Single Cell Analysis of Bistable Expression of Pathogenicity Island 1 and the Flagellar Regulon in Salmonella enterica
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Media and Culture Conditions
2.2. Invasion Assays in HeLa Epithelial Cells
2.3. Flow Cytometry Analysis
2.4. Fluorescence Activated Cell Sorting (FACS) of Live Cells
2.5. Fluorescence Microscopy
2.6. Statistical Analysis
3. Results
3.1. Single Cell Analysis of the Expression Pattern of Invasion and Motility Genes
3.2. Contribution of Virulence and Motility Systems to Invasion of Epithelial Cells In Vitro
3.3. Growth of Salmonella Cells with Different Patterns of SPI-1 and Flagellar Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bumann, D. Examination of Salmonella gene expression in an infected mammalian host using the green fluorescent protein and two-colour flow cytometry. Mol. Microbiol. 2002, 43, 1269–1283. [Google Scholar] [CrossRef] [PubMed]
- Hautefort, I.; Proenca, M.J.; Hinton, J.C.D. Single-copy green fluorescent protein gene fusions allow accurate measurement of Salmonella gene expression in vitro and during infection of mammalian cells. Appl. Environ. Microbiol. 2003, 69, 7480–7491. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Romero, M.A.; Casadesús, J. Contribution of SPI-1 bistability to Salmonella enterica cooperative virulence: Insights from single cell analysis. Sci. Rep. 2018, 8, 14875. [Google Scholar] [CrossRef] [PubMed]
- Saini, S.; Ellermeier, J.R.; Slauch, J.M.; Rao, C.V. The role of coupled positive feedback in the expression of the SPI1 type three secretion system in Salmonella. PLoS Pathog. 2010, 6, e1001025. [Google Scholar] [CrossRef] [PubMed]
- Singer, H.M.; Kühne, C.; Deditius, J.A.; Hughes, K.T.; Erhardt, M. The Salmonella Spi1 virulence regulatory protein HilD directly activates transcription of the flagellar master operon flhDC. J. Bacteriol. 2014, 196, 1448–1457. [Google Scholar] [CrossRef]
- Hamed, S.; Wang, X.; Shawky, R.M.; Emara, M.; Aldridge, P.D.; Rao, C.V. Synergistic action of SPI-1 gene expression in Salmonella enterica serovar Typhimurium through transcriptional crosstalk with the flagellar system. BMC Microbiol. 2019, 19, 211–212. [Google Scholar] [CrossRef]
- Sturm, A.; Heinemann, M.; Arnoldini, M.; Benecke, A.; Ackermann, M.; Benz, M.; Dormann, J.; Hardt, W.-D. The cost of virulence: Retarded growth of Salmonella Typhimurium cells expressing type III secretion system 1. PLoS Pathog. 2011, 7, e1002143. [Google Scholar] [CrossRef]
- Arnoldini, M.; Vizcarra, I.A.; Peña-Miller, R.; Stocker, N.; Diard, M.; Vogel, V.; Beardmore, R.E.; Hardt, W.-D.; Ackermann, M. Bistable expression of virulence genes in Salmonella leads to the formation of an antibiotic-tolerant subpopulation. PLoS Biol. 2014, 12, e1001928. [Google Scholar] [CrossRef]
- Jones, G.W.; Richardson, L.A.; Uhlman, D. The invasion of HeLa cells by Salmonella typhimurium: Reversible and irreversible bacterial attachment and the role of bacterial motility. J. Gen. Microbiol. 1981, 127, 351–360. [Google Scholar] [CrossRef]
- Misselwitz, B.; Barrett, N.; Kreibich, S.; Vonaesch, P.; Andritschke, D.; Rout, S.; Weidner, K.; Sormaz, M.; Songhet, P.; Horvath, P.; et al. Near surface swimming of Salmonella Typhimurium explains target-site selection and cooperative invasion. PLoS Pathog. 2012, 8, e1002810. [Google Scholar] [CrossRef]
- Zarkani, A.A.; López-Pagán, N.; Grimm, M.; Sánchez-Romero, M.A.; Ruiz-Albert, J.; Beuzón, C.R.; Schikora, A. Salmonella heterogeneously expresses flagellin during colonization of plants. Microorganisms 2020, 8, 815. [Google Scholar] [CrossRef] [PubMed]
- Chaban, B.; Hughes, H.V.; Beeby, M. The flagellum in bacterial pathogens: For motility and a whole lot more. Semin. Cell Dev. Biol. 2015, 46, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, F.; Smith, K.D.; Ozinsky, A.; Hawn, T.R.; Yi, E.C.; Goodlett, D.R.; Eng, J.K.; Akira, S.; Underhill, D.M.; Aderem, A.; et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001, 410, 1099–1103. [Google Scholar] [CrossRef] [PubMed]
- Gewirtz, A.T.; Simon, P.O.; Schmitt, C.K.; Taylor, L.J.; Hagedorn, C.H.; O’Brien, A.D.; Neish, A.S.; Madara, J.L. Salmonella typhimurium translocates flagellin across intestinal epithelia, inducing a proinflammatory response. J. Clin. Investig. 2001, 107, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.K.; Cookson, B.T. Mutually repressing repressor functions and multi-layered cellular heterogeneity regulate the bistable Salmonella fliC census. Mol. Microbiol. 2014, 94, 1272–1284. [Google Scholar] [CrossRef]
- Cummings, L.A.; Wilkerson, W.D.; Bergsbaken, T.; Cookson, B.T. In Vivo, fliC expression by Salmonella enterica serovar Typhimurium is heterogeneous, regulated by ClpX, and anatomically restricted. Mol. Microbiol. 2006, 61, 795–809. [Google Scholar] [CrossRef]
- Koirala, S.; Mears, P.; Sim, M.; Golding, I.; Chemla, Y.R.; Aldridge, P.D.; Rao, C.V. A nutrient-tunable bistable switch controls motility in Salmonella enterica serovar Typhimurium. mBio 2014, 5. [Google Scholar] [CrossRef]
- Saini, S.; Slauch, J.M.; Aldridge, P.D.; Rao, C.V. Role of cross talk in regulating the dynamic expression of the flagellar Salmonella pathogenicity island 1 and type 1 fimbrial genes. J. Bacteriol. 2010, 192, 5767–5777. [Google Scholar] [CrossRef]
- Datsenko, K.A.; Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 2000, 97, 6640–6645. [Google Scholar] [CrossRef]
- García-Pastor, L.; Sánchez-Romero, M.A.; Gutiérrez, G.; Puerta-Fernández, E.; Casadesús, J. Formation of phenotypic lineages in Salmonella enterica by a pleiotropic fimbrial switch. PLoS Genet. 2018, 14, e1007677. [Google Scholar] [CrossRef]
- Chubiz, J.E.C.; Golubeva, Y.A.; Lin, D.; Miller, L.D.; Slauch, J.M. FliZ regulates expression of the Salmonella pathogenicity island 1 invasion locus by controlling HilD protein activity in Salmonella enterica serovar Typhimurium. J. Bacteriol. 2010, 192, 6261–6270. [Google Scholar] [CrossRef] [PubMed]
- Mouslim, C.; Hughes, K.T. The effect of cell growth phase on the regulatory cross-talk between flagellar and Spi1 virulence gene expression. PLoS Pathog. 2014, 10, e1003987. [Google Scholar] [CrossRef] [PubMed]
- Diard, M.; Sellin, M.E.; Dolowschiak, T.; Arnoldini, M.; Ackermann, M.; Hardt, W.-D. Antibiotic treatment selects for cooperative virulence of Salmonella typhimurium. Curr. Biol. 2014, 24, 2000–2005. [Google Scholar] [CrossRef] [PubMed]
- Freed, N.E.; Silander, O.K.; Stecher, B.; Böhm, A.; Hardt, W.-D.; Ackermann, M. A simple screen to identify promoters conferring high levels of phenotypic noise. PLoS Genet. 2008, 4, e1000307. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.K.; Cummings, L.A.; Johnson, M.L.; Berezow, A.B.; Cookson, B.T. Regulation of phenotypic heterogeneity permits Salmonella evasion of the host caspase-1 inflammatory response. Proc. Natl. Acad. Sci. USA 2011, 108, 20742–20747. [Google Scholar] [CrossRef]
- Winter, S.E.; Thiennimitr, P.; Nuccio, S.-P.; Haneda, T.; Winter, M.G.; Wilson, R.P.; Russell, J.M.; Henry, T.; Tran, Q.T.; Lawhon, S.D.; et al. Contribution of flagellin pattern recognition to intestinal inflammation during Salmonella enterica serotype Typhimurium infection. Infect. Immun. 2009, 77, 1904–1916. [Google Scholar] [CrossRef]
- Ginocchio, C.; Pace, J.; Galán, J.E. Identification and molecular characterization of a Salmonella typhimurium gene involved in triggering the internalization of Salmonellae into cultured epithelial cells. Proc. Natl. Acad. Sci. USA 1992, 89, 5976–5980. [Google Scholar] [CrossRef]
- Olsen, J.E.; Hoegh-Andersen, K.H.; Casadesús, J.; Rosenkranzt, J.; Chadfield, M.S.; Thomsen, L.E. The role of flagella and chemotaxis genes in host pathogen interaction of the host adapted Salmonella enterica serovar Dublin compared to the broad host range serovar S. Typhimurium. BMC Microbiol. 2013, 13, 67. [Google Scholar] [CrossRef]
- Soutourina, O.A.; Bertin, P.N. Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiol. Rev. 2003, 27, 505–523. [Google Scholar] [CrossRef]
- Dubnau, D.; Losick, R. Bistability in bacteria. Mol. Microbiol. 2006, 61, 564–572. [Google Scholar] [CrossRef]
- García-Pastor, L.; Puerta-Fernández, E.; Casadesús, J. Bistability and phase variation in Salmonella enterica. Biochim. Biophys. Acta 2019, 1862, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Cota, I.; Sánchez-Romero, M.A.; Hernández, S.B.; Pucciarelli, M.G.; Gel Portillo, F.G.; Casadesús, J. Epigenetic control of Salmonella enterica O-antigen chain length: A tradeoff between virulence and bacteriophage resistance. PLoS Genet. 2015, 11, e1005667. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Romero, M.A.; Casadesús, J. Single Cell Analysis of Bistable Expression of Pathogenicity Island 1 and the Flagellar Regulon in Salmonella enterica. Microorganisms 2021, 9, 210. https://doi.org/10.3390/microorganisms9020210
Sánchez-Romero MA, Casadesús J. Single Cell Analysis of Bistable Expression of Pathogenicity Island 1 and the Flagellar Regulon in Salmonella enterica. Microorganisms. 2021; 9(2):210. https://doi.org/10.3390/microorganisms9020210
Chicago/Turabian StyleSánchez-Romero, María Antonia, and Josep Casadesús. 2021. "Single Cell Analysis of Bistable Expression of Pathogenicity Island 1 and the Flagellar Regulon in Salmonella enterica" Microorganisms 9, no. 2: 210. https://doi.org/10.3390/microorganisms9020210
APA StyleSánchez-Romero, M. A., & Casadesús, J. (2021). Single Cell Analysis of Bistable Expression of Pathogenicity Island 1 and the Flagellar Regulon in Salmonella enterica. Microorganisms, 9(2), 210. https://doi.org/10.3390/microorganisms9020210