation governs selection for plasticity in biofilm production. ISME J. 2017, 11, 1569–1577. [Google Scholar] [CrossRef]
- Post, D.M.; Palkovacs, E.P. Eco-evolutionary feedbacks in community and ecosystem ecology: Interactions between the ecological theatre and the evolutionary play. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1629–1640. [Google Scholar] [CrossRef]
- Trivedi, P.; Wang, N. Host immune responses accelerate pathogen evolution. ISME J. 2013, 8, 727–731. [Google Scholar] [CrossRef][Green Version]
- Cullen, L.; McClean, S. Bacterial Adaptation during Chronic Respiratory Infections. Pathogens 2015, 4, 66–89. [Google Scholar] [CrossRef][Green Version]
- Hoffman, L.R.; Déziel, E.; D’Argenio, D.A.; Lépine, F.; Emerson, J.; McNamara, S.; Gibson, R.L.; Ramsey, B.W.; Miller, S.I. Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 2006, 103, 19890–19895. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hansen, S.K.; Rainey, P.B.; Haagensen, J.A.J.; Molin, S. Evolution of species interactions in a biofilm community. Nat. Cell Biol. 2007, 445, 533–536. [Google Scholar] [CrossRef]
- Harcombe, W. Novel cooperation experimentally evolved between species. Evolution 2010, 64, 2166–2172. [Google Scholar] [CrossRef] [PubMed]
- Harrison, F. Microbial ecology of the cystic fibrosis lung. Microbiology 2007, 153, 917–923. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nguyen, A.T.; Oglesby-Sherrouse, A.G. Interactions between Pseudomonas aeruginosa and Staphylococcus aureus during co-cultivations and polymicrobial infections. Appl. Microbiol. Biotechnol. 2016, 100, 6141–6148. [Google Scholar] [CrossRef] [PubMed]
- Hotterbeekx, A.; Kumar-Singh, S.; Goossens, H.; Malhotra-Kumar, S. In vivo and In vitro Interactions between Pseudomonas aeruginosa and Staphylococcus spp. Front. Cell. Infect. Microbiol. 2017, 7, 106. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Magalhães, A.P.; Jorge, P.; Pereira, M.O. Pseudomonas aeruginosa and Staphylococcus aureus communication in biofilm infections: Insights through network and database construction. Crit. Rev. Microbiol. 2019, 45, 712–728. [Google Scholar] [CrossRef][Green Version]
- Filkins, L.M.; Graber, J.A.; Olson, D.G.; Dolben, E.L.; Lynd, L.R.; Bhuju, S.; O’Toole, G.A. Coculture of Staphylococcus aureus with Pseudomonas aeruginosa Drives S. aureus towards Fermentative Metabolism and Reduced Viability in a Cystic Fibrosis Model. J. Bacteriol. 2015, 197, 2252–2264. [Google Scholar] [CrossRef][Green Version]
- Tognon, M.; Köhler, T.; Luscher, A.; Van Delden, C. Transcriptional profiling of Pseudomonas aeruginosa and Staphylococcus aureus during in vitro co-culture. BMC Genom. 2019, 20, 1–15. [Google Scholar] [CrossRef]
- Pallett, R.; Leslie, L.J.; Lambert, P.A.; Milic, I.; Devitt, A.; Marshall, L.J. Anaerobiosis influences virulence properties of Pseudomonas aeruginosa cystic fibrosis isolates and the interaction with Staphylococcus aureus. Sci. Rep. 2019, 9, 1–18. [Google Scholar] [CrossRef][Green Version]
- Armbruster, C.R.; Wolter, D.J.; Mishra, M.; Hayden, H.S.; Radey, M.C.; Merrihew, G.; MacCoss, M.J.; Burns, J.; Wozniak, D.J.; Parsek, M.R.; et al. Staphylococcus aureus Protein A Mediates Interspecies Interactions at the Cell Surface of Pseudomonas aeruginosa. mBio 2016, 7, e00538-16. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Limoli, D.H.; A Warren, E.; Yarrington, K.D.; Donegan, N.P.; Cheung, A.L.; A O’Toole, G. Interspecies interactions induce exploratory motility in Pseudomonas aeruginosa. eLife 2019, 8. [Google Scholar] [CrossRef]
- Yang, N.; Cao, Q.; Hu, S.; Xu, C.; Fan, K.; Chen, F.; Yang, C.; Liang, H.; Wu, M.; Bae, T.; et al. Alteration of protein homeostasis mediates the interaction of Pseudomonas aeruginosa with Staphylococcus aureus. Mol. Microbiol. 2020, 114, 423–442. [Google Scholar] [CrossRef] [PubMed]
