Age-Dependent Serotype-Associated Case-Fatality Rate in Invasive Pneumococcal Disease in the Autonomous Community of Madrid between 2007 and 2020
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Htar, M.T.; Christopoulou, D.; Schmitt, H.-J. Pneumococcal serotype evolution in Western Europe. BMC Infect. Dis. 2015, 15, 419. [Google Scholar]
- Song, J.-H.; Dagan, R.; Klugman, K.P.; Fritzell, B. The relationship between pneumococcal serotypes and antibiotic resistance. Vaccine 2012, 30, 2728–2737. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, I.; Stevenson, A.; Hsu, K.K.; Pelton, S.I. Evolving picture of invasive pneumococcal disease in massachusetts children: A comparison of disease in 2007–2009 with earlier periods. Pediatr. Infect. Dis. J. 2012, 31, 1016–1021. [Google Scholar] [CrossRef]
- Lipsitch, M.; Siber, G.R. How Can Vaccines Contribute to Solving the Antimicrobial Resistance Problem? mBio 2016, 7, e00428-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricketson, L.J.; Conradi, N.G.; Vanderkooi, O.G.; Kellner, J.D. Changes in the Nature and Severity of Invasive Pneumococcal Disease in Children before and after the Seven-valent and Thirteen-valent Pneumococcal Conjugate Vaccine Programs in Calgary, Canada. Pediatr. Infect. Dis. J. 2018, 37, 22–27. [Google Scholar] [CrossRef] [PubMed]
- B.O.C.M. de 7 de Febrero de 2007. ORDEN 74/2007, de 22 de Enero, del Consejero de Sanidad y Consumo, por la que se Mo-Difica la Orden 9/1997, de 15 de enero, Para el Desarrollo del Decreto 184/1996, de 19 de Diciembre, en lo que se Refiere a las Enfermedades de declarAción Obligatoria, a las Situaciones Epidémicas y Brotes, y al Síndrome de Inmunodeficiencia Adqui-Rida (SIDA) e Infección por Virus de la Inmunodeficiencia Humana; B.O.C.M.: Madrid, Spain, 2007; Number 32; p. 4. [Google Scholar]
- Rückinger, S.; von Kries, R.; Siedler, A.; van der Linden, M. Association of serotype of Streptococcus pneumoniae with risk of severe and fatal outcome. Pediatr. Infect. Dis. J. 2009, 28, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Instituto de Estadística. Comunidad de Madrid. Padrón Anual. Resultados Detallados. Available online: https://www.madrid.org/iestadis/fijas/estructu/demograficas/padron/estructupcrd.htm (accessed on 17 June 2021).
- Latasa, P.; Ordobás, M.; Garrido-Estepa, M.; Gil De Miguel, A.; Sanz, J.; Barranco, M.; Insúa, E.; García-Comas, L. Effectiveness of different vaccine schedules for heptavalent and 13-valent conjugate vaccines against pneumococcal disease in the Community of Madrid. Vaccine 2017, 35, 5381–5387. [Google Scholar] [CrossRef]
