Immunomodulatory Activity of Lactococcus lactis GCWB1176 in Cyclophosphamide-Induced Immunosuppression Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microbial Strain and Culture Conditions
2.3. Measurement of Live Cells
2.4. Safety and Antimicrobial Susceptibility Testing (E-Test)
2.5. Cell Culture and Sample Treatment
2.6. Isolation of Splenocytes
2.7. Measurement of Cell Cytotoxicity and Proliferation
2.8. Preparation of the Cyclophosphamide-Induced Immunosuppression Model in Mice
2.9. Assay for Macrophage Phagocytosis
2.10. Assay of NK Cell Activity
2.11. Measurement of Cytokine Levels
2.12. Nitrite Assay
2.13. Western Blotting
2.14. Statistical Analysis
3. Results
3.1. Lactococcus lactis GCWB1176 Is a Safe Strain of Probiotics
3.2. The Effect of GCWB1176 on Body Weight and Organ Indices
3.3. Effects of GCWB1176 on Cytokine Levels, NK Cell Activity, and Lymphocyte Proliferation in a Mouse Model of CTX-Induced Immunosuppression
3.4. Effects of GCWB1176 on Viability and Macrophage Phagocytosis
3.5. Effects of GCWB1176 on Cytokine Productions in Mouse Splenocytes and RAW264.7 Macrophages
3.6. Effects of GCWB1176 on NF-κB and iNOS Activation in RAW264.7 Macrophages
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Sattler, S. The role of the immune system beyond the fight against infection. Adv. Exp. Med. Biol. 2017, 1003, 3–14. [Google Scholar] [PubMed]
- McNeela, E.A.; Mills, K.H. Manipulating the immune system: Humoral versus cell-mediated immunity. Adv. Drug Deliv. Rev. 2001, 51, 43–54. [Google Scholar] [CrossRef]
- Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen recognition and innate immunity. Cell 2006, 124, 783–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanneganti, T.D.; Lamkanfi, M.; Amer, A.O. Innate immune pathways in host defense. Mediat. Inflamm. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Cavaillon, J.M. Cytokines and macrophages. Biomed. Pharmacother. 1994, 48, 445–453. [Google Scholar] [CrossRef]
- Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer 2009, 9, 361–371. [Google Scholar] [CrossRef]
- Moncada, S.; Palmer, R.M.; Higgs, E.A. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 1991, 43, 109–142. [Google Scholar]
- Ghosh, S.; May, M.J.; Kopp, E.B. NF-kappa B and Rel proteins: Evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 1998, 16, 225–260. [Google Scholar] [CrossRef]
- Xu, X.; Malave, A. P38 MAPK, but not p42/p44 MAPK mediated inducible nitric oxide synthase expression in C6 glioma cells. Life Sci. 2000, 67, 3221–3230. [Google Scholar] [CrossRef]
- Eghrari-Sabet, J.S.; Hartley, A.H. Sweet’s syndrome: An immunologically mediated skin disease? Ann. Allergy 1994, 72, 125–128. [Google Scholar]
- Xiao, J.H.; Liang, Z.Q.; Liu, A.Y.; Chen, D.X.; Xiao, Y.; Liu, J.W.; Wan, W.H. Immunosuppressive activity of polysaccharides from Cordyceps gunnii mycelia in mice in vivo/vitro. J. Food Agric. Environ. 2004, 2, 69–73. [Google Scholar]
- Wang, H.; Wang, M.; Chen, J.; Tang, Y.; Dou, J.; Yu, J.; Xi, T.; Zhou, C. A polysaccharide from Strongylocentrotus nudus eggs protects against myelosuppression and immunosuppression in cyclophosphamide–treated mice. Int. Immunopharmacol. 2011, 11, 1946–1953. [Google Scholar] [CrossRef] [PubMed]
- Mei, Y.; Chen, H.; Zhang, J.; Zhang, X.; Liang, Y. Protective effect of chitooligosaccharides against cyclophosphamide–induced immunosuppression in mice. Int. J. Biol. Macromol. 2013, 62, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Wohlgemuth, S.; Loh, G.; Blaut, M. Recent developments and perspectives in the investigation of probiotic effects. Int. J. Med. Microbiol. 2010, 300, 3–10. [Google Scholar] [CrossRef]
- Popova, M.; Molimard, P.; Courau, S.; Crociani, J.; Dufour, C.; Le Vacon, F.; Carton, T. Beneficial effects of probiotics in upper respiratory tract infections and their mechanical actions to antagonize pathogens. J. Appl. Microbiol. 2012, 113, 1305–1318. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations/World Health Organization: FAO/WHO Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. Available online: http://www.fao.org/3/a-a0512e.pdf (accessed on 20 October 2018).