- Tognon, M.; Köhler, T.; Gdaniec, B.G.; Hao, Y.; Lam, J.S.; Beaume, M.; Luscher, A.; Buckling, A.; Van Delden, C. Co-evolution with Staphylococcus aureus leads to lipopolysaccharide alterations in Pseudomonas aeruginosa. ISME J. 2017, 11, 2233–2243. [Google Scholar] [CrossRef]
- Duthie, E.S.; Lorenz, L.L. Staphylococcal Coagulase: Mode of Action and Antigenicity. Microbiology 1952, 6, 95–107. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hiramatsu, K.; Hanaki, H.; Ino, T.; Yabuta, K.; Oguri, T.; Tenover, F.C. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J. Antimicrob. Chemother. 1997, 40, 135–136. [Google Scholar] [CrossRef]
- O’Toole, G.A.; Pratt, L.A.; Watnick, P.I.; Newman, D.K.; Weaver, V.B.; Kolter, R. [6] Genetic approaches to study of biofilms. In Cellulases; Elsevier BV: Amsterdam, The Netherlands, 1999; Volume 310, pp. 91–109. [Google Scholar]
- Rainey, P.B.; Travisano, M. Adaptive radiation in a heterogeneous environment. Nat. Cell Biol. 1998, 394, 69–72. [Google Scholar] [CrossRef] [PubMed]
- McElroy, K.E.; Hui, J.G.K.; Woo, J.K.K.; Luk, A.W.S.; Webb, J.S.; Kjelleberg, S.; Rice, S.A.; Thomas, T. Strain-specific parallel evolution drives short-term diversification during Pseudomonas aeruginosa biofilm formation. Proc. Natl. Acad. Sci. USA 2014, 111, E1419–E1427. [Google Scholar] [CrossRef][Green Version]
- Webb, J.S.; Lau, M.; Kjelleberg, S. Bacteriophage and Phenotypic Variation in Pseudomonas aeruginosa Biofilm Development. J. Bacteriol. 2004, 186, 8066–8073. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pelletier, F.; Garant, D.; Hendry, A.P. Eco-evolutionary dynamics. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1483–1489. [Google Scholar] [CrossRef][Green Version]
- Martin, M.; Dragoš, A.; Hölscher, T.; Maróti, G.; Bálint, B.; Westermann, M.; Kovács, A.T. De novo evolved interference competition promotes the spread of biofilm defectors. Nat. Commun. 2017, 8, 15127. [Google Scholar] [CrossRef] [PubMed]
- Poltak, S.R.; Cooper, V.S. Ecological succession in long-term experimentally evolved biofilms produces synergistic communities. ISME J. 2010, 5, 369–378. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Römling, U.; Galperin, M.Y.; Gomelsky, M. Cyclic di-GMP: The First 25 Years of a Universal Bacterial Second Messenger. Microbiol. Mol. Biol. Rev. 2013, 77, 1–52. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chen, G.; Gan, J.; Yang, C.; Zuo, Y.; Peng, J.; Li, M.; Huo, W.; Xie, Y.; Zhang, Y.; Wang, T.; et al. The SiaA/B/C/D signaling network regulates biofilm formation in Pseudomonas aeruginosa. EMBO J. 2020, 39, e103412. [Google Scholar] [CrossRef]
- Choy, W.-K.; Zhou, L.; Syn, C.K.-C.; Zhang, L.-H.; Swarup, S. MorA Defines a New Class of Regulators Affecting Flagellar Development and Biofilm Formation in Diverse Pseudomonas Species. J. Bacteriol. 2004, 186, 7221–7228. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Colley, B.; Dederer, V.; Carnell, M.; Kjelleberg, S.; Rice, S.A.; Klebensberger, J. SiaA/D Interconnects c-di-GMP and RsmA Signaling to Coordinate Cellular Aggregation of Pseudomonas aeruginosa in Response to Environmental Conditions. Front. Microbiol. 2016, 7, 179. [Google Scholar] [CrossRef]
- Kulasakara, H.; Lee, V.; Brencic, A.; Liberati, N.; Urbach, J.; Miyata, S.; Lee, D.G.; Neely, A.N.; Hyodo, M.; Hayakawa, Y.; et al. Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3’-5’)-cyclic-GMP in virulence. Proc. Natl. Acad. Sci. USA 2006, 103, 2839–2844. [Google Scholar] [CrossRef][Green Version]
- Davies, E.V.; James, C.E.; Kukavica-Ibrulj, I.; Levesque, R.C.; Brockhurst, M.A.; Winstanley, C. Temperate phages enhance pathogen fitness in chronic lung infection. ISME J. 2016, 10, 2553–2555. [Google Scholar] [CrossRef]
