Diguanylate Cyclase GdpX6 with c-di-GMP Binding Activity Involved in the Regulation of Virulence Expression in Xanthomonas oryzae pv. oryzae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains Plasmids and Growth Condition
2.2. Bioinformatics Analysis of GdpX6
2.3. Protein Expression and Purification
2.4. DGC Activity Assay
2.5. ITC Isothermal Titration Calorimetry (ITC) Assay
2.6. Construction of Gene Deletion Mutant, Complementation and Overexpression Strains
2.7. Western Blotting Analysis
2.8. Virulence Assay
2.9. Motility Assay
2.10. Biofilm Formation Assay
2.11. EPS Production Assay
2.12. Extracellular Enzymatic Activities Assay
2.13. Fluorescence Microscopy
2.14. Statistical Analysis
3. Results
3.1. GdpX6 Contains a Conserved GGDEF Domain
3.2. GdpX6 Demonstrates DGC Activity In Vitro
3.3. GdpX6 Binds to c-di-GMP via the I Site of GGDEF Motif
3.4. GdpX6 Contributes to the Virulence of Xoo on Rice
3.5. GdpX6 Is Involved in the Regulation of Swimming and Sliding Motility of Xoo
3.6. GdpX6 Promotes Biofilm Formation of Xoo
3.7. GdpX6 Does Not Control EPS Production and Extracellular Enzymatic Activities of Xoo
3.8. Subcellular Localization of GdpX6 in Xoo
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niño-Liu, D.O.; Ronald, P.C.; Bogdanove, A.J. Xanthomonas oryzae pathovars: Model pathogens of a model crop. Mol. Plant Pathol. 2006, 7, 303–324. [Google Scholar] [CrossRef]
- Adhikari, T.B.; Cruz, C.; Zhang, Q.; Nelson, R.J.; Skinner, D.Z.; Mew, T.W.; Leach, E.J. Genetic diversity of Xanthomonas oryzae pv. oryzae in Asia. Appl. Environ. Microbiol. 1995, 61, 966–971. [Google Scholar] [CrossRef] [Green Version]
- Leach, E.J.; Rhoads, M.L.; Cruz, C.M.V.; White, F.F.; Mew, T.W.; Leung, H. Assessment of genetic diversity and population structure of Xanthomonas oryzae pv. oryzae with a repetitive DNA element. Appl. Environ. Microbiol. 1992, 58, 2188–2195. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Rangaraj, N.; Sonti, R.V. Multiple adhesin-like functions of Xanthomonas oryzae pv. oryzae are involved in promoting leaf attachment, entry, and virulence on rice. Mol. Plant Microbe Interact. 2009, 22, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Kim, J.G.; Lee, B.M.; Cho, J.Y. Mutational analysis of the gum gene cluster required for xanthan biosynthesis in Xanthomonas oryzae pv. oryzae. Biotechnol. Lett. 2009, 31, 265–270. [Google Scholar]
- Rai, R.; Ranjan, M.; Pradhan, B.B.; Chatterjee, S. A typical regulation of virulence-associated functions by a diffusible signal factor in Xanthomonas oryzae pv. oryzae. Mol. Plant Microbe Interact. 2012, 25, 789–801. [Google Scholar]
- He, Y.W.; Wu, J.; Cha, J.S.; Zhang, L.-H. Rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae produces multiple DSF-family signals in regulation of virulence factor production. BMC Microbiol. 2010, 10, 187. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Tian, F.; Sun, L.; Chen, H.; Wu, M.; Yang, C.-H.; He, C. A novel two-component system PdeK/PdeR regulates c-di-GMP turnover and virulence of Xanthomonas oryzae pv. oryzae. Mol. Plant Microbe Interact. 2012, 25, 1361–1369. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Sun, J.; Fan, F.; Tan, Z.; Zou, Y.; Lu, D. A Xanthomonas oryzae pv. oryzae effector, XopR, associates with receptor-like cytoplasmic kinases and suppresses PAMP-triggered stomatal closure. Sci. China Life Sci. 2016, 59, 897–905. [Google Scholar] [CrossRef]
