Development and Validation of Two Diagnostic Real-Time PCR (TaqMan) Assays for the Detection of Bordetella avium from Clinical Samples and Comparison to the Currently Available Real-Time TaqMan PCR Assay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Target Genes Selection
2.2. Primers and Probes Design and Reaction Conditions
2.3. Real-Time PCR Conditions
2.4. Bordetella Avium Isolates and Clinical Samples
2.5. Other Bacteria and Viruses
2.6. Nucleic Acid Extraction
2.7. Evaluation of qPCR Assays’ Performance
2.7.1. In-Silico Validation and Evaluation of the Primers and Probes
2.7.2. Analytical Validation and Evaluation of the qPCR Assays
3. Results
3.1. Primers and Probe Design and Reaction Conditions
3.2. In-Silico Validation and Evaluation of the Primers and Probes
3.3. Analytical Validation and Evaluation of the qPCR Assays
- Analytical specificity (Inclusivity and Exclusivity): All three assays, including the currently available recA assay, were able to correctly identify the tested twelve strains of BA. Additionally, they all showed 100% specificity against the panel of microorganisms, including the closely-related B. hinzii, likely to be found in samples submitted for BA diagnosis (Table 3).
- Evaluation of the assays’ diagnostic specificity against clinical samples: All three assays showed 100% diagnostic specificity. All assays were able to detect only the Bordetella avium positive known clinical samples with no cross-reactivity against clinical samples from apparently normal birds.
- Limit of detection: The limit of detection, the lowest concentration of analyte at which 95% of samples for that concentration are classified as positive, was calculated for the three assays by plotting average CT values from three independent runs against log10 of 10-fold serial dilutions (1011–103) of plasmid DNA (copy number/mL). Despite showing different amplification efficiencies, the limit of detection for the three assays was the same (approximately 1 × 103 plasmid DNA Copies/mL) as shown in Table 4.
- Efficiency: Using the slope from the linear equation which was generated from the standard curve, the overall efficiency was estimated to be 101.32% (for the BAV1945 assay) and 105.89% (for the fhaC assay), which is within the acceptable range (90–110%). On the other hand, the amplification efficiency for the recA assay (122.16%) exceeded that acceptable range. (Table 4 and Figure 1 and Figure 2).
- Coefficient of determination (R2): Plotting average CT values from three independent runs against log10 of 10 fold serial dilutions (from 1011–103) of plasmid DNA (copy number/mL) of the three assays generated a linear equation with R2 equals (0.999) and (0.998) for the newly designed assays. At the same time, the recA assay has an R2 equals (0.995). R2 > 0.98 is acceptable for well-designed qPCR assays which indicates the consistency of serial dilutions.
- Dynamic range: The newly developed assays showed a wide dynamic range (from CT 7.81 to CT 34.15) while maintaining amplification linearity of at least nine orders of magnitudes (Table 5 and Figure 1). On the other hand, the dynamic range of the recA assay could not be determined due to the efficiency of the assay having a value (E = 122.16%) over the acceptable limit (E > 110%).
- Repeatability: The intra-assay coefficient of variability (%CV) for the CT-values determined for the BAV1945 assay ranged from (0.01–1.32%) with an average = 0.43%, while the %CV for the fhaC assay ranged from (0.06–1.2%) with an average = 0.61%. On the other hand, the %CV for the recA assay ranged from (0.21–1.53%) with an average = 0.89% (Table 5). These values demonstrate the good repeatability of all three assays (%CV less than 10% is acceptable for intra-assay variability [48]).
- Reproducibility: The inter-assay %CV for the CT-values determined for the BAV1945 assay ranged from (0.19–1.39%) with an average = 0.53%, while the %CV for the fhaC assay ranged from (0.1–1.47%) with an average = 0.55%. On the other hand, the inter-assay %CV for the recA qPCR ranged from (0.61–4.43%) with an average = 2% (Table 5). These values reveal the acceptable reproducibility of all three assays (%CV less than 15% is acceptable for inter-assay variability [48]).
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Luis, M.; Pezzlo, M.T.; Bittencourt, C.E.; Peterson, E.M. Color Atlas of Medical Bacteriology, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Sebaihia, M.; Preston, A.; Maskell, D.J.; Kuzmiak, H.; Connell, T.D.; King, N.D.; Orndorff, P.E.; Miyamoto, D.M.; Thomson, N.R.; Harris, D. Comparison of the genome sequence of the poultry pathogen Bordetella avium with those of B. bronchiseptica, B. pertussis, and B. parapertussis reveals extensive diversity in surface structures associated with host interaction. J. Bacteriol. 2006, 188, 6002–6015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knab, R.; Petersen, H.; Lin, H.-J.; Meixner, M.; Rautenschlein, S.; Jung, A. In vitro characterization and genetic diversity of Bordetella avium field strains. Avian Pathol. 2019, 49, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Karen, B.R.; Jackwood, M.W. Bordetellosis (Turkey Coryza). In Diseases of Poultry, 14th ed.; Wiley Blackwell: Hoboken, NJ, USA, 2020; Volume 2, pp. 860–871. [Google Scholar]
- Jackwood, M.W.; Saif, Y.M. Bordetellosis (turkey coryza). In Diseases of Poultry, 12th ed.; Blackwell Publishing, Ames: Hoboken, NJ, USA, 2008; pp. 774–788. [Google Scholar]
- Jackwood, M.W.; McCarter, S.M.; Brown, T.P. Bordetella avium: An opportunistic pathogen in Leghorn chickens. Avian Dis. 1995, 36, 360–367. [Google Scholar] [CrossRef]
- Clark, S. Current health and industry issues facing the turkey industry. In Proceedings of Annual meeting of the United States Animal Health Association; United States Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Raffel, T.R.; Register, K.B.; Marks, S.A.; Temple, L. Prevalence of Bordetella avium infection in selected wild and domesticated birds in the eastern USA. J. Wildl. Dis. 2002, 38, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Stenzel, T.; Pestka, D.; Tykałowski, B.; Śmiałek, M.; Koncicki, A.; Bancerz-Kisiel, A. Detection of Bordetella avium by TaqMan real-time PCR in tracheal swabs from wildlife birds. Pol. J. Vet. Sci. 2017, 20, 31–36. [Google Scholar]
- Grespan, A.; Camera, O.; Knöbl, T.; Gomes, C.; Felizardo, M.R.; Ferreira, T.; Gobbi, D.; Moreno, M.; Sanches, A.; Ferreira, C. Virulence and molecular aspects of Bordetella avium isolated from cockatiel chicks (Nymphicus hollandicus) in Brazil. Vet. Microbiol. 2012, 160, 530–534. [Google Scholar]
- Harrington, A.T.; Castellanos, J.A.; Ziedalski, T.M.; Clarridge III, J.E.; Cookson, B.T. Isolation of Bordetella avium and novel Bordetella strain from patients with respiratory disease. Emerg. Infect. Dis. 2009, 15, 72. [Google Scholar]
- Vandamme, P.; Hommez, J.; Vancanneyt, M.; Monsieurs, M.; Hoste, B.; Cookson, B.; Von König, C.W.; Kersters, K.; Blackall, P.; Microbiology, E. Bordetella hinzii sp. nov., isolated from poultry and humans. Int. J. Syst. Evol. Microbiol. 1995, 45, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Register, K.B.; Kunkle, R.A. Strain-specific virulence of Bordetella hinzii in poultry. Avian Dis. 2009, 53, 50–54. [Google Scholar]
- Templeton, K.E.; Scheltinga, S.A.; van der Zee, A.; Diederen, B.M.; Kruijssen, A.M.; Goossens, H.; Kuijper, E.; Claas, E.C. Evaluation of real-time PCR for detection of and discrimination between Bordetella pertussis, Bordetella parapertussis, and Bordetella holmesii for clinical diagnosis. J. Clin. Microbiol. 2003, 41, 4121–4126. [Google Scholar] [CrossRef] [Green Version]
- Knorr, L.; Fox, J.D.; Tilley, P.A.; Ahmed-Bentley, J. Evaluation of real-time PCR for diagnosis of Bordetella pertussis infection. BMC Infect. Dis. 2006, 6, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reischl, U.; Lehn, N.; Sanden, G.N.; Loeffelholz, M.J. Real-Time PCR Assay Targeting IS481of Bordetella pertussis and Molecular Basis for Detecting Bordetella holmesii. J. Clin. Microbiol. 2001, 39, 1963–1966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatti, K.M.; Sparks, K.N.; Boney, K.O.; Tondella, M.L. Novel multitarget real-time PCR assay for rapid detection of Bordetella species in clinical specimens. J. Clin. Microbiol. 2011, 49, 4059–4066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Register, K.B.Y.; Andrew, G. Analytical verification of a PCR assay for identification of Bordetella avium. J. Clin. Microbiol. 2005, 43, 5567–5573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savelkoul, P.H.; de Groot, L.E.; Boersma, C.; Livey, I.; Duggleby, C.J.; van der Zeijst, B.A.; Gaastra, W. Identification of Bordetella avium using the polymerase chain reaction. Microb. Pathog. 1993, 15, 207–215. [Google Scholar] [CrossRef]
- Dieffenbach, C.; Lowe, T.; Dveksler, G. General concepts for PCR primer design. PCR Methods Appl. 1993, 3, S30–S37. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. The Nucleotide Database. Available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome (accessed on 31 December 2020).
- Thompson, J.D.; Higgins, D.G.; Gibson, T. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K.; Battistuzzi, F.U. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef] [Green Version]
- Untergasser, A.; Nijveen, H.; Rao, X.; Bisseling, T.; Geurts, R.; Leunissen, J.A. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 2007, 35, W71–W74. [Google Scholar] [CrossRef] [Green Version]
- Bustin, S.; Huggett, J. qPCR primer design revisited. Biomol. Detect. Quantif. 2017, 14, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Ball, C.; Felice, V.; Ding, Y.; Forrester, A.; Catelli, E.; Ganapathy, K. Influences of swab types and storage temperatures on isolation and molecular detection of Mycoplasma gallisepticum and Mycoplasma synoviae. J. Avian Pathol. 2020, 49, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Yavari, C.A.; Newman, J.A.; Bradbury, J.M. Identification of Mycoplasma iowae by colony immunoblotting utilizing monoclonal antibodies. J. Vet. Diagn. Investig. 1997, 9, 357–362. [Google Scholar] [CrossRef] [Green Version]
- Nisar, M.; Thieme, S.; Hafez, H.M.; Sentíes-Cúe, G.; Chin, R.P.; Muhammad, S.P.; Aboubakr, H.; Goyal, S.M.; Nagaraja, K.V. Genetic Diversity of Ornithobacterium rhinotracheale Isolated from Chickens and Turkeys in the United States. Avian Dis. 2020, 64, 324–329. [Google Scholar] [CrossRef]
- Matic, N.A.; Bunce, P.E. Isolation of Bordetella bronchiseptica from blood and a pancreatic abscess. J. Clin. Microbiol. 2015, 53, 1778–1780. [Google Scholar] [PubMed] [Green Version]
- Mbuthia, P.G.; Njagi, L.W.; Nyaga, P.N.; Bebora, L.; Minga, U.; Kamundia, J.; Olsen, J.E. Pasteurella multocida in scavenging family chickens and ducks: Carrier status, age susceptibility and transmission between species. Avian Pathol. 2008, 37, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Sarba, E.J.; Kelbesa, K.A.; Bayu, M.D.; Gebremedhin, E.Z.; Borena, B.M.; Teshale, A. Identification and antimicrobial susceptibility profile of Escherichia coli isolated from backyard chicken in and around ambo, Central Ethiopia. BMC Vet. Res. 2019, 15, 85. [Google Scholar] [CrossRef] [PubMed]
- Nassik, S.; Tallouzt, S.; Karbach, N.; Touzani, C.; Bidoudan, Y.; Aamarine, N.; Hess, C. First report of isolation of Gallibacterium anatis from layer chickens in Morocco with decrease in laying performance. Avian Dis. 2019, 63, 727–730. [Google Scholar] [CrossRef]
- Eriksson, H.; Bagge, E.; Båverud, V.; Fellström, C.; Jansson, D.S. Erysipelothrix rhusiopathiae contamination in the poultry house environment during erysipelas outbreaks in organic laying hen flocks. Avian Pathol. 2014, 43, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Krupa, P.; Bystroń, J.; Bania, J.; Podkowik, M.; Empel, J.; Mroczkowska, A. Genotypes and oxacillin resistance of Staphylococcus aureus from chicken and chicken meat in Poland. Poult. Sci. 2014, 93, 3179–3186. [Google Scholar] [CrossRef]
- Msoffe, P.L.; Chiwanga, G.H.; Cardona, C.J.; Miller, P.J.; Suarez, D.L. Isolation and Characterization of Newcastle Disease Virus from Live Bird Markets in Tanzania. Avian Dis. 2019, 63, 634–640. [Google Scholar] [PubMed]
- Jones, R. Avian reovirus infections. J. Rev. Sci. Et Tech.-Off. Int. Des Epizoot. 2000, 19, 614–619. [Google Scholar] [CrossRef]
- Gelb, J., Jr.; Jackwood, M. Infectious bronchitis. In A Laboratory Manual for the Isolation Identification of Avian Pathogens, 4th ed.; Swayne, D.E., Glisson, J.R., Jackwood, M.W., Pearson, J.E., Reed, W.M., Eds.; American Association of Avian Pathologists: Kennett Square, PA, USA, 1998; pp. 169–174. [Google Scholar]
- Dormitorio, T.V.; Giambrone, J.J.; Macklin, K.S. Detection and isolation of infectious laryngotracheitis virus on a broiler farm after a disease outbreak. Avian Dis. 2013, 57, 803–807. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Raymaekers, M.; Smets, R.; Maes, B.; Cartuyvels, R. Checklist for optimization and validation of real-time PCR assays. J. Clin. Lab. Anal. 2009, 23, 145–151. [Google Scholar] [CrossRef]
- León, C.M.; Muñoz, M.; Hernández, C.; Ayala, M.S.; Flórez, C.; Teherán, A.; Cubides, J.R.; Ramírez, J. Analytical performance of four polymerase chain reaction (PCR) and real time PCR (qPCR) assays for the detection of six Leishmania species DNA in Colombia. Front. Microbiol. 2017, 8, 1907. [Google Scholar] [CrossRef] [PubMed]
- Escobar, D.F.; Diaz-Dinamarca, D.A.; Hernández, C.F.; Soto, D.A.; Manzo, R.A.; Alarcón, P.I.; Pinto, C.H.; Bastias, D.N.; Oberg-Bravo, C.N.; Rojas, R. Development and analytical validation of real-time PCR for the detection of Streptococcus agalactiae in pregnant women. BMC Pregnancy Childbirth 2020, 20, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hoorfar, J.; Cook, N. Critical aspects of standardization of PCR. In PCR Detection of Microbial Pathogens; Springer: Berlin/Heidelberg, Germany, 2003; pp. 51–64. [Google Scholar]
- Kralik, P.; Ricchi, M. A basic guide to real time PCR in microbial diagnostics: Definitions, parameters, and everything. Front. Microbiol. 2017, 8, 108. [Google Scholar]
- OIE. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Chapter 1.1.6 Principles and Methods of Validation of Diagnostic Assays for Infectious Diseases. pp. 72–87. Available online: https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/1.01.06_VALIDATION.pdf (accessed on 2 February 2021).
- Salmitrics. Available online: https://salimetrics.com/calculating-inter-and-intra-assay-coefficients-of-variability/ (accessed on 8 August 2021).
- Mackay, I.M.; Arden, K.E.; Nitsche, A. Real-time PCR in virology. Nucleic Acids Res. 2002, 30, 1292–1305. [Google Scholar] [PubMed] [Green Version]
- Nagy, A.; Vitásková, E.; Černíková, L.; Křivda, V.; Jiřincová, H.; Sedlák, K.; Horníčková, J.; Havlíčková, M. Evaluation of TaqMan qPCR system integrating two identically labelled hydrolysis probes in single assay. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Lu, H.J.I. Genetics; Evolution. Whole genome alignment based one-step real-time RT-PCR for universal detection of avian orthoreoviruses of chicken, pheasant and turkey origins. Infect. Genet. Evol. 2016, 39, 120–126. [Google Scholar] [CrossRef]
- Naguib, M.M.; El-Kady, M.F.; Lüschow, D.; Hassan, K.E.; Arafa, A.-S.; El-Zanaty, A.; Hassan, M.K.; Hafez, H.M.; Grund, C.; Harder, T.C. New real time and conventional RT-PCRs for updated molecular diagnosis of infectious bronchitis virus infection (IBV) in chickens in Egypt associated with frequent co-infections with avian influenza and Newcastle disease viruses. J. Virol. Methods 2017, 245, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Callison, S.A.; Hilt, D.A.; Boynton, T.O.; Sample, B.F.; Robison, R.; Swayne, D.E.; Jackwood, M.W. Development and evaluation of a real-time Taqman RT-PCR assay for the detection of infectious bronchitis virus from infected chickens. J. Virol. Methods 2006, 138, 60–65. [Google Scholar] [CrossRef]
- Abdelwhab, E.; Lüschow, D.; Hafez, H. Development of real-time polymerase chain reaction assay for detection of Ornithobacterium rhinotracheale in poultry. J. Avian Dis. 2013, 57, 663–666. [Google Scholar] [CrossRef] [PubMed]
- Corney, B.; Diallo, I.; Wright, L.; Hewitson, G.; De Jong, A.; Tolosa, X.; Burrell, P.; Duffy, P.; Rodwell, B.; Boyle, D. Rapid and sensitive detection of Avibacterium paragallinarum in the presence of other bacteria using a 5′ Taq nuclease assay: A new tool for diagnosing infectious coryza. Avian Pathol. 2008, 37, 599–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitsuhashi, M.J. Technical report: Part 1. Basic requirements for designing optimal oligonucleotide probe sequences. J. Clin. Lab. Anal. 1996, 10, 277–284. [Google Scholar] [CrossRef]
- Van Pelt-Verkuil, E.; van Belkum, A.; Hays, J.P. PCR primers. Princ. Tech. Asp. PCR Amplif. 2008, 63–90. [Google Scholar] [CrossRef]
- Chuang, L.-Y.; Cheng, Y.-H.; Yang, C.-H. Specific primer design for the polymerase chain reaction. Biotechnol. Lett. 2013, 35, 1541–1549. [Google Scholar] [CrossRef] [PubMed]
- Mitsuhashi, M. Technical report: Part 2. Basic requirements for designing optimal PCR primers. J. Clin. Lab. Anal. 1996, 10, 285–293. [Google Scholar] [CrossRef]
- Gunson, R.; Collins, T.; Carman, W. Practical experience of high throughput real time PCR in the routine diagnostic virology setting. J. Clin. Virol. 2006, 35, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Johnston, A.D.; Lu, J.; Ru, K.-l.; Korbie, D.; Trau, M. PrimerROC: Accurate condition-independent dimer prediction using ROC analysis. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef]
- Rodríguez, A.; Rodríguez, M.; Córdoba, J.J.; Andrade, M.J. Design of Primers and Probes for Quantitative Real-Time PCR Methods. In PCR Primer Design; Basu, C., Ed.; Springer: New York, NY, USA, 2015; pp. 31–56. [Google Scholar] [CrossRef]
- Nolte, F.S.; Caliendo, A.M. Molecular detection and identification of microorganisms Manual of clinical microbiology. In Diagnostic Microbiology and Infectious Disease, 8th ed.; Murray, P.R., Jorgensen, J.H., Pfaller, M.A., Yolken, R.H., Eds.; American Society for Microbiology: Washington, DC, USA, 2003; Volume 47, pp. 234–256. [Google Scholar]
- Ellison, S.L. In defence of the correlation coefficient. Accredit. Qual. Assur. 2006, 11, 146–152. [Google Scholar] [CrossRef]
- Svec, D.; Tichopad, A.; Novosadova, V.; Pfaffl, M.W.; Kubista, M. How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessments. Biomol. Detect. Quantif. 2015, 3, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Maddocks, S.; Jenkins, R. Understanding PCR: A Practical Bench-Top Guide; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Hellemans, J.; Vandesompele, J. Quantitative PCR data analysis–unlocking the secret to successful results. PCR Troubl. Optim. Essent. Guide 2011, 1, 139–150. [Google Scholar]
- Taylor, S.; Wakem, M.; Dijkman, G.; Alsarraj, M.; Nguyen, M.J.M. A practical approach to RT-qPCR—publishing data that conform to the MIQE guidelines. Methods 2010, 50, S1–S5. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Locus Tag | Nucleotide Position * | Proposed Function |
---|---|---|---|
BAV1945 | BAV1945 | 2,059,011–2,078,393 | Putative Adhesion |
fhaC | BAV1961 | 2,094,955–2,096,733 | Hemolysin Activator Protein |
hagA1 | BAV2824 | 3,062,685–3,064,298 | Putative Hemolysin/hemagglutinin accessory protein |
hagB2 | BAV2819 | 3,055,039–3,059,094 | Putative Hemolysin/hemagglutinin |
Target Genomic Region | Oligo | Sequence (5′ to 3′) | No of (bp) | Nt Position * | Amplified Segment Length | Reference |
---|---|---|---|---|---|---|
BAV1945 | F * Primer | GCC ACA ATC TCT TTA GCC TGA | 21 | 2,072,515–2,072,535 | 80 bp | New (This study) |
R ** Primer | CTG GAA GAC AGC AAT AGC C | 19 | 2,072,576–2,072,594 | |||
Probe | FAM CGT CAC GCA TCG TCT CGC CA BHQ | 20 | 2,072,549–2,072,568 | |||
fhaC | F Primer | TT GCT ATT GAC CGC CAA CAG | 20 | 2,095,559–2,095,578 | 114 bp | New (This study) |
R Primer | TTT GAC TCG AAC GCT CTA CC | 20 | 2,095,653–2,095,672 | |||
Probe | FAM AC TTC CCA GTT CAG CGT GTA TGG TGT BHQ | 26 | 2,095,619–2,095,644 | |||
recA | F Primer | CGGTTCGCTGGGCTTGG | 17 | 2,491,504–2,491,520 | 50 bp | [9] |
R Primer | CACGCGGCAGCCCGC | 15 | 2,491,471–2,491,485 | |||
Probe | FAM CATCGCGCTGGGTG BHQ | 14 | 2,491,489–2,491,502 |
Sample No. | Pathogen | Information (Age, spp. and Year) | Sample Type | BAV1945 qPCR Assay | fhaC qPCR Assay | recA qPCR Assay | Acc. to |
---|---|---|---|---|---|---|---|
1 | Bordetella avium | 53 Weeks-Chicken-2017 | Bacterial Isolate a | + | + | + | |
2 | Bordetella avium | 7 weeks-Turkey-2017 | Bacterial Isolate a | + | + | + | |
3 | Bordetella avium | 3 weeks-Turkey-2017 | Bacterial Isolate a | + | + | + | |
4 | Bordetella avium | 6 weeks-Turkey-2018 | Bacterial Isolate a | + | + | + | |
5 | Bordetella avium | 6 weeks-Turkey-2018 | Bacterial Isolate a | + | + | + | |
6 | Bordetella avium | 6 weeks-Turkey-2018 | Bacterial Isolate a | + | + | + | |
7 | Bordetella avium | 6 weeks-Turkey-2018 | Bacterial Isolate a | + | + | + | |
8 | Bordetella avium | 6 weeks-Turkey-2018 | Bacterial Isolate a | + | + | + | |
9 | Bordetella avium | 14 weeks-Turkey-2019 | Bacterial Isolate a | + | + | + | |
10 | Bordetella avium | 20 weeks-Chicken-2020 | Bacterial Isolate a | + | + | + | |
11 | Bordetella avium | Unknown age-Chicken-2020 | Bacterial Isolate a | + | + | + | |
12 | Bordetella avium | 6.5 weeks-Turkey-2020 | Bacterial Isolate a | + | + | + | |
13 | Known positive D | 6.5 weeks-Turkey-2020 | Tracheal Swab b | + | + | + | |
14 | Known positive D | 6 weeks-Turkey-2020 | Tracheal Swab b | + | + | + | |
15 | Known positive D | 6.5 weeks-Turkey-2020 | Tracheal homogenate b | + | + | + | |
16 | Known negative D | 4.5 years-Chicken-2019 | Lung homogenate b | - | - | - | |
17 | Known negative D | 4.5 years-Chicken-2019 | Tracheal homogenate b | - | - | - | |
18 | Known negative D | 1 week-Turkey-2019 | Tracheal homogenate b | - | - | - | |
19 | Known negative D | 1 week-Turkey-2019 | Lung homogenate b | - | - | - | |
20 | Known negative D | Unknown age-Turkey-2019 | Lung homogenate b | - | - | - | |
21 | Known negative D | Unknown age-Turkey-2019 | Lung homogenate b | - | - | - | |
22 | Known negative D | 10 days-Turkey-2019 | Tracheal homogenate b | - | - | - | |
23 | Known negative D | 10 days-Turkey-2019 | Tracheal homogenate b | - | - | - | |
24 | Known negative D | 36 weeks-Chicken-2019 | Lung homogenate b | - | - | - | |
25 | Known negative D | 38 weeks-Chicken-2019 | Lung homogenate b | - | - | - | |
26 | Known negative D | 38 weeks-Chicken-2019 | Tracheal homogenate b | - | - | - | |
27 | Known negative D | 85 weeks-Chicken-2019 | Tracheal homogenate b | - | - | - | |
28 | Known negative D | 85 weeks-Chicken-2019 | Lung homogenate b | - | - | - | |
29 | Known negative D | 2 days-Turkey-2019 | Lung homogenate b | - | - | - | |
30 | Known negative D | 2 days-Turkey-2019 | Tracheal homogenate b | - | - | - | |
31 | Known negative D | 3 weeks-Turkey-2019 | Lung homogenate b | - | - | - | |
32 | Known negative D | 3 weeks-Turkey-2019 | Tracheal homogenate b | - | - | - | |
33 | Mycoplasma gallisepticum | Bacterial Isolate a | - | - | - | [28] | |
34 | Mycoplasma iowae | Bacterial Isolate a | - | - | - | [29] | |
35 | Mycoplasma synoviae | Bacterial Isolate a | - | - | - | [28] | |
36 | Ornithobacterium rhinotracheale | Bacterial Isolate a | - | - | - | [30] | |
37 | Bordetella hinzii | Bacterial Isolate a | - | - | - | [13] | |
38 | Bordetella hinzii | Bacterial Isolate a | - | - | - | [13] | |
39 | Bordetella hinzii | Bacterial Isolate a | - | - | - | [13] | |
40 | Bordetella hinzii | Bacterial Isolate a | - | - | - | [13] | |
41 | Bordetella hinzii | Bacterial Isolate a | - | - | - | [13] | |
42 | Bordetella hinzii | Bacterial Isolate C | - | - | - | [13] | |
43 | Bordetella hinzii | Bacterial Isolate C | - | - | - | [13] | |
44 | Bordetella hinzii | Bacterial Isolate C | - | - | - | [13] | |
45 | Bordetella hinzii | Bacterial Isolate C | - | - | - | [13] | |
46 | Bordetella hinzii | Bacterial Isolate C | - | - | - | [13] | |
47 | Bordetella hinzii | Bacterial Isolate C | - | - | - | [13] | |
48 | Bordetella hinzii | Bacterial Isolate C | - | - | - | [13] | |
49 | Bordetella hinzii | Bacterial Isolate C | - | - | - | [13] | |
50 | Bordetella hinzii | Bacterial Isolate C | - | - | - | [13] | |
51 | Bordetella hinzii | Bacterial Isolate C | - | - | - | [13] | |
52 | Bordetella hinzii | Bacterial Isolate C | - | - | - | [13] | |
53 | Bordetella hinzii | Bacterial Isolate C | - | - | - | [13] | |
54 | Bordetella hinzii | Bacterial Isolate C | - | - | - | [13] | |
55 | Bordetella hinzii | Bacterial Isolate C | - | - | - | [13] | |
56 | Bordetella hinzii | Bacterial Isolate C | - | - | - | [13] | |
57 | Bordetella bronchiseptica | Bacterial Isolate a | - | - | - | [31] | |
58 | Bordetella bronchiseptica | Bacterial Isolate a | - | - | - | [31] | |
59 | Paturella multocida | Bacterial Isolate a | - | - | - | [32] | |
60 | Paturella multocida | Bacterial Isolate a | - | - | - | [32] | |
61 | Escherichia coli | Bacterial Isolate a | - | - | - | [33] | |
62 | Gallibacterium anatis | Bacterial Isolate a | - | - | - | [34] | |
63 | Erysipelas rhusiopathiae | Bacterial Isolate a | - | - | - | [35] | |
64 | Staphylococcus aureus | Bacterial Isolate a | - | - | - | [36] | |
65 | Avian Paramyxovirus-1 (Newcastle Disease) | Viral Isolate a | - | - | - | [37] | |
66 | Avian Reovirus | Viral Isolate a | - | - | - | [38] | |
67 | Infectious Bronchitis | Viral Isolate a | - | - | - | [39] | |
68 | Infectious Bronchitis | Viral Isolate a | - | - | - | [39] | |
69 | Infectious Bronchitis | Viral Isolate a | - | - | - | [39] | |
70 | Infectious Laryngotracheitis | Viral Isolate a | - | - | - | [40] |
Target Gene | Amplicon Size | Limit of Detection | Linear Equation | R2 | Efficiency |
---|---|---|---|---|---|
BAV 1945 | 80 bp | 1000 copy/mL | y = −3.2907x + 37.516 | R2 = 0.999 | E = 101.32% |
fhaC | 115 bp | 1000 copy/mL | y = −3.1885x + 37.135 | R2 = 0.999 | E = 105.89% |
racA | 50 bp | 1000 copy/mL | y = −2.8847x + 36.476 | R2 = 0.995 | E = 122.16% |
Copy Number/mL | Repeatability | Reproducibility | Dynamic Range | ||||
---|---|---|---|---|---|---|---|
Mean CT | SD | CV% | Mean CT | SD | CV% | ||
BAV1945 TaqMan qPCR assay | |||||||
1.0 × 103 | 33.58 | 0.44 | 1.32 | 34.15 | 0.47 | 1.39 | Wide dynamic range while maintaining amplification linearity of at least nine magnitudes (from CT 7.81 to CT 34.15). |
1.0 × 104 | 30.83 | 0.12 | 0.40 | 30.89 | 0.06 | 0.19 | |
1.0 × 105 | 27.62 | 0.10 | 0.35 | 27.60 | 0.08 | 0.27 | |
1.0 × 106 | 24.32 | 0.00 | 0.02 | 24.42 | 0.08 | 0.32 | |
1.0 × 107 | 21.04 | 0.00 | 0.01 | 21.19 | 0.16 | 0.77 | |
1.0 × 108 | 17.81 | 0.05 | 0.30 | 17.88 | 0.08 | 0.44 | |
1.0 × 109 | 14.49 | 0.02 | 0.13 | 14.52 | 0.05 | 0.32 | |
1.0 × 1010 | 11.12 | 0.03 | 0.28 | 11.10 | 0.03 | 0.23 | |
1.0 × 1011 | 7.73 | 0.08 | 1.05 | 7.81 | 0.06 | 0.80 | |
fhaC TaqMan qPCR assay | |||||||
1.0 × 103 | 33.59 | 0.40 | 1.20 | 33.17 | 0.29 | 0.87 | Wide dynamic range while maintaining amplification linearity of at least nine magnitudes (from CT 8.22 to CT 33.17) |
1.0 × 104 | 30.78 | 0.35 | 1.15 | 30.93 | 0.19 | 0.61 | |
1.0 × 105 | 27.86 | 0.03 | 0.10 | 27.95 | 0.07 | 0.24 | |
1.0 × 106 | 24.66 | 0.08 | 0.32 | 24.71 | 0.07 | 0.26 | |
1.0 × 107 | 21.35 | 0.19 | 0.90 | 21.35 | 0.02 | 0.11 | |
1.0 × 108 | 18.10 | 0.04 | 0.23 | 18.12 | 0.02 | 0.10 | |
1.0 × 109 | 14.92 | 0.12 | 0.80 | 14.89 | 0.05 | 0.34 | |
1.0 × 1010 | 11.55 | 0.01 | 0.06 | 11.49 | 0.17 | 1.47 | |
1.0 × 1011 | 8.20 | 0.06 | 0.70 | 8.22 | 0.08 | 0.95 | |
recA TaqMan qPCR assay | |||||||
1.0 × 103 | 33.03 | 0.48 | 1.46 | 32.93 | 1.46 | 4.43 | Could not be determined due to the higher efficiency of the assay (E = 122.20%) over the acceptable range (90–110%). |
1.0 × 104 | 30.95 | 0.07 | 0.23 | 30.16 | 0.84 | 2.79 | |
1.0 × 105 | 28.63 | 0.12 | 0.44 | 28.02 | 0.71 | 2.53 | |
1.0 × 106 | 26.13 | 0.06 | 0.21 | 25.71 | 0.48 | 1.87 | |
1.0 × 107 | 23.13 | 0.13 | 0.55 | 22.84 | 0.33 | 1.45 | |
1.0 × 108 | 19.68 | 0.23 | 1.19 | 19.60 | 0.22 | 1.12 | |
1.0 × 109 | 16.48 | 0.21 | 1.25 | 16.32 | 0.21 | 1.28 | |
1.0 × 1010 | 13.19 | 0.15 | 1.15 | 13.00 | 0.26 | 1.97 | |
1.0 × 1011 | 9.94 | 0.15 | 1.53 | 9.90 | 0.06 | 0.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashish, A.; Sinha, A.; Mekky, A.; Sato, Y.; Macedo, N.R.; El-Gazzar, M. Development and Validation of Two Diagnostic Real-Time PCR (TaqMan) Assays for the Detection of Bordetella avium from Clinical Samples and Comparison to the Currently Available Real-Time TaqMan PCR Assay. Microorganisms 2021, 9, 2232. https://doi.org/10.3390/microorganisms9112232
Hashish A, Sinha A, Mekky A, Sato Y, Macedo NR, El-Gazzar M. Development and Validation of Two Diagnostic Real-Time PCR (TaqMan) Assays for the Detection of Bordetella avium from Clinical Samples and Comparison to the Currently Available Real-Time TaqMan PCR Assay. Microorganisms. 2021; 9(11):2232. https://doi.org/10.3390/microorganisms9112232
Chicago/Turabian StyleHashish, Amro, Avanti Sinha, Amr Mekky, Yuko Sato, Nubia R. Macedo, and Mohamed El-Gazzar. 2021. "Development and Validation of Two Diagnostic Real-Time PCR (TaqMan) Assays for the Detection of Bordetella avium from Clinical Samples and Comparison to the Currently Available Real-Time TaqMan PCR Assay" Microorganisms 9, no. 11: 2232. https://doi.org/10.3390/microorganisms9112232
APA StyleHashish, A., Sinha, A., Mekky, A., Sato, Y., Macedo, N. R., & El-Gazzar, M. (2021). Development and Validation of Two Diagnostic Real-Time PCR (TaqMan) Assays for the Detection of Bordetella avium from Clinical Samples and Comparison to the Currently Available Real-Time TaqMan PCR Assay. Microorganisms, 9(11), 2232. https://doi.org/10.3390/microorganisms9112232