- Mahenthiralingam, E.; Campbell, M.E.; Speert, D.P. Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect. Immun. 1994, 62, 596–605. [Google Scholar] [CrossRef][Green Version]
- Chang, Y.-S.T.; Klockgether, J.; Tümmler, B. An intragenic deletion in pilQ leads to nonpiliation of a Pseudomonas aeruginosa strain isolated from cystic fibrosis lung. FEMS Microbiol. Lett. 2007, 270, 201–206. [Google Scholar] [CrossRef][Green Version]
- Kelly, N.M.; Kluftinger, J.L.; Pasloske, B.L.; Paranchych, W.; Hancock, R.E. Pseudomonas aeruginosa pili as ligands for nonopsonic phagocytosis by fibronectin-stimulated macrophages. Infect. Immun. 1989, 57, 3841–3845. [Google Scholar] [CrossRef][Green Version]
- O’Toole, G.A.; Kolter, R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 1998, 30, 295–304. [Google Scholar] [CrossRef]
- Webb, J.S.; Thompson, L.S.; James, S.; Charlton, T.; Tolker-Nielsen, T.; Koch, B.; Givskov, M.; Kjelleberg, S. Cell Death in Pseudomonas aeruginosa Biofilm Development. J. Bacteriol. 2003, 185, 4585–4592. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Altamirano, F.L.G.; Barr, J.J. Phage Therapy in the Postantibiotic Era. Clin. Microbiol. Rev. 2019, 32, 00066-18. [Google Scholar] [CrossRef][Green Version]
- Chegini, Z.; Khoshbayan, A.; Moghadam, M.T.; Farahani, I.; Jazireian, P.; Shariati, A. Bacteriophage therapy against Pseudomonas aeruginosa biofilms: A review. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 1–17. [Google Scholar] [CrossRef] [PubMed]
CMV (Colony Morphology) | Origin 1 | Chromosomal Position, Type of Variation, Amino Acid Change | Gene | Predicted Function |
---|---|---|---|---|
Um-1 (Umbonate) | P-1-21 | 194365, In frame deletion (4 aa) | PA0171 | c-di-GMP metabolism |
Um-2 (Umbonate) | P-4-21 | 5159267, SNV 2, Arg967→Leu | morA (PA4601) | c-di-GMP metabolism |
Um-3 (Umbonate) | PN-1-7 | N.D. 3 | - | - |
Dm-1 (Dome) | P-3-19 | 4145826, SNV, Gln41 * | wspF (PA3703) | c-di-GMP metabolism |
F-1 (Fried-egg) | PN-3-13 | 4151113, SNV, Ala411→Val | wspA (PA3708) | c-di-GMP metabolism |
CW-1 (Center-wrinkly) | P-1-21 | 1213097, SNV, Leu43→Phe | yfiB (PA1119) | c-di-GMP metabolism |
CW-2 (Center-wrinkly) | PM-3-21 | 196821, SNV | Intergenic region | Upstream region of siaA (PA0172) |
W-1 (Wrinkly) | P-1-21 | 4151032, SNV, Ala438→Val | wspA (PA3708) | c-di-GMP metabolism |
W-2 (Wrinkly) | PN-1-21 | 4151496, SNV, none 5069263, SNV, Gly90→Asp | wspA (PA3708) pilA (PA4525) | c-di-GMP metabolism Type IV pilus protein |
Sm-1 (Smooth) | PN-1-21 | 5069340, SNV, Ser64→Arg 194365, In frame deletion (4 aa) | pilA (PA4525) PA0171 | Type IV pilus protein c-di-GMP metabolism |
Sm-2 (Smooth) | PN-2-21 | 452798, SNV, Ala557→Thr 5159824, SNV, Glu1153→Lys | pilJ (PA0411) morA (PA4601) | Twitching motility related gene c-di-GMP metabolism |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamamoto, K.; Kusada, H.; Kamagata, Y.; Tamaki, H. Parallel Evolution of Enhanced Biofilm Formation and Phage-Resistance in Pseudomonas aeruginosa during Adaptation Process in Spatially Heterogeneous Environments. Microorganisms 2021, 9, 569. https://doi.org/10.3390/microorganisms9030569
Yamamoto K, Kusada H, Kamagata Y, Tamaki H. Parallel Evolution of Enhanced Biofilm Formation and Phage-Resistance in Pseudomonas aeruginosa during Adaptation Process in Spatially Heterogeneous Environments. Microorganisms. 2021; 9(3):569. https://doi.org/10.3390/microorganisms9030569
Chicago/Turabian StyleYamamoto, Kyosuke, Hiroyuki Kusada, Yoichi Kamagata, and Hideyuki Tamaki. 2021. "Parallel Evolution of Enhanced Biofilm Formation and Phage-Resistance in Pseudomonas aeruginosa during Adaptation Process in Spatially Heterogeneous Environments" Microorganisms 9, no. 3: 569. https://doi.org/10.3390/microorganisms9030569