- Su, J.; Zou, X.; Huang, L.; Bai, T.; Liu, S.; Yuan, M.; Chou, S.-H.; He, Y.-W.; Wang, H.; He, J. DgcA, a diguanylate cyclase from Xanthomonas oryzae pv. oryzae regulates bacterial pathogenicity on rice. Sci. Rep. 2016, 6, 25978. [Google Scholar] [CrossRef] [Green Version]
- Xue, D.R.; Tian, F.; Yang, F.H.; Chen, H.M.; Yuan, X.; Yang, C.H.; He, C.Y. Phosphodiesterase EdpX1 promotes Xanthomonas oryzae pv. oryzae virulence, exopolysaccharide production, and biofilm formation. Appl. Environ. Microbiol. 2018, 84, e01717–e01718. [Google Scholar]
- Römling, U.; Simm, R. Prevailing concepts of c-di-GMP signaling. Contrib. Microbiol. 2009, 16, 161–181. [Google Scholar]
- Römling, U.; Gomelsky, M.; Galperin, M.Y. C-di-GMP: The dawning of a novel bacterial signalling system. Mol. Microbiol. 2005, 57, 629–639. [Google Scholar] [CrossRef]
- Jenal, U.; Reinders, A.; Lori, U.J.A.R.C. Cyclic di-GMP: Second messenger extraordinaire. Nat. Rev. Genet. 2017, 15, 271–284. [Google Scholar] [CrossRef] [Green Version]
- Valentini, M.; Filloux, A. Multiple roles of c-di-GMP signaling in bacterial pathogenesis. Annu. Rev. Microbiol. 2019, 73, 387–406. [Google Scholar] [CrossRef]
- Schirmer, T.; Jenal, U. Structural and mechanistic determinants of c-di-GMP signalling. Nat. Rev. Genet. 2009, 7, 724–735. [Google Scholar] [CrossRef]
- Bordeleau, E.; Fortier, L.C.; Malouin, F.; Burrus, V. c-di-GMP turn-over in clostridium difficile is controlled by a plethora of diguanylate cyclases and phosphodiesterases. PLoS Genet. 2011, 7, e1002039. [Google Scholar] [CrossRef] [Green Version]
- Chou, S.-H.; Galperin, M.Y. Diversity of cyclic Di-GMP-binding proteins and mechanisms. J. Bacteriol. 2015, 198, 32–46. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.Y.; Chin, K.H.; Chuah, M.L.C.; Liang, Z.X.; Wang, A.H.J.; Chou, S.H. The structure and inhibition of a GGDEF diguanylate cyclase complexed with (c-di-GMP)2 at the active site. Acta Crystallogr. Sect. D Biol. Crystallogr. 2011, 67, 997–1008. [Google Scholar] [CrossRef]
- Paul, R.; Abel, S.; Wassmann, P.; Beck, A.; Heerklotz, H.; Jenal, U. Activation of the diguanylate cyclase PleD by phosphorylation-mediated dimerization. J. Biol. Chem. 2007, 282, 29170–29177. [Google Scholar]
- Wassmann, P.; Chan, C.; Paul, R.; Beck, A.; Heerklotz, H.; Jenal, U.; Schirmer, T. Structure of BeF3−-modified response regulator PleD: Implications for diguanylate cyclase activation, catalysis, and feedback inhibition. Structure 2007, 15, 915–927. [Google Scholar] [CrossRef] [Green Version]
- Malone, J.G.; Williams, R.; Christen, M.; Jenal, U.; Spiers, A.J.; Rainey, P.B. The structure-function relationship of WspR, a Pseudomonas fluorescens response regulator with a GGDEF output domain. Microbiology 2007, 153, 980–994. [Google Scholar]
- Ryjenkov, D.A.; Tarutina, M.; Moskvin, O.V.; Gomelsky, M. Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: Insights into biochemistry of the GGDEF protein domain. J. Bacteriol. 2005, 187, 1792–1798. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Mendoza, D.; Coulthurst, S.J.; Humphris, S.; Campbell, E.; Welch, M.; Toth, I.K.; Salmond, G.P.C. A multi-repeat adhesin of the phytopathogen, Pectobacterium atrosepticum, is secreted by a Type I pathway and is subject to complex regulation involving a non-canonical diguanylate cyclase. Mol. Microbiol. 2011, 82, 719–733. [Google Scholar] [CrossRef]
- Hunter, J.L.; Severin, G.B.; Koestler, B.J.; Waters, C.M. The Vibrio cholerae diguanylate cyclase VCA0965 has an AGDEF active site and synthesizes cyclic di-GMP. BMC Microbiol. 2014, 14, 22. [Google Scholar] [CrossRef] [Green Version]