- Kechagia, M.; Basoulis, D.; Konstantopoulou, S.; Dimitriadi, D.; Gyftopoulou, K.; Skarmoutsou, N.; Fakiri, E.M. Health benefits of probiotics: A review. Int. Sch. Res. Notices 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Gill, H.S.; Rutherfurd, K.J.; Prasad, J.; Gopal, P.K. Enhancement of natural and acquired immunity by Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019). Br. J. Nutr. 2000, 83, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Prescott, L.M.; Harley, J.P.; Klein, D.A. Microbiology, 5th ed.; McGraw-Hill: Singapore, 2003; pp. 529–533. [Google Scholar]
- Sim, I.; Park, K.T.; Kwon, G.; Koh, J.H.; Lim, Y.H. Probiotic Potential of Enterococcus faecium Isolated from Chicken Cecum with Immunomodulating Activity and Promoting Longevity in Caenorhabditis elegans. J. Microbiol. Biotechnol. 2018, 28, 883–892. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.; Zhang, R.; Duan, G.; Wang, C.; Sun, N.; Zhang, L.; Chen, S.; Fan, Q.; Xi, Y. Production and delivery of Helicobacter pylori NapA in Lactococcus lactis and its protective efficacy and immune modulatory activity. Sci. Rep. 2018, 8, 6435. [Google Scholar] [CrossRef] [Green Version]
- Jung, I.S.; Jeon, M.G.; Oh, D.S.; Jung, Y.J.; Kim, H.S.; Bae, D.H.; Kim, Y.J.; Lee, G.E.; Choi, C.Y.; Hwang, Y.P. Micronized, heat-treated Lactobacillus plantarum LM1004 alleviates cyclophosphamide-induced immune suppression. J. Med. Food 2019, 22, 896–906. [Google Scholar] [CrossRef]
- Lee, S.; Song, I.H.; Park, Y.S. In vivo and in vitro study of immunostimulation by Leuconostoc lactis-produced gluco-oligosaccharides. Molecules 2019, 24, 3994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Pan, D.; Li, H.; Sun, Y.; Zeng, X.; Yan, B. Antioxidant and immunomodulatory activity of selenium exopolysaccharide produced by Lactococcus lactis subsp. lactis. Food Chem. 2013, 138, 84–89. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Sheehan, D.J.; Rex, J.H. Determination of fungicidal activities against yeasts and molds: Lessons learned from bactericidal testing and the need for standardization. Clin. Microbiol. Rev. 2004, 17, 268–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, E.H.; Choi, J.H.; Hwang, Y.P.; Park, H.J.; Chung, Y.C.; Seo, J.K.; Jeong, H.G. Immunostimulatory activity of aqueous extract isolated from Prunella vulgaris. Food Chem. Toxicol. 2009, 47, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.A.; Kim, H.; Lee, K.W.; Park, K.Y. Dead Lactobacillus plantarum stimulates and skews immune responses toward T helper 1 and 17 polarizations in RAW 264.7 cells and mouse splenocytes. J. Microbiol. Biotechnol. 2016, 26, 469–476. [Google Scholar] [CrossRef]
- Papamichail, M.; Perez, S.A.; Gritzapis, A.D.; Baxevanis, C.N. Natural killer lymphocytes: Biology, development, and function. Cancer Immunol. Immunother. 2004, 53, 176–186. [Google Scholar]
- Aderem, A.; Underhill, D.M. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 1999, 17, 593–623. [Google Scholar] [CrossRef]
- Jaumouillé, V.; Grinstein, S. Receptor mobility, the cytoskeleton, and particle binding during phagocytosis. Curr. Opin. Cell Biol. 2011, 23, 22–29. [Google Scholar] [CrossRef]
- Jeon, Y.J.; Kim, Y.K.; Lee, M.; Park, S.M.; Han, S.B.; Kim, H.M. Radicicol suppresses expression of inducible nitric-oxide synthase by blocking p38 kinase and nuclear factor-kappaB/Rel in lipopolysaccharide-stimulated macrophages. J. Pharmacol. Exp. Ther. 2000, 294, 548–554. [Google Scholar]
- Wells, J.M. Immunomodulatory mechanisms of lactobacilli. Microb. Cell Fact. 2011, 10, S17. [Google Scholar] [CrossRef] [Green Version]
- Mathur, S.; Singh, R. Antibiotic resistance in food lactic acid bacteria–a review. Int. J. Food Microbiol. 2005, 105, 281–295. [Google Scholar] [CrossRef]
- Meng, Y.; Li, B.; Jin, D.; Zhan, M.; Lu, J.; Huo, G. Immunomodulatory activity of Lactobacillus plantarum KLDS1.0318 in cyclophosphamide-treated mice. Food Nutr. Res. 2018, 62, 1269. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Yu, Q.; Nie, S.; Fan, S.; Xiong, T.; Xie, M. Effects of Lactobacillus plantarum NCU116 on intestine mucosal immunity in immunosuppressed mice. J. Agric. Food Chem. 2015, 63, 10914–10920. [Google Scholar] [CrossRef]
- Kopp, E.B.; Ghosh, S. NF-kappa B and rel proteins in innate immunity. Adv. Immunol. 1995, 58, 1–27. [Google Scholar]
- Rocha-Ramírez, L.M.; Pérez-Solano, R.A.; Castañón-Alonso, S.L.; Moreno Guerrero, S.S.; Ramírez Pacheco, A.; García Garibay, M.; Eslava, C. Probiotic Lactobacillus strains stimulate the inflammatory response and activate human macrophages. J. Immunol. Res. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Jung, I.; Choi, J.W.; Lee, C.W.; Cho, S.; Choi, T.G.; Sohn, M.; Park, Y.I. Micronized and heat-treated Lactobacillus plantarum LM1004 stimulates host immune responses via the TLR-2/MAPK/NF-κB signalling pathway in vitro and in vivo. J. Microbiol. Biotechnol. 2019, 29, 704–712. [Google Scholar] [CrossRef]
Strain | Positive | Negative | ||
---|---|---|---|---|
Alpha | Beta | Gamma | ||
Control | Escherichia coli ATCC25922 | O | ||
Staphylococcus aureus ATCC12600 | O | |||
Enterococcus faecalis ATCC19433 | O | |||
Test | Lactococcus lactis GCWB1176 | O |
Antibiotic Resistance Test | |||||||||
---|---|---|---|---|---|---|---|---|---|
Strain | Minimum Inhibitory Concentration (mg/L) of Antibiotics | ||||||||
Amp | Ery | Gen | Tet | Str | Van | Chl | Kan | Cli | |
GCWB1176 | <1 | <0.2 | ≤4 | <0.2 | ≤32 | <1 | ≤6 | ≤12 | <0.1 |
EFSA breakpoint | 2 | 1 | 32 | 4 | 32 | 4 | 8 | 64 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, S.W.; Lee, G.H.; Jang, M.J.; Hong, G.E.; Kim, J.Y.; Park, G.D.; Jin, H.; Kim, H.S.; Choi, J.H.; Choi, C.Y.; et al. Immunomodulatory Activity of Lactococcus lactis GCWB1176 in Cyclophosphamide-Induced Immunosuppression Model. Microorganisms 2020, 8, 1175. https://doi.org/10.3390/microorganisms8081175
Jin SW, Lee GH, Jang MJ, Hong GE, Kim JY, Park GD, Jin H, Kim HS, Choi JH, Choi CY, et al. Immunomodulatory Activity of Lactococcus lactis GCWB1176 in Cyclophosphamide-Induced Immunosuppression Model. Microorganisms. 2020; 8(8):1175. https://doi.org/10.3390/microorganisms8081175
Chicago/Turabian StyleJin, Sun Woo, Gi Ho Lee, Min Jung Jang, Gyeong Eun Hong, Jae Young Kim, Gi Deok Park, Hui Jin, Hyun Su Kim, Jae Ho Choi, Chul Yung Choi, and et al. 2020. "Immunomodulatory Activity of Lactococcus lactis GCWB1176 in Cyclophosphamide-Induced Immunosuppression Model" Microorganisms 8, no. 8: 1175. https://doi.org/10.3390/microorganisms8081175
APA StyleJin, S. W., Lee, G. H., Jang, M. J., Hong, G. E., Kim, J. Y., Park, G. D., Jin, H., Kim, H. S., Choi, J. H., Choi, C. Y., Lee, S. G., Jeong, H. G., & Hwang, Y. P. (2020). Immunomodulatory Activity of Lactococcus lactis GCWB1176 in Cyclophosphamide-Induced Immunosuppression Model. Microorganisms, 8(8), 1175. https://doi.org/10.3390/microorganisms8081175