Metabolic Responses to Arsenite Exposure Regulated through Histidine Kinases PhoR and AioS in Agrobacterium tumefaciens 5A
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. Metabolite Extraction
2.3. NMR Analysis, Data Processing, and Statistical Procedures
2.4. LC-MS Instrumentation, Data Acquisition, and Data Processing
2.5. Transcriptomics Data
2.6. Pathway Annotation
3. Results
3.1. Metabolomics Profiles of ΔphoR and ΔaioS Mutants
3.2. Pathway Analysis Using Transcriptomics and Metabolomics Data
3.3. Multi-Omics Mapping of Carbon Metabolism during AsIII Exposure
4. Discussion
4.1. Protein Inactivation by AsIII
4.2. PhoR- and AioS-Based Regulation
4.3. Influences of Other AsIII-responsive Systems
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agency for Toxic Substances and Disease Registry. Priority Substance List; US Department of Health and Human Services: Washington, DC, USA, 2017.
- Kapaj, S.; Peterson, H.; Liber, K.; Bhattacharya, P. Human health effects from chronic arsenic poisoning–A review. J. Environ. Sci. Health Part A 2006, 41, 2399–2428. [Google Scholar] [CrossRef]
- Naujokas, M.F.; Anderson, B.; Ahsan, H.; Vasken Aposhian, H.; Graziano, J.H.; Thompson, C.; Suk, W.A. The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem. Environ. Health Perspect. 2013, 121, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Inskeep, W.P.; McDermott, T.R. Arsenic (V)/(III) cycling in soils and natural waters: Chemical and microbiological processes. In Environmental Chemistry of Arsenic; Frankenberger, W.F., Macy, J.M., Eds.; Marcell Dekker: New York, NY, USA, 2001; pp. 183–215. [Google Scholar]
- Kashyap, D.R.; Botero, L.M.; Franck, W.L.; Hassett, D.J.; McDermott, T.R. Complex regulation of arsenite oxidation in Agrobacterium tumefaciens. J. Bacteriol. 2006, 188, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Liu, M.; Kim, E.-H.; Maaty, W.S.; Bothner, B.; Lei, B.; Rensing, C.; Wang, G.; McDermott, T.R. A periplasmic arsenite-binding protein involved in regulating arsenite oxidation. Environ. Microbiol. 2012, 14, 1624–1634. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.S.; Heinemann, J.; Bothner, B.; Rensing, C.; McDermott, T.R. Integrated co-regulation of bacterial arsenic and phosphorus metabolisms. Environ. Microbiol. 2012, 14, 3097–3109. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Kang, Y.S.; Alowaifeer, A.; Shi, K.; Fan, X.; Wang, L.; Jetter, J.; Bothner, B.; Wang, G.; McDermott, T.R. Phosphate starvation response controls genes required to synthesize the phosphate analog arsenate. Environ. Microbiol. 2018, 20, 1782–1793. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.; Wanner, B. Global regulation by the seven-component Pi signaling system. Curr. Opin. Microbiol. 2010, 13, 198–203. [Google Scholar] [CrossRef]
- Wanner, B.L. Phosphorus assimilation and control of the phosphate regulon. In Escherichia Coli and Salmonella: Cellular and Molecular Biology; ASM Press: Washington, DC, USA, 1996; Volume 41, pp. 1357–1381. [Google Scholar]
- Rawle, R.A.; Kang, Y.-S.; Bothner, B.; Wang, G.; McDermott, T.R. Transcriptomics analysis defines global cellular response of Agrobacterium tumefaciens 5A to arsenite exposure regulated through the histidine kinases PhoR and AioS. Environ. Microbiol. 2019, 21, 2659–2676. [Google Scholar] [CrossRef]
- Tokmina-Lukaszewska, M.; Shi, Z.; Tripet, B.; McDermott, T.R.; Copié, V.; Bothner, B.; Wang, G. Metabolic response of Agrobacterium tumefaciens 5A to arsenite. Environ. Microbiol. 2017, 19, 710–721. [Google Scholar] [CrossRef]
- Wang, Q.; Qin, D.; Zhang, S.; Wang, L.; Li, J.; Rensing, C.; McDermott, T.R.; Wang, G. Fate of arsenate following arsenite oxidation in Agrobacterium tumefaciens GW4. Environ. Microbiol. 2015, 17, 1926–1940. [Google Scholar] [CrossRef]
- Weljie, A.M.; Newton, J.; Mercier, P.; Carlson, E.; Slupsky, C.M. Targeted profiling: Quantitative analysis of 1 H NMR metabolomics data. Anal. Chem. 2006, 78, 4430–4442. [Google Scholar] [CrossRef]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, W486–W494. [Google Scholar] [CrossRef] [PubMed]
- Guijas, C.; Montenegro-Burke, J.R.; Domingo-Almenara, X.; Palermo, A.; Warth, B.; Hermann, G.; Koellensperger, G.; Huan, T.; Uritboonthai, W.; Aisporna, A.E.; et al. METLIN: A technology platform for identifying knowns and unknowns. Anal. Chem. 2018, 90, 3156–3164. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.; O’Maille, G.; Want, E.; Qin, C.; Trauger, S.; Brandon, T.; Theodore, R.B.; Darlene, E.C.; Abagyan, R.; Siuzdak, G. METLIN: A metabolite mass spectral database. Ther. Drug Monit. 2005, 27, 747–751. [Google Scholar] [CrossRef] [PubMed]
- Huan, T.; Forsberg, E.M.; Rinehart, D.; Johnson, C.H.; Ivanisevic, J.; Benton, H.P.; Fang, M.; Aisporna, A.; Hilmers, B.; Poole, F.L.; et al. Systems biology guided by XCMS Online metabolomics. Nat. Methods 2017, 14, 461–462. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Bray, N.L.; Pimentel, H.; Melsted, P.; Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 2016, 34, 525–527. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. Data, information, knowledge and principle: Back to metabolism in KEGG. Nucleic Acids Res. 2014, 42, 199–205. [Google Scholar] [CrossRef]
- Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999, 27, 29–34. [Google Scholar] [CrossRef]
- Van Bogelen, R.A.; Olson, E.R.; Wanner, B.L.; Neidhardt, F.C. Global analysis of proteins synthesized during phosphorus restriction in Escherichia coli. J. Bacteriol. 1996, 178, 4344–4366. [Google Scholar] [CrossRef]
- Ishige, T.; Krause, M.; Bott, M.; Wendisch, V.F.; Sahm, H. The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. J. Bacteriol. 2003, 185, 4519–4529. [Google Scholar] [CrossRef]
- Schneider, B.L.; Hernandez, V.J.; Reitzer, L. Putrescine catabolism is a metabolic response to several stresses in Escherichia coli. Mol. Microbiol. 2013, 88, 537–550. [Google Scholar] [CrossRef] [PubMed]
- Bergquist, E.R.; Fischer, R.J.; Sugden, K.D.; Martin, B.D. Inhibition by methylated organo-arsenicals of the respiratory 2-oxo-acid dehydrogenases. J. Organomet. Chem. 2009, 694, 973–980. [Google Scholar] [CrossRef] [PubMed]
- George, G.N.; Bray, R.C. Reaction of arsenite ions with the molybdenum center of milk xanthine oxidase. Biochemistry 1983, 22, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Hille, R.; Steward, R.C.; Fee, J.A.; Massey, V. The interaction of arsenite with xanthine oxidase. J. Biochem. 1983, 258, 4849–4856. [Google Scholar]
- Baker-Austin, C.; Dopson, M.; Wexler, M.; Sawers, R.G.; Stemmler, A.; Rosen, B.P.; Bond, P.L. Extreme arsenic resistance by the acidophilic archaeon Ferroplasma acidarmanus Fer1. Extremophiles 2007, 11, 425–434. [Google Scholar] [CrossRef]
- Bryan, C.G.; Marchal, M.; Battaglia-Brunet, F.; Kugler, V.; Lemaitre-Guillier, C.; Lièvremont, D.; Bertin, P.N.; Arsene-Ploetze, F. Carbon and arsenic metabolism in Thiomonas strains: Differences revealed diverse adaptation processes. BMC Microbiol. 2009, 9, 1–12. [Google Scholar] [CrossRef]
- Cleiss-Arnold, J.; Koechler, S.; Proux, C.; Fardeau, M.-L.; Dillies, M.-A.; Coppee, J.-Y.; Arsene-Ploetze, F.; Bertin, P.N. Temporal transcriptomic response during arsenic stress in Herminiimonas arsenicoxydans. BMC Genom. 2010, 11, 709. [Google Scholar] [CrossRef]
- Jain, R.; Adhikary, H.; Jha, S.; Jha, A.; Kumar, G.N. Remodulation of central carbon metabolic pathway in response to arsenite exposure in Rhodococcus sp. strain NAU-1. Microb. Biotechnol. 2012, 5, 764–772. [Google Scholar] [CrossRef]
- Weiss, S.; Carapito, C.; Cleiss, J.; Koechler, S.; Turlin, E.; Coppee, J.Y.; Heymann, M.; Kugler, V.; Stauffert, M.; Cruveiller, S.; et al. Enhanced structural and functional genome elucidation of the arsenite-oxidizing strain Herminiimonas arsenicoxydans by proteomics data. Biochimie 2009, 91, 192–203. [Google Scholar] [CrossRef]
- Shen, S.; Li, X.-F.; Cullen, W.R.; Weinfeld, M.; Le, X.C. Arsenic binding to proteins. Chem. Rev. 2013, 113, 7769–7792. [Google Scholar] [CrossRef] [PubMed]
- Boer, D.R.; Thapper, A.; Brondino, C.D.; Romão, M.J.; Moura, J.J.G. X-ray crystal structure and EPR spectra of arsenite-inhibited Desulfovibrio gigas aldehyde dehydrogenase: A member of the xanthine oxidase family. J. Am. Chem. Soc. 2004, 126, 8614–8615. [Google Scholar] [CrossRef]
- Chen, W.; Taylor, N.L.; Chi, Y.; Millar, A.H.; Lambers, H.; Finnegan, P.M. The metabolic acclimation of Arabidopsis thaliana to arsenate is sensitized by the loss of mitochondrial lipoamide dehydrogenase 2, a key enzyme in oxidative metabolism. Plant Cell Environ. 2014, 37, 684–695. [Google Scholar] [CrossRef] [PubMed]
- Schiller, C.M.; Fowler, B.A.; Woods, J.S. Effects of arsenic on pyruvate dehydrogenase activation. Environ. Health Perspect. 1977, 19, 205–207. [Google Scholar] [CrossRef]
- Redestig, H.; Costa, I.G. Detection and interpretation of metabolite-transcript coresponses using combined profiling data. Bioinformatics 2011, 27, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.T.; Ligterink, W.; Hilhorst, H.W.M. Metabolite profiling and associated gene expression reveal two metabolic shifts during the seed-to-seedling transition in Arabidopsis thaliana. Plant Mol. Biol. 2017, 95, 481–496. [Google Scholar] [CrossRef]
- Zelezniak, A.; Sheridan, S.; Patil, K.R. Contribution of network connectivity in determining the relationship between gene expression and metabolite concentration changes. PLoS Comput. Biol. 2014, 10, e1003572. [Google Scholar] [CrossRef]
- Haas, R.; Zelezniak, A.; Iacovacci, J.; Kamrad, S.; Townsend, S.; Ralser, M. Designing and interpreting ‘multi-omic’ experiments that may change our understanding of biology. Curr. Opin. Syst. Biol. 2017, 6, 37–45. [Google Scholar] [CrossRef]
- Yugi, K.; Kubota, H.; Hatano, A.; Kuroda, S. Trans-omics: How to reconstruct biochemical networks across multiple ‘omic’ layers. Trends Biotechnol. 2016, 34, 276–290. [Google Scholar] [CrossRef]
- Kang, Y.S.; Brame, K.; Jetter, J.; Bothner, B.B.; Wang, G.; Thiyagarajan, S.; McDermott, T.R. Regulatory activities of four ArsR proteins in Agrobacterium tumefaciens 5A. Appl. Environ. Microbiol. 2016, 82, 3471–3480. [Google Scholar] [CrossRef]
Metabolite | ID Method | WT(+As)/WT(-As) | △phoR/WT | △aioS/WT | Regulation | ||
---|---|---|---|---|---|---|---|
No AsIII | + AsIII | No AsIII | + AsIII | Genes Involved | |||
Beta-Alanine | NMR | 1.5 | −1.2 | −2.0 | 1.1 | −1.3 | PhoR, AioS |
Betaine | MS-MS | −4.6 | −6.3 | −10.2 | −2.0 | PhoR, AioS | |
D-Mannosamine a | STD | −1.5 | 2.6 | 4.1 | 3.4 * | PhoR, AioS | |
D-sorbitol | MS-MS | −1.5 | 9.8 | 10.6 | 8.5 | 4.7 | PhoR, AioS |
L-Alanine | NMR, MS-MS | 1.3 | −1.1 | 1.2 | −1.1 | −1.2 | PhoR, AioS |
L-Proline | MS-MS, STD | −1.4 * | −3.4 | −2.2 | −2.3 | PhoR, AioS | |
L-Valine | NMR | 2.2 | 1.6 | 1.4 | 1.1 | −1.3 | PhoR, AioS |
Lactate | NMR | 2.0 | 2.0 | 1.5 | 1.3 | −1.2 | PhoR, AioS |
Maltotriose | MS-MS | 2.1 | −4.6 | −3.9 | −2.0 | PhoR, AioS | |
Mannitol | NMR | −1.2 * | 3.7 | 10.8 | −2.1 | 1.8 | PhoR, AioS |
Sucrose | MS-MS | 1 * | −2.7 | −3.4 | −1.7 | PhoR, AioS | |
Adenosine b | STD | −7.7 | −6.0 | −2.3 | PhoR, AioS | ||
Palatinose | STD | −3.1 | −2.0 | PhoR, AioS | |||
L-Arginine | MS-MS, STD | 1.1 * | −2.1 | −2.3 | PhoR, AioS | ||
L-Glutamate | MS-MS, NMR | 1.8 | 2.9 | −1.8 | PhoR, AioS | ||
L-Tryptophan | MS-MS | 1.4 * | −1.9 | −1.6 | PhoR, AioS | ||
D-Raffinose c | STD | 2.9 * | −6.2 | −4.9 | PhoR, AioS | ||
Cytosine | MS-MS, NMR | 2.4 | −2.0 | −1.7 | PhoR | ||
Glycerophosphocholine | MS-MS | −1.6 | 2.1 | 3.5 | PhoR | ||
L-Glutamine | STD, NMR | 3.3 | −2.2 | −3.1 | PhoR | ||
L-Isoleucine | NMR | 1.6 | −1.2 | −1.5 | PhoR | ||
L-Leucine | NMR | 1.7 | −1.4 | −1.3 | PhoR | ||
L-Phenylalanine | NMR, MS-MS | 1.5 | −1.2 | −2.9 | PhoR | ||
Nicotinate | NMR | 1.3 | −1.4 | −1.3 | PhoR | ||
Putrescine | NMR | 1.5 | −1.6 | −1.1 | PhoR | ||
Ribose | NMR, MS-MS, STD | 1.3 | −1.4 | −1.4 | PhoR | ||
Maltose | NMR, STD | 1.3 * | 1.8 | PhoR | |||
Ala-Gly | STD | −4.8 | PhoR | ||||
5-oxoproline | MS-MS | 1.8 | −2.7 | PhoR | |||
Isonicotinate | MS-MS | 2.4 | −1.7 | PhoR | |||
L-Lysine | MS-MS, NMR, STD | 1.5 | −1.7 | PhoR | |||
Stachyose | STD | 1.8 | −1.7 * | PhoR | |||
Oxypurinol | NMR | 3.4 | 6.1 | 1.1 | AioS | ||
Hypoxanthine | MS-MS, STD | 8.0 * | 6.3 | AioS | |||
Maltohexaose | MS-MS | 1.1 * | 1.7 | AioS | |||
Maltotetraose | MS-MS | 1.9 | 1.6 | AioS | |||
Maltopentaose | MS-MS | 1.5 * | −1.7 | AioS |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rawle, R.A.; Tokmina-Lukaszewska, M.; Shi, Z.; Kang, Y.-S.; Tripet, B.P.; Dang, F.; Wang, G.; McDermott, T.R.; Copie, V.; Bothner, B. Metabolic Responses to Arsenite Exposure Regulated through Histidine Kinases PhoR and AioS in Agrobacterium tumefaciens 5A. Microorganisms 2020, 8, 1339. https://doi.org/10.3390/microorganisms8091339
Rawle RA, Tokmina-Lukaszewska M, Shi Z, Kang Y-S, Tripet BP, Dang F, Wang G, McDermott TR, Copie V, Bothner B. Metabolic Responses to Arsenite Exposure Regulated through Histidine Kinases PhoR and AioS in Agrobacterium tumefaciens 5A. Microorganisms. 2020; 8(9):1339. https://doi.org/10.3390/microorganisms8091339
Chicago/Turabian StyleRawle, Rachel A., Monika Tokmina-Lukaszewska, Zunji Shi, Yoon-Suk Kang, Brian P. Tripet, Fang Dang, Gejiao Wang, Timothy R. McDermott, Valerie Copie, and Brian Bothner. 2020. "Metabolic Responses to Arsenite Exposure Regulated through Histidine Kinases PhoR and AioS in Agrobacterium tumefaciens 5A" Microorganisms 8, no. 9: 1339. https://doi.org/10.3390/microorganisms8091339
APA StyleRawle, R. A., Tokmina-Lukaszewska, M., Shi, Z., Kang, Y.-S., Tripet, B. P., Dang, F., Wang, G., McDermott, T. R., Copie, V., & Bothner, B. (2020). Metabolic Responses to Arsenite Exposure Regulated through Histidine Kinases PhoR and AioS in Agrobacterium tumefaciens 5A. Microorganisms, 8(9), 1339. https://doi.org/10.3390/microorganisms8091339