Proteomic Signatures of Corals from Thermodynamic Reefs
Abstract
:1. Introduction
Physiology (Unit) | Temp. | Site | Int. | Post-Hoc Test | Ref. | |
---|---|---|---|---|---|---|
survival (%) | [21] | |||||
growth (mg cm−2 day−1) | * | higher under “native” conditions | [21] | |||
Symbiodiniaceae density (cells cm−2) | * | HWN>HBH | [21] | |||
chlorophyll a concentration (pg cell−1) | * | * | higher under native conditions | [21] | ||
maximum quantum yield of PSII (FV/FM) | * | * | variable>stable, HBH>HWN | [21] | ||
Biological composition (method) | ||||||
Symbiodiniaceae GCP (qPCR) | [21] | |||||
RNA/DNA ratio | [21] | |||||
protein/DNA ratio | * | HWN>HBH | [21] | |||
Symbiodiniaceae genotype (qPCR) | [21] | |||||
host coral genotype (microsatellites) | [33] | |||||
Gene expression (qPCR) | ||||||
Solaris™ spike exogenous | * | |||||
rbcL | endosymbiont | * | variable>stable | [21] | ||
psI | endosymbiont | * | * | variable>stable, HBH>HWN | [21] | |
pgpase | endosymbiont | * | variable>stable | [21] | ||
nrt2 | endosymbiont | [33] | ||||
apx1 | endosymbiont | [21] | ||||
hsp70 | endosymbiont | * | variable>stable | [33] | ||
hsp70 | host | * | stable>variable | [33] | ||
actb | host | * | variable>stable | [33] | ||
trp1 | host | [33] | ||||
tuba | host | [33] | ||||
ezrin | host | [33] | ||||
cplap2 | host | * | HWN-var>HBH-var | [33] | ||
oatp | host | [33] | ||||
trcc | host | [33] | ||||
Transcriptome profiling (RNA-Seq) | #DEGs/DCPs | |||||
host a | * | 1 stable>variable | [31] | |||
host | * | 27 HBH>HWN, 23 HWN>HBH | [31] | |||
endosymbiont | * | 47 HBH>HWN, 9 HWN>HBH | [31] | |||
Proteins-2DGE | host | * | 97 stable>variable | [31] | ||
endosymbiont | * | 53 stable>variable | [31] | |||
host | * | 9 HBH>HWN, 20 HWN>HBH | [27] | |||
endosymbiont | * | 5 HBH>HWN, 15 HWN>HBH | [27] | |||
Proteins-iTRAQ | endosymbiont b | * | 1 HWN-stab>all others 1 HBH-var>all others c | Herein |
2. Materials and Methods
2.1. The SHVTS
2.2. Protein Extractions and iTRAQ
2.3. Nano-LC-MS/MS and Data Pre-Processing
2.4. Data Filtering, QC, and DCP Identification
2.5. Multivariate Proteomics
2.6. Proteomic Data Modeling
3. Results
3.1. Overview of the Sequenced Proteome
3.2. Multivariate Proteomic Analysis
3.3. DCPS
3.4. SDA
3.5. SRA
3.6. Breakdown of DCPs and POIs
3.7. Gene vs. Protein Correlation Analysis
4. Discussion
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Brown, B.E. Coral bleaching: Causes and consequences. Coral Reefs 1997, 16S, 129–138. [Google Scholar] [CrossRef]
- Mayfield, A.B.; Gates, R.D. Osmoregulation in anthozoan-dinoflagellate symbiosis. Comp. Biochem. Physiol. 2007, 147A, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hoegh-Guldberg, O.; Poloczanska, E.S.; Skirving, W.; Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 2017, 4, 158. [Google Scholar] [CrossRef] [Green Version]
- Hughes, T.P.; Barnes, M.L.; Bellwood, D.R.; Cinner, J.E.; Cumming, G.S.; Jackson, J.B.C.; Kleypas, J.; van de Leemput, I.A.; Lough, J.M.; Morrison, T.H.; et al. Coral reefs in the anthropocene. Nature 2017, 546, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Gates, R.D. Seawater temperature and sublethal coral bleaching in Jamaica. Coral Reefs 1990, 8, 193–197. [Google Scholar] [CrossRef]