- Inverarity, D.; Lamb, K.; Diggle, M.; Robertson, C.; Greenhalgh, D.; Mitchell, T.J.; Smith, A.; Jefferies, J.M.; Clarke, S.C.; McMenamin, J.; et al. Death or survival from invasive pneumococcal disease in Scotland: Associations with serogroups and multilocus sequence types. J. Med. Microbiol. 2011, 60 Pt 6, 793–802. [Google Scholar] [CrossRef]
- Hughes, G.J.; Wright, L.B.; Chapman, K.E.; Wilson, D.; Gorton, R. Serotype-specific differences in short- and longer-term mortality following invasive pneumococcal disease. Epidemiol. Infect. 2016, 144, 2654–2669. [Google Scholar] [CrossRef] [Green Version]
- De Miguel, S.; Domenech, M.; González-Camacho, F.; Sempere, J.; Vicioso, D.; Sanz, J.C.; Comas, L.G.; Ardanuy, C.; Fenoll, A.; Yuste, J. Nationwide trends of invasive pneumococcal disease in Spain (2009–2019) in children and adults during the pneumococcal conjugate vaccine era. Clin. Infect. Dis. Publ. Infect. Dis. Soc. Am. 2020, ciaa1483. [Google Scholar] [CrossRef] [PubMed]
- Houseman, C.; Chapman, K.E.; Manley, P.; Gorton, R.; Wilson, D.; Hughes, G.J. Decreasing case-fatality rate following invasive pneumococcal disease, North East England, 2006–2016. Epidemiol. Infect. 2019, 147, e175. [Google Scholar] [CrossRef] [Green Version]
- Aguinagalde, L.; Corsini, B.; Domenech, A.; Domenech, M.; Cámara, J.; Ardanuy, C.; García, E.; Liñares, J.; Fenoll, A.; Yuste, J. Emergence of amoxicilin-resistant variants of Spain 9V-ST156 Pneumococcal expressing serotype 11A correlates with their ability to evade the host inmune response. PLoS ONE 2015, 10, e0137565. [Google Scholar] [CrossRef] [PubMed]
- Savulescu, C.; Krizova, P.; Lepoutre, A.; Mereckiene, J.; Vestrheim, D.F.; Ciruela, P.; Ordobas, M.; Guevara, M.; McDonald, E.; Morfeldt, E.; et al. Effect of high-valency pneumococcal conjugate vaccines on invasive pneumococcal disease in children in SpIDnet countries: An observational multicentre study. Lancet Respir. Med. 2017, 5, 648–656. [Google Scholar] [CrossRef] [Green Version]
- Jansen, A.G.S.C.; Rodenburg, G.D.; Van Der Ende, A.; Van Alphen, L.; Veenhoven, R.H.; Spanjaard, L.; Sanders, E.A.M.; Hak, E. Invasive Pneumococcal Disease among Adults: Associations among Serotypes, Disease Characteristics, and Outcome. Clin. Infect. Dis. 2009, 49, e23–e29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grabenstein, J.D.; Musey, L.K. Differences in serious clinical outcomes of infection caused by specific pneumococcal serotypes among adults. Vaccine 2014, 32, 2399–2405. [Google Scholar] [CrossRef]
- Weinberger, D.M.; Harboe, Z.B.; Sanders, E.A.M.; Ndiritu, M.; Klugman, K.P.; Rückinger, S.; Dagan, R.; Adegbola, R.A.; Cutts, F.; Johnson, H.L.; et al. Association of Serotype with Risk of Death Due to Pneumococcal Pneumonia: A Meta-Analysis. Clin. Infect. Dis. 2010, 51, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Harboe, Z.B.; Dalby, T.; Weinberger, D.M.; Benfield, T.; Mølbak, K.; Slotved, H.C.; Suppli, C.H.; Konradsen, H.B.; Valentiner-Branth, P. Impact of 13-Valent Pneumococcal Conjugate Vaccination in Invasive Pneumococcal Disease Incidence and Mortality. Clin. Infect. Dis. 2014, 59, 1066–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, S.; Policarpio, M.E.; Wong, K.; Gubbay, J.; Fediurek, J.; Deeks, S. The epidemiology of invasive pneumococcal disease in older adults from 2007 to 2014 in Ontario, Canada: A population-based study. CMAJ Open 2016, 4, E545–E550. [Google Scholar] [CrossRef]
- Selva, L.; Ciruela, P.; Esteva, C.; De Sevilla, M.F.; Codina, G.; Hernandez, S.; Moraga, F.; Garcia-Garcia, J.J.; Planes, A.; Coll, F.; et al. Serotype 3 is a common serotype causing invasive pneumococcal disease in children less than 5 years old, as identified by real-time PCR. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 31, 1487–1495. [Google Scholar] [CrossRef]
- Brueggemann, A.B.; Peto, T.E.A.; Crook, D.W.; Butler, J.C.; Kristinsson, K.G.; Spratt, B.G. Temporal and geographic stability of the serogroup-specific invasive disease potential of Streptococcus pneumoniae in children. J. Infect. Dis. 2004, 190, 1203–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Amo, E.; Brotons, P.; Monsonis, M.; Triviño, M.; Iñigo, M.; Selva, L.; Sa-Leão, R.; Muóoz-Almagro, C. High invasiveness of pneumococcal serotypes included in the new generation of conjugate vaccines. Clin. Microbiol. Infect. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2014, 20, 684–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, J.C.; Hetrich, M.K.; Quesada, M.G.; Sinkevitch, J.N.; Knoll, M.D.; Feikin, D.R.; Zeger, S.L.; Kagucia, E.W.; Cohen, A.L.; Ampofo, K.; et al. Changes in Invasive Pneumococcal Disease Caused by Streptococcus pneumoniae Serotype 1 Following Introduction of PCV10 and PCV13: Findings from the PSERENADE Project. Microorganisms 2021, 9, 696. [Google Scholar] [CrossRef]
- Kobayashi, M.; Misegades, L.; Fleming-Dutra, K.E.; Ahmed, S.; Gierke, R.; Nanduri, S.A.; Healy, J.M.; Nguyen, D.T.; Carvalho, M.D.G.; Pimenta, F.; et al. Pneumococcal Serotype 5 Colonization Prevalence Among Newly Arrived Unaccompanied Children 1 Year After an Outbreak—Texas, 2015. Pediatr. Infect. Dis. J. 2017, 36, 236–238. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, M.A.G.; González, A.V.; Gavín, M.A.O.; Martínez, F.M.; Marín, N.G.; Blázquez, B.R.; Moreno, J.C.S. Invasive pneumococcal disease: Association between serotype, clinical presentation and lethality. Vaccine 2011, 29, 5740–5746. [Google Scholar] [CrossRef]
- Picazo, J.; Ruiz-Contreras, J.; Casado-Flores, J.; Negreira, S.; García-de-Miguel, M.-J.; Hernández-Sampelayo, T.; Otheo, E.; Méndez, C. Expansion of serotype coverage in the universal pediatric vaccination calendar: Short-term effects on age- and serotype-dependent incidence of invasive pneumococcal clinical presentations in Madrid, Spain. Clin. Vaccine Immunol. CVI. 2013, 20, 1524–1530. [Google Scholar] [CrossRef] [Green Version]
- Oligbu, G.; Collins, S.; Djennad, A.; Sheppard, C.L.; Fry, N.K.; Andrews, N.J.; Borrow, R.; Ramsay, M.E.; Ladhani, S.N. Effect of Pneumococcal Conjugate Vaccines on Pneumococcal Meningitis, England and Wales, July 1, 2000–June 30, 2016. Emerg. Infect. Dis. 2019, 25, 1708–1718. [Google Scholar] [CrossRef] [Green Version]
- Latasa, P.; Sanz, J.C.; Ordobás, M.; Barranco, M.D.; Insúa, E.; Gil, Á.; Fernández, A.C.; García-Comas, L. Trends of invasive pneumococcal disease and its serotypes in the Autonomous Community of Madrid. Enferm. Infecc. Micro-Biol. Clin. 2018, 36, 612–620. [Google Scholar]
- Sempere, J.; de Miguel, S.; González-Camacho, F.; Yuste, J.; Domenech, M. Clinical Relevance and Molecular Pathogenesis of the Emerging Serotypes 22F and 33F of Streptococcus pneumoniae in Spain. Front. Microbiol. 2020, 11, 309. [Google Scholar] [CrossRef] [Green Version]
- Yildirim, I.; Hanage, W.P.; Lipsitch, M.; Shea, K.M.; Stevenson, A.; Finkelstein, J.; Huang, S.S.; Lee, G.M.; Kleinman, K.; Pelton, S.I. Serotype specific invasive capacity and persistent reduction in invasive pneumococcal disease. Vaccine 2010, 29, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Backhaus, E.; Berg, S.; Andersson, R.; Ockborn, G.; Malmström, P.; Dahl, M.; Nasic, S.; Trollfors, B. Epidemiology of invasive pneumococcal infections: Manifestations, incidence and case-fatality rate correlated to age, gender and risk factors. BMC Infect. Dis. 2016, 16, 367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagenvoort, G.H.J.; Knol, M.J.; de Melker, H.E.; Vlaminckx, B.J.; van der Ende, A.; Rozenbaum, M.H.; Sanders, E.A. Risk and outcomes of invasive pneumococcal disease in adults with underlying conditions in the post-PCV7 era, The Netherlands. Vaccine 2016, 34, 334–340. [Google Scholar] [CrossRef]
- Bechini, A.; Taddei, C.; Barchielli, A.; Levi, M.; Tiscione, E.; Santini, M.G.; Niccolini, F.; Mechi, M.T.; Panatto, D.; Amicizia, D.; et al. A retrospective analysis of hospital discharge records for S. pneumoniae diseases in the elderly population of Florence, Italy, 2010–2012. Hum. Vaccines Immunother. 2015, 11, 156–165. [Google Scholar] [CrossRef] [Green Version]
- Yildirim, I.; Shea, K.M.; Little, B.A.; Silverio, A.L.; Pelton, S.I.; Members of the Massachusetts Department of Public Health. Vaccination, underlying comorbidities, and risk of invasive pneumococcal disease. Pediatrics 2015, 135, 495–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shigayeva, A.; Rudnick, W.; Green, K.; Chen, D.K.; Demczuk, W.; Gold, W.L.; Johnstone, J.; Kitai, I.; Krajden, S.; Lovinsky, R.; et al. Invasive Pneumococcal Disease Among Immun-ocompromised Persons: Implications for Vaccination Programs. Clin. Infect. Dis. Publ. Infect. Dis. Soc. Am. 2016, 62, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Ciruela, P.; Broner, S.; Izquierdo, C.; Pallarés, R.; Muñoz-Almagro, C.; Hernández, S.; Grau, I.; Domínguez, A.; Jané, M.; Esteva, C.; et al. Indirect effects of paediatric conjugate vaccines on invasive pneumococcal disease in older adults. Int. J. Infect. Dis. 2019, 86, 122–130. [Google Scholar] [CrossRef] [Green Version]
- Sanz, J.C.; de Miguel, S.; Ordobás, M.; Comas, L.G. Serotipos de Streptococcus pneumoniae con tropismo meníngeo en casos de enfermedad neumocócica invasora. Comunidad de Madrid, 2007–2018. Enferm. Infecc. Microbiol. Clínica 2020, 38, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Ahl, J.; Littorin, N.; Forsgren, A.; Odenholt, I.; Resman, F.; Riesbeck, K. High incidence of septic shock caused by Streptococcus pneumoniae serotype 3—A retrospective epidemiological study. BMC Infect. Dis. 2013, 13, 492. [Google Scholar] [CrossRef]
- Navarro-Torné, A.; Dias, J.G.; Hruba, F.; Lopalco, P.L.; Pastore-Celentano, L.; Gauci, A.J.A. Invasive Pneumococcal Disease Study Group Risk Factors for Death from Invasive Pneumococcal Disease, Europe, 2010. Emerg. Infect. Dis. 2015, 21, 417–425. [Google Scholar] [CrossRef]
- Liñares, J.; Ardanuy, C.; Pallares, R.; Fenoll, A. Changes in antimicrobial resistance, serotypes and genotypes in Streptococcus pneumoniae over a 30-year period. Clin. Microbiol. Infect. 2010, 16, 402–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.Y.; Nahm, M.; Moseley, M.A. Clinical Implications of Pneumococcal Serotypes: Invasive Disease Potential, Clinical Presentations, and Antibiotic Resistance. J. Korean Med. Sci. 2013, 28, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Sá-Leão, R.; Pinto, F.; Aguiar, S.; Nunes, S.; Carriço, J.A.; Frazão, N.; Gonçalves-Sousa, N.; Melo-Cristino, J.; de Lencastre, H. and Ramirez, M. Analysis of invasiveness of pneumococcal serotypes and clones circulating in Portugal before widespread use of conjugate vaccines reveals heterogeneous behavior of clones ex-pressing the same serotype. J. Clin. Microbiol. 2011, 49, 1369–1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kronenberg, A.; Zucs, P.; Droz, S.; Mühlemann, K. Distribution and Invasiveness of Streptococcus pneumoniae Serotypes in Switzerland, a Country with Low Antibiotic Selection Pressure, from 2001 to 2004. J. Clin. Microbiol. 2006, 44, 2032–2038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meulen, A.S.; Vesikari, T.; Malacaman, E.A.; Shapiro, S.A.; Dallas, M.J.; Hoover, P.A.; McFetridge, R.; Stek, J.E.; Marchese, R.D.; Hartzel, J.; et al. Safety, tolerability and immunogenicity of 15-valent pneumococcal conjugate vaccine in toddlers previously vaccinated with 7-valent pneumococcal conjugate vaccine. Pediatr. Infect. Dis. J. 2015, 34, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Watson, W.J.; Martin-Montalvo, L.P.J.; Isturiz, R.E.; Reinert, R.R. Immunogenic Compositions Comprising Conjugated Capsular Saccharide Antigens, Kits Comprising the Same and Uses Thereof. WO2017013548A1, 2017. Available online: https://patents.google.com/patent/WO2017013548A1/en (accessed on 17 June 2021).
Cases | Deaths | ||||||
---|---|---|---|---|---|---|---|
N | % | N | % | CI (95%) | OR | CI (95%) | |
Age group | |||||||
0–14 | 1095 | 18.21 | 16 | 2.16 | (0.8–2.2) | 1 | |
15–34 | 329 | 5.47 | 8 | 1.08 | (0.8–4.1) | 1.68 | (0.7–4.0) |
35–50 | 984 | 16.36 | 70 | 9.45 | (5.5–8.7) | 5.16 | (3.0–9.0) |
50–64 | 1186 | 19.72 | 148 | 19.97 | (10.6–14.4) | 9.62 | (5.7–16.2) |
65–74 | 815 | 13.55 | 103 | 13.90 | (10.4–14.9) | 9.76 | (5.7–16.7) |
75–84 | 890 | 14.80 | 182 | 24.56 | (17.8–23.1) | 17.34 | (10.3–29.2) |
≥85 | 714 | 11.87 | 214 | 28.88 | (26.6–33.3) | 28.86 | (17.2–48.5) |
Sex | |||||||
Female | 2577 | 42.86 | 303 | 40.89 | (10.5–13.0) | 1 | |
Male | 3436 | 57.14 | 438 | 59.11 | (11.6–13.9) | 1.10 | (0.9–1.3) |
Clinical presentation | |||||||
Pneumonia | 3239 | 53.87 | 256 | 34.55 | (7.0–8.8) | 1 | |
Bacteraemia | 975 | 16.21 | 97 | 13.09 | (8.1–11.8) | 1.29 | (1.0–1.6) |
Meningitis | 511 | 8.50 | 69 | 9.31 | (10.5–16.5) | 1.82 | (1.4–2.4) |
Other * | 433 | 7.20 | 46 | 6.21 | (7.7–13.5) | 1.39 | (1.0–1.9) |
Sepsis | 855 | 14.22 | 273 | 36.84 | (28.8–35.1) | 5.47 | (4.5–6.6) |
Risk Factors ** | |||||||
No | 2546 | 42.34 | 150 | 20.24 | (5.0–6.8) | 1 | |
Yes | 3467 | 57.66 | 591 | 79.76 | (15.8–18.3) | 3.28 | (2.7–4.0) |
Year | |||||||
2007 | 446 | 7.42 | 59 | 7.96 | (10.1–16.4) | 1 | |
2008 | 533 | 8.86 | 56 | 7.56 | (7.9–13.1) | 0.77 | (0.5–1.1) |
2009 | 574 | 9.55 | 48 | 6.48 | (6.1–10.6) | 0.60 | (0.4–0.9) |
2010 | 410 | 6.82 | 37 | 4.99 | (6.2–11.8) | 0.65 | (0.4–1.0) |
2011 | 422 | 7.02 | 54 | 7.29 | (9.6–16.0) | 0.96 | (0.6–1.4) |
2012 | 330 | 5.49 | 57 | 7.69 | (13.2–21.4) | 1.37 | (0.9–2.0) |
2013 | 297 | 4.94 | 49 | 6.61 | (12.3–20.7) | 1.30 | (0.9–2.0) |
2014 | 373 | 6.20 | 54 | 7.29 | (10.9–18.1) | 1.11 | (0.7–1.7) |
2015 | 419 | 6.97 | 62 | 8.37 | (11.4–18.2) | 1.14 | (0.8–1.7) |
2016 | 447 | 7.43 | 64 | 8.64 | (11.1–17.6) | 1.10 | (0.7–1.6) |
2017 | 586 | 9.75 | 67 | 9.04 | (8.9–14.0) | 0.85 | (0.6–1.2) |
2018 | 515 | 8.56 | 61 | 8.23 | (9.1–14.6) | 0.88 | (0.6–1.3) |
2019 | 554 | 9.21 | 50 | 6.75 | (6.6–11.4) | 0.65 | (0.4–1.0) |
2020 | 107 | 1.78 | 23 | 3.10 | (13.7–29.3) | 1.80 | (1.1–3.1) |
SEROTYPE | CASES (N) | INCIDENCE + | DEATHS (N) | MORTALITY + | FATALITY (%) | ORC (CI 95%) | P-CRUDE | ORA (CI 95%) | P-ADJUSTED |
---|---|---|---|---|---|---|---|---|---|
8 | 990 | 1.09 | 71 | 0.08 | 7.17 | 0.50 (0.4–0.6) | 0.00 * | 0.50 (0.4–0.6) | 0.00 * |
3 | 605 | 0.67 | 113 | 0.12 | 18.68 | 1.75 (1.4–2.2) | 0.00 * | 1.35 (1.1–1.7) | 0.01 * |
19A | 455 | 0.50 | 57 | 0.06 | 12.53 | 1.02 (0.8–1.4) | 0.89 | 1.20 (0.9–1.6) | 0.25 |
1 | 417 | 0.46 | 4 | 0.00 | 0.96 | 0.06 (0.0–0.2) | 0.00 * | 0.16 (0.1–0.4) | 0.00 * |
7F | 286 | 0.32 | 16 | 0.02 | 5.59 | 0.41 (0.2–0.7) | 0.00 * | 0.61 (0.4–1.0) | 0.07 |
22F | 238 | 0.26 | 36 | 0.04 | 15.13 | 1.28 (0.9–1.8) | 0.18 | 1.08 (0.7–1.6) | 0.68 |
12F | 195 | 0.22 | 11 | 0.01 | 5.64 | 0.42 (0.2–0.8) | 0.01 * | 0.49 (0.3–0.9) | 0.02 * |
11A | 179 | 0.20 | 43 | 0.05 | 24.02 | 2.33 (1.6–3.3) | 0.00 * | 1.93 (1.3–2.8) | 0.00 * |
9N | 172 | 0.19 | 29 | 0.03 | 16.86 | 1.46 (1.0–2.2) | 0.07 | 1.28 (0.8–2.0) | 0.25 |
6C | 155 | 0.17 | 29 | 0.03 | 18.71 | 1.66 (1.1–2.5) | 0.02 * | 1.12 (0.7–1.7) | 0.60 |
14 | 132 | 0.15 | 20 | 0.02 | 15.15 | 1.28 (0.8–2.1) | 0.32 | 1.01 (0.6–1.7) | 0.98 |
15A | 131 | 0.14 | 25 | 0.03 | 19.08 | 1.70 (1.1–2.6) | 0.02 * | 1.43 (0.9–2.3) | 0.13 |
23B | 128 | 0.14 | 14 | 0.02 | 10.94 | 0.87 (0.5–1.5) | 0.63 | 1.05 (0.6–1.9) | 0.87 |
10A | 118 | 0.13 | 10 | 0.01 | 8.47 | 0.65 (0.3–1.3) | 0.20 | 0.71 (0.4–1.4) | 0.32 |
5 | 116 | 0.13 | 1 | 0.00 | 0.86 | 0.06 (0.0–0.4) | 0.01 * | 0.16 (0.0–1.2) | 0.07 |
12B | 111 | 0.12 | 6 | 0.01 | 5.41 | 0.40 (0.2–0.9) | 0.03 * | 0.44 (0.2–1.0) | 0.06 |
24F | 111 | 0.12 | 17 | 0.02 | 15.32 | 1.29 (0.8–2.2) | 0.33 | 1.47 (0.8–2.6) | 0.17 |
31 | 105 | 0.12 | 31 | 0.03 | 29.52 | 3.07 (2.0–4.7) | 0.00 * | 1.81 (1.2–2.8) | 0.01 * |
4 | 103 | 0.11 | 12 | 0.01 | 11.65 | 0.94 (0.5–1.7) | 0.83 | 1.12 (0.6–2.1) | 0.72 |
35B | 96 | 0.11 | 18 | 0.02 | 18.75 | 1.66 (1.0–2.8) | 0.06 | 1.28 (0.7–2.2) | 0.38 |
15B | 95 | 0.10 | 11 | 0.01 | 11.58 | 0.93 (0.5–1.8) | 0.82 | 1.08 (0.6–2.1) | 0.83 |
19F | 87 | 0.10 | 19 | 0.02 | 21.84 | 2.01 (1.2–3.4) | 0.01 * | 2.17 (1.3–3.8) | 0.01 * |
23A | 87 | 0.10 | 16 | 0.02 | 18.39 | 1.62 (0.9–2.8) | 0.09 | 1.30 (0.7–2.3) | 0.36 |
33 | 84 | 0.09 | 7 | 0.01 | 8.33 | 0.64 (0.3–1.4) | 0.27 | 0.70 (0.3–1.6) | 0.39 |
9V | 82 | 0.09 | 15 | 0.02 | 18.29 | 1.61 (0.9–2.8) | 0.10 | 1.05 (0.6–1.9) | 0.88 |
Serotype | Deaths | Cases | Mortality * | Fatality (%) |
---|---|---|---|---|
11D | 1 | 1 | 0.01 | 100.00 |
24A | 1 | 2 | 0.01 | 50.00 |
23F | 2 | 5 | 0.03 | 40.00 |
6C | 11 | 36 | 0.16 | 30.56 |
37 | 1 | 4 | 0.01 | 25.00 |
23A | 5 | 22 | 0.07 | 22.73 |
24F | 5 | 22 | 0.07 | 22.73 |
11A | 8 | 38 | 0.12 | 21.05 |
20 | 3 | 15 | 0.04 | 20.00 |
31 | 4 | 20 | 0.06 | 20.00 |
11B | 1 | 5 | 0.01 | 20.00 |
15B | 3 | 15 | 0.04 | 20.00 |
19F | 3 | 15 | 0.04 | 20.00 |
35F | 3 | 15 | 0.04 | 20.00 |
13 | 1 | 6 | 0.01 | 16.67 |
12A | 1 | 6 | 0.01 | 16.67 |
15A | 6 | 37 | 0.09 | 16.22 |
19A | 4 | 28 | 0.06 | 14.29 |
25A | 2 | 14 | 0.03 | 14.29 |
35B | 2 | 14 | 0.03 | 14.29 |
9V | 2 | 14 | 0.03 | 14.29 |
3 | 18 | 130 | 0.27 | 13.85 |
22F | 6 | 45 | 0.09 | 13.33 |
9N | 5 | 41 | 0.07 | 12.20 |
16F | 3 | 28 | 0.04 | 10.71 |
17F | 1 | 10 | 0.01 | 10.00 |
24B | 1 | 11 | 0.01 | 9.09 |
8 | 23 | 340 | 0.34 | 6.76 |
14 | 1 | 16 | 0.01 | 6.25 |
4 | 1 | 17 | 0.01 | 5.88 |
12F | 1 | 20 | 0.01 | 5.00 |
12B | 2 | 47 | 0.03 | 4.26 |
33F | 1 | 25 | 0.01 | 4.00 |
10A | 1 | 29 | 0.01 | 3.45 |
1 | 0 | 1 | 0.00 | 0.00 |
21 | 0 | 5 | 0.00 | 0.00 |
15C | 0 | 10 | 0.00 | 0.00 |
15F | 0 | 1 | 0.00 | 0.00 |
18C | 0 | 4 | 0.00 | 0.00 |
18F | 0 | 1 | 0.00 | 0.00 |
23B | 0 | 24 | 0.00 | 0.00 |
35A | 0 | 2 | 0.00 | 0.00 |
6A | 0 | 2 | 0.00 | 0.00 |
6B | 0 | 1 | 0.00 | 0.00 |
7F | 0 | 7 | 0.00 | 0.00 |
9A | 0 | 1 | 0.00 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Miguel, S.; Latasa, P.; Yuste, J.; García, L.; Ordobás, M.; Ramos, B.; Pérez, M.; Ortiz, M.A.; Sanz, J.C. Age-Dependent Serotype-Associated Case-Fatality Rate in Invasive Pneumococcal Disease in the Autonomous Community of Madrid between 2007 and 2020. Microorganisms 2021, 9, 2286. https://doi.org/10.3390/microorganisms9112286
De Miguel S, Latasa P, Yuste J, García L, Ordobás M, Ramos B, Pérez M, Ortiz MA, Sanz JC. Age-Dependent Serotype-Associated Case-Fatality Rate in Invasive Pneumococcal Disease in the Autonomous Community of Madrid between 2007 and 2020. Microorganisms. 2021; 9(11):2286. https://doi.org/10.3390/microorganisms9112286
Chicago/Turabian StyleDe Miguel, Sara, Pello Latasa, José Yuste, Luis García, María Ordobás, Belén Ramos, Marta Pérez, Maira Alejandra Ortiz, and Juan Carlos Sanz. 2021. "Age-Dependent Serotype-Associated Case-Fatality Rate in Invasive Pneumococcal Disease in the Autonomous Community of Madrid between 2007 and 2020" Microorganisms 9, no. 11: 2286. https://doi.org/10.3390/microorganisms9112286
APA StyleDe Miguel, S., Latasa, P., Yuste, J., García, L., Ordobás, M., Ramos, B., Pérez, M., Ortiz, M. A., & Sanz, J. C. (2021). Age-Dependent Serotype-Associated Case-Fatality Rate in Invasive Pneumococcal Disease in the Autonomous Community of Madrid between 2007 and 2020. Microorganisms, 9(11), 2286. https://doi.org/10.3390/microorganisms9112286