- Petters, T.; Zhang, X.; Nesper, J.; Treuner-Lange, A.; Gomez-Santos, N.; Hoppert, M.; Jenal, U.; Søgaard-Andersen, L. The orphan histidine protein kinase SgmT is a c-di-GMP receptor and regulates composition of the extracellular matrix together with the orphan DNA binding response regulator DigR in Myxococcus xanthus. Mol. Microbiol. 2012, 84, 147–165. [Google Scholar] [CrossRef] [Green Version]
- Duerig, A.; Abel, S.; Folcher, M.; Nicollier, M.; Schwede, T.; Amiot, N.; Giese, B.; Jenal, U. Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Genes Dev. 2009, 23, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.H.; Xue, D.R.; Tian, F.; Hutchins, W.; Yang, C.H.; He, C.Y. Identification of c-di-GMP signaling components in Xanthomonas oryzae and their orthologs in Xanthomonads involved in regulation of bacterial virulence expression. Front. Microbiol. 2019, 10, 1402. [Google Scholar]
- Yang, F.; Qian, S.; Tian, F.; Chen, H.; Hutchins, W.; Yang, C.; He, C. The GGDEF-domain protein GdpX1 attenuates motility, exopolysaccharide production and virulence in Xanthomonas oryzae pv. oryzae. J. Appl. Microbiol. 2016, 120, 1646–1657. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.; Tian, F.; Li, J.; Hutchins, W.; Chen, H.; Yang, F.; Yuan, X.; Cui, Z.; Yang, C.-H.; He, C. Identification of phenolic compounds that suppress the virulence of Xanthomonas oryzae on rice via the type III secretion system. Mol. Plant Pathol. 2016, 18, 555–568. [Google Scholar] [CrossRef]
- Li, H.; Yu, C.; Chen, H.; Tian, F.; He, C. PXO_00987, a putative acetyltransferase, is required for flagellin glycosylation, and regulates flagellar motility, exopolysaccharide production, and biofilm formation in Xanthomonas oryzae pv. oryzae. Microb. Pathog. 2015, 85, 50–57. [Google Scholar] [CrossRef]
- Salzberg, S.L.; Sommer, D.D.; Schatz, M.C.; Phillippy, A.M.; Rabinowicz, P.D.; Tsuge, S.; Furutani, A.; Ochiai, H.; Delcher, A.L.; Kelley, D.; et al. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A. BMC Genom. 2008, 9, 204. [Google Scholar]
- Schäfer, A.; Tauch, A.; Jäger, W.; Kalinowski, J.; Thierbach, G.; Pühler, A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: Selection of defined deletions in the chromosome of Corynebacterium glutamicum. Genetics 1994, 145, 69–73. [Google Scholar]
- Zhou, H.; Zheng, C.; Su, J.; Chen, B.; Fu, Y.; Xie, Y.; Tang, Q.; Chou, S.H.; He, J. Characterization of a natural triple-tandem c-di-GMP riboswitch and application of the riboswitch-based dual-fluorescence reporter. Sci. Rep. 2016, 6, 20871. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Tian, F.; Chen, H.; Hutchins, W.; Yang, C.H.; He, C. The Xanthomonas oryzae pv. oryzae PilZ domain proteins function differentially in cyclic di-GMP binding and regulation of virulence and motility. Appl. Environ. Microbiol. 2015, 81, 4358–4367. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.Y.; Tian, F.; Li, X.T.; Fan, S.S.; Chen, H.M.; Wu, M.S.; Yang, Q.H.; He, C.Y. The degenerate EAL-GGDEF domain protein Filp functions as a cyclic di-GMP receptor and specifically interacts with the PilZ-domain protein PXO_02715 to regulate virulence in Xanthomonas oryzae pv. oryzae. Mol. Plant Microbe Interact. 2014, 27, 578–589. [Google Scholar]
- Lai, T.H.; Kumagai, Y.; Hyodo, M.; Hayakawa, Y.; Rikihisa, Y. The Anaplasma phagocytophilum PleC histidine kinase and PleD diguanylate cyclase two-component system and role of cyclic di-GMP in host cell infection. J. Bacteriol. 2008, 191, 693–700. [Google Scholar] [CrossRef] [Green Version]
- Zou, L.F.; Li, Y.-R.; Chen, G.Y. A non-marker mutagenesis strategy to generate poly-hrp gene mutants in the rice pathogen Xanthomonas oryzae pv. oryzicola. Agric. Sci. China 2011, 10, 1139–1150. [Google Scholar] [CrossRef]
- Guzzo, C.R.; Salinas, R.K.; Andrade, M.O.; Farah, C.S. PilZ protein structure and interactions with PilB and the FimX EAL domain: Implications for control of type IV pilus biogenesis. J. Mol. Biol. 2009, 393, 848–866. [Google Scholar] [CrossRef]
- Shen, Y.; Chern, M.S.; Silva, F.G.; Ronald, P. Isolation of a Xanthomonas oryzae pv. oryzae flagellar operon region and molecular characterization of flhf. Mol. Plant Microbe Interact. 2001, 14, 204–213. [Google Scholar] [CrossRef] [Green Version]
- An, S.; Wu, J.; Zhang, L.H. Modulation of Pseudomonas aeruginosa biofilm dispersal by a cyclic-Di-GMP phosphodiesterase with a putative hypoxia-sensing domain. Appl. Environ. Microbiol. 2010, 76, 8160–8173. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.L.; Feng, J.X.; Li, Q.Q.; Wen, H.X.; Zhou, D.L.; Wilson, T.J.; Dow, J.M.; Ma, Q.S.; Daniels, M.J. Cloning and charac-terization of the rpfC gene of Xanthomonas oryzae pv. oryzae: Involvement in exopolysaccharide production and virulence to rice. Mol. Plant Microbe Interact. 1996, 9, 664–666. [Google Scholar]
- Ray, S.K.; Rajeshwari, R.; Sonti, R.V. Mutants of Xanthomonas oryzae pv. oryzae deficient in general secretory pathway are virulence deficient and unable to secrete xylanase. Mol. Plant Microbe Interact. 2000, 13, 394–401. [Google Scholar] [CrossRef] [Green Version]
- Anantharaman, V.; Aravind, L. Cache—A signaling domain common to animal Ca2+-channel subunits and a class of prokaryotic chemotaxis receptors. Trends Biochem. Sci. 2000, 25, 535–537. [Google Scholar] [CrossRef]
- De, N.; Navarro, M.V.; Raghavan, R.V.; Sondermann, H. Determinants for the activation and autoinhibition of the diguanylate cyclase response regulator WspR. J. Mol. Biol. 2009, 393, 619–633. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, Y.M.; Liu, Y.F.; Fang, M.-C.; Song, W.-L. XCC2731, a GGDEF domain protein in Xanthomonas campestris, is involved in bacterial attachment and is positively regulated by Clp. Microbiol. Res. 2011, 166, 548–565. [Google Scholar] [CrossRef]
- Li, Y.Q.; Wan, D.S.; Huang, S.S.; Leng, F.-F.; Yan, L.; Ni, Y.-Q.; Li, H.-Y. Type IV pili of Acidithiobacillus ferrooxidans are necessary for sliding, twitching motility, and adherence. Curr. Microbiol. 2009, 60, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, I.; Cimdins, A.; Beske, T.; Römling, U. Detailed analysis of c-di-GMP mediated regulation of csgD expression in Salmonella typhimurium. BMC Microbiol. 2017, 17, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Merritt, J.H.; Ha, D.G.; Cowles, K.N.; Lu, W.; Morales, D.K.; Rabinowitz, J.; O’Toole, G.A. Specific control of Pseudomonas aeruginosa surface-associated behaviors by two c-di-GMP diguanylate cyclases. mBio 2010, 1, e00183-10. [Google Scholar]
- Amarasinghe, J.J.; D’Hondt, R.E.; Waters, C.M.; Mantis, N.J. Exposure of Salmonella enterica serovar typhimurium to a protective monoclonal IgA triggers exopolysaccharide production via a diguanylate cyclase-dependent pathway. Infect. Immun. 2012, 81, 653–664. [Google Scholar] [CrossRef] [Green Version]
- Bedrunka, P.; Graumann, P.L. New functions and subcellular localization patterns of c-di-GMP components (GGDEF domain proteins) in B. Subtilis. Front. Microbiol. 2017, 8, 794. [Google Scholar] [CrossRef] [Green Version]
- Paul, R.; Weiser, S.; Amiot, N.C.; Chan, C.; Schirmer, T.; Giese, B.; Jenal, U. Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel diguanylate cyclase output domain. Genes Dev. 2004, 18, 715–727. [Google Scholar]
- Hengge, R. Principles of c-di-GMP signalling in bacteria. Nat. Rev. Genet. 2009, 7, 263–273. [Google Scholar] [CrossRef]
- Römling, U.; Galperin, M.Y.; Gomelsky, M. Cyclic di-GMP: The first 25 years of a universal bacterial second messenger. Microbiol. Mol. Biol. Rev. 2013, 77, 1–52. [Google Scholar] [CrossRef] [Green Version]
- Whitney, J.C.; Colvin, K.M.; Marmont, L.S.; Robinson, H.; Parsek, M.R.; Howell, P.L. Structure of the cytoplasmic region of PelD, a degenerate diguanylate cyclase receptor that regulates exopolysaccharide production in Pseudomonas aeruginosa. J. Biol. Chem. 2012, 287, 23582–23593. [Google Scholar] [CrossRef] [Green Version]
- Edmunds, A.C.; Castiblanco, L.F.; Sundin, G.W.; Waters, C.M. Cyclic di-GMP modulates the disease progression of Erwinia am ylovora. J. Bacteriol. 2013, 195, 2155–2165. [Google Scholar]
- Wu, D.C.; Zamorano-Sánchez, D.; Pagliai, F.A.; Park, J.H.; Floyd, K.A.; Lee, C.K.; Kitts, G.; Rose, C.B.; Bilotta, E.M.; Wong, G.C.L.; et al. Reciprocal c-di-GMP signaling: Incomplete flagellum biogenesis triggers c-di-GMP signaling pathways that promote biofilm formation. PLoS Genet. 2020, 16, e1008703. [Google Scholar] [CrossRef] [Green Version]
- Mattick, J.S. Type IV pili and twitching motility. Annu. Rev. Microbiol. 2002, 56, 289–314. [Google Scholar] [CrossRef]
- Wang, Y.C.; Chin, K.-H.; Tu, Z.L.; He, J.; Jones, C.J.; Sanchez, D.Z.; Yildiz, F.H.; Galperin, M.Y.; Chou, S.-H. Nucleotide binding by the widespread high-affinity cyclic di-GMP receptor MshEN domain. Nat. Commun. 2016, 7, 12481. [Google Scholar] [CrossRef]
- Chin, K.H.; Kuo, W.T.; Yu, Y.J.; Liao, Y.T.; Yang, M.T.; Chou, S.H. Structural polymorphism of c-di-GMP bound to an EAL domain and in complex with a type II PilZ-domain protein. Acta Crystallogr D Biol. Crystallogr. 2012, 68, 1380–1392. [Google Scholar]
- Guzzo, C.R.; Dunger, G.; Salinas, R.K.; Farah, C.S. Structure of the PilZ-FimXEAL-c-di-GMP complex responsible for the regulation of bacterial type IV pilus biogenesis. J. Mol. Biol. 2013, 425, 2174–2197. [Google Scholar]
- Shahbaz, P.M.U.; Qian, S.; Yun, F.; Zhang, J.; Yu, C.; Tian, F.; Yang, F.; Chen, H. Identification of the regulatory components mediated by the cyclic di-GMP receptor Filp and its interactor PilZX3 and functioning in virulence of Xanthomonas oryzae pv. oryzae. Mol. Plant Microbe Interact. 2020, 33. [Google Scholar] [CrossRef]
- Chen, Y.; Xia, J.; Su, Z.; Xu, G.; Gomelsky, M.; Qian, G.; Liu, F. The regulator of type IV pilus synthesis, PilR, from Lysobacter controls antifungal antibiotic production via a cyclic di-GMP pathway. Appl. Environ. Microbiol. 2017, 83, e03397-16. [Google Scholar] [CrossRef] [Green Version]
- Jain, R.; Behrens, A.J.; Kaever, V.; Kazmierczak, B.I. Type IV pilus assembly in Pseudomonas aeruginosa over a broad range of cyclic di-GMP concentrations. J. Bacteriol. 2012, 194, 4285–4294. [Google Scholar] [CrossRef] [Green Version]
- Kazmierczak, B.I.; Lebron, M.B.; Murray, T.S. Analysis of FimX, a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa. Mol. Microbiol. 2006, 60, 1026–1043. [Google Scholar]
- Bordeleau, E.; Purcell, E.B.; Lafontaine, D.A.; Fortier, L.C.; Tamayo, R.; Burrus, V. Cyclic di-GMP riboswitch-regulated type IV pili contribute to aggregation of Clostridium difficile. J. Bacteriol. 2015, 197, 819–832. [Google Scholar] [CrossRef] [Green Version]
- Güvener, Z.T.; Harwood, C.S. Subcellular location characteristics of the Pseudomonas aeruginosa GGDEF protein, WspR, indicate that it produces cyclic-di-GMP in response to growth on surfaces. Mol. Microbiol. 2007, 66, 1459–1473. [Google Scholar] [CrossRef] [Green Version]
- 68. Huangyutitham, V.; Güvener, Z.T.; Harwood, C.S. Subcellular clustering of the phosphorylated WspR response regulator protein stimulates its diguanylate cyclase activity. mBio 2013, 4, e00242-13. [Google Scholar] [CrossRef] [Green Version]
- Segura, R.L.; Águila-Arcos, S.; Ugarte-Uribe, B.; Vecino, A.J.; De La Cruz, F.; Goñi, F.M.; Alkorta, I. Subcellular location of the coupling protein TrwB and the role of its transmembrane domain. Biochim. Biophys. Acta (BBA) Biomembr. 2014, 1838, 223–230. [Google Scholar] [CrossRef]
Strain or Plasmid | Relevant Characteristics a | Source or Reference |
---|---|---|
Strains | ||
Escherichia coli | ||
DH5α | F-φ80(lacZ)ΔlacX74hsdR(rk−, mk+)ΔrecA1398endA1tonA | TransGene Biotech, Beijing, China |
BL21 | F- omp T hsdS (rB− mB−)gal dcm (DE3) | TransGene Biotech, Beijing, China |
Xanthomonas. oryzae pv. oryzae | ||
PXO99A | Wild-type strain, Philippine race 6, Cpr | [32] |
∆gdpX6 | gdpX6 gene deletion mutant derived from PXO99A, Cpr | This study |
Plasmid | ||
pKMS1 | Suicidal vector carrying sacB gene for mutagenesis, Kmr | [33] |
pKgdpX6 | pKMS1 with gdpX6, Km | This study |
pColdSUMO | Protein expression vector with N-terminal SUMO-His6-tag, Apr | Haigene Biotech, Harbin, China |
pCGdpX6GGDEF | pColdSUMO carrying the coding sequence of the GGDEF domain (318 to 495 aa) of GdpX6, Apr | This study |
pCGdpX6GGDEF-E411A | pColdSUMO carrying the coding sequence for the point mutation of E411 in GGDEF domain of gdpX6, Apr | This study |
pCGdpX6GGDEF-D403A | pColdSUMO carrying the coding sequence for the point mutation of D403 in GGDEF domain of gdpX6, Apr | This study |
pETPleD | pET28b containing the PleD coding sequence, Kmr | [34] |
pET28b | pET28b protein expression vector, Kmr | Laboratory collection |
pBgfp | Broad-host range expression vector pBBR1MCS-4 carrying gfp, Apr | [35] |
pBgdpX6gfp | pBgfp carrying full-length gdpX6, Apr | This study |
pBgdpX6E411Agfp | pBgfp carrying full-length gdpX6 with E411 point mutation, Apr | This study |
pBgdpX6D403Agfp | pBgfp carrying full-length gdpX6 with D403 point mutation, Apr | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, W.; Wei, Y.; Fan, S.; Yu, C.; Tian, F.; Wang, Q.; Yang, F.; Chen, H. Diguanylate Cyclase GdpX6 with c-di-GMP Binding Activity Involved in the Regulation of Virulence Expression in Xanthomonas oryzae pv. oryzae. Microorganisms 2021, 9, 495. https://doi.org/10.3390/microorganisms9030495
Yan W, Wei Y, Fan S, Yu C, Tian F, Wang Q, Yang F, Chen H. Diguanylate Cyclase GdpX6 with c-di-GMP Binding Activity Involved in the Regulation of Virulence Expression in Xanthomonas oryzae pv. oryzae. Microorganisms. 2021; 9(3):495. https://doi.org/10.3390/microorganisms9030495
Chicago/Turabian StyleYan, Weiwei, Yiming Wei, Susu Fan, Chao Yu, Fang Tian, Qi Wang, Fenghuan Yang, and Huamin Chen. 2021. "Diguanylate Cyclase GdpX6 with c-di-GMP Binding Activity Involved in the Regulation of Virulence Expression in Xanthomonas oryzae pv. oryzae" Microorganisms 9, no. 3: 495. https://doi.org/10.3390/microorganisms9030495
APA StyleYan, W., Wei, Y., Fan, S., Yu, C., Tian, F., Wang, Q., Yang, F., & Chen, H. (2021). Diguanylate Cyclase GdpX6 with c-di-GMP Binding Activity Involved in the Regulation of Virulence Expression in Xanthomonas oryzae pv. oryzae. Microorganisms, 9(3), 495. https://doi.org/10.3390/microorganisms9030495