- Mayfield, A.B.; Chen, M.; Meng, P.J.; Lin, H.J.; Chen, C.S.; Liu, P.J. The physiological response of the reef coral Pocillopora damicornis to elevated temperature: Results from coral reef mesocosm experiments in Southern Taiwan. Mar. Environ. Res. 2013, 86, 1–11. [Google Scholar] [CrossRef]
- Mayfield, A.B.; Fan, T.Y.; Chen, C.S. Physiological acclimation to elevated temperature in a reef-building coral from an upwelling environment. Coral Reefs 2013, 32, 909–921. [Google Scholar] [CrossRef]
- Krueger, T.; Horwitz, N.; Bodin, J.; Giovani, M.E.; Escrig, S.; Meibom, A.; Fine, M. Common reef-building coral in the Northern Red Sea resistant to elevated temperature and acidification. R. Soc. Open Sci. 2017, 4, 170038. [Google Scholar] [CrossRef] [Green Version]
- Mayfield, A.B.; Chen, Y.J.; Lu, C.Y.; Chen, C.S. The proteomic response of the reef coral Pocillopora acuta to experimentally elevated temperature. PLoS ONE 2018, 13, e0192001. [Google Scholar] [CrossRef] [Green Version]
- Barshis, D.J.; Ladner, J.T.; Oliver, T.A.; Seneca, F.O.; Traylor-Knowles, N.; Palumbi, S.R. Genomic basis for coral resilience to climate change. Proc. Natl. Acad. Sci. USA 2013, 110, 1387–1392. [Google Scholar] [CrossRef] [Green Version]
- Barshis, D.J.; Stillman, J.H.; Gates, R.D.; Toonen, R.J.; Smith, L.W.; Birkeland, C. Protein expression and genetic structure of the coral Porites lobata in an environmentally extreme Samoan back reef: Does host genotype limit phenotypic plasticity? Mol. Ecol. 2010, 19, 1705–1720. [Google Scholar] [CrossRef]
- Putnam, H.M.; Edmunds, P.J.; Fan, T.Y. Effect of a fluctuating thermal regime on adult and larval reef corals. Invertebra. Biol. 2010, 129, 199–209. [Google Scholar] [CrossRef]
- Palumbi, S.R.; Barshis, D.J.; Traylor-Knowles, N.; Bay, R.A. Mechanisms of reef coral resistance to future climate change. Science 2014, 344, 895–898. [Google Scholar] [CrossRef] [PubMed]
- Mayfield, A.B.; Tsai, S.; Lin, C. The Coral Hospital. Biopreserv. Biobank. 2019, 17, 355–369. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.P.; Huang, J.R.; Dai, M.; Kao, S.J.; Hydes, D.J.; Chou, W.C.; Jan, S. Short-term dynamics of oxygen and carbon in productive nearshore shallow seawater systems off Taiwan: Observations and modeling. Limnol. Oceanogr. 2011, 56, 1832–1849. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Chao, S.Y.; Fan, K.L.; Kuo, T.Y. Tide-induced eddies and upwelling in a semi- enclosed basin: Nan Wan. Estuar Coast Shelf Sci. 1999, 49, 775–787. [Google Scholar] [CrossRef] [Green Version]
- Dai, C.F. Reef environment and coral fauna of southern Taiwan. Atoll Res. Bull. 1991, 354, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Hung, T.C.; Huang, C.C.; Shao, K.T. Ecological surveys of coastal water adjacent to nuclear power plants in Taiwan. Chem. Ecol. 1998, 15, 129–142. [Google Scholar] [CrossRef]
- Meng, P.J.; Lee, H.J.; Wang, J.T.; Chen, C.C.; Lin, H.J.; Tew, K.S.; Hsieh, W.J. A long-term survey on anthropogenic impacts to the water quality of coral reefs, southern Taiwan. Environ. Pollut. 2008, 156, 67–75. [Google Scholar] [CrossRef]
- Loya, Y.; Sakai, K.; Yamazato, K.; Nakano, Y.; Sambali, H.; van Woesik, R. Coral bleaching: The winners and the losers. Ecol. Lett. 2001, 4, 122–131. [Google Scholar] [CrossRef]
- Mayfield, A.B.; Chan, P.H.; Putnam, H.M.; Chen, C.S.; Fan, T.Y. The effects of a variable temperature regime on the physiology of the reef-building coral Seriatopora hystrix: Results from a laboratory-based reciprocal transplant. J. Exp. Biol. 2012, 215, 4183–4195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, P.J.; Lin, S.M.; Fan, T.Y.; Meng, P.J.; Shao, K.T.; Lin, H.J. Rates of overgrowth by macroalgae and attack by sea anemones are greater for live coral than dead coral under conditions of nutrient enrichment. Limnol Oceanogr. 2009, 54, 1167–1175. [Google Scholar] [CrossRef]
- Edmunds, P.J.; Cumbo, V.; Fan, T.Y. Effects of temperature on the respiration of brooded larvae from tropical reef corals. J. Exp. Biol. 2011, 214, 2783–2790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dufault, A.M.; Cumbo, V.R.; Fan, T.Y.; Edmunds, P.J. Effects of diurnally oscillating pCO(2) on the calcification and survival of coral recruits. Proc. Royal Soc. 2012, 279B, 2951–2958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Putnam, H.M.; Mayfield, A.B.; Fan, T.Y.; Chen, C.S.; Gates, R.D. The physiological and molecular responses of larvae from the reef-building coral Pocillopora damicornis exposed to near-future increases in temperature and pCO2. Mar. Biol. 2013, 160, 2157–2173. [Google Scholar] [CrossRef]
- Mayfield, A.B. Uncovering spatio-temporal and treatment-derived differences in the molecular physiology of a model coral-dinoflagellate mutualism with multivariate statistical approaches. J. Mar. Sci. Eng. 2016, 4, 63. [Google Scholar] [CrossRef] [Green Version]
- Mayfield, A.B.; Chen, Y.J.; Lu, C.Y.; Chen, C.S. Exploring the environmental physiology of the Indo-Pacific reef coral Seriatopora hystrix using differential proteomics. Open J. Mar. Sci. 2018, 8, 223–252. [Google Scholar] [CrossRef] [Green Version]
- Mayfield, A.B.; Hsiao, Y.Y.; Fan, T.Y.; Chen, C.S. Temporal variation in RNA/DNA and protein/DNA ratios in four anthozoan-dinoflagellate endosymbioses of the Indo-Pacific: Implications for molecular diagnostics. Platax 2012, 9, 1–24. [Google Scholar]
- Mayfield, A.B.; Wang, L.H.; Tang, P.C.; Fan, T.Y.; Hsiao, Y.Y.; Tsai, C.L.; Chen, C.S. Assessing the impacts of experimentally elevated temperature on the biological composition and molecular chaperone gene expression of a reef coral. PLoS ONE 2011, 6, e26529. [Google Scholar] [CrossRef]
- Oliver, T.A.; Palumbi, S.R. Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 2011, 30, 429–440. [Google Scholar] [CrossRef]
- Mayfield, A.B.; Wang, Y.B.; Chen, C.S.; Chen, S.H.; Lin, C.Y. Dual-compartmental transcriptomic+proteomic analysis of a marine endosymbiosis exposed to environmental change. Mol. Ecol. 2016, 25, 5944–5958. [Google Scholar] [CrossRef] [PubMed]
- Mayfield, A.B.; Chen, Y.J.; Lu, C.Y.; Chen, C.S. Proteins responsive to variable temperature exposure in the reef-building coral Seriatopora hystrix. In Coral Reefs: Ecosystems, Environmental Impact and Current Threats; Ortiz, S., Ed.; NOVA Publishing: New York, NY, USA, 2016; pp. 1–72. [Google Scholar]
- Mayfield, A.B.; Chen, Y.H.; Dai, C.F.; Chen, C.S. The effects of temperature on gene expression in the Indo-Pacific reef-building coral Seriatopora hystrix: Insight from aquarium studies in Southern Taiwan. Int. J. Mar. Sci. 2014, 4, 1–23. [Google Scholar]
- Shalit, T.; Elinger, D.; Savidor, A.; Gabasgvili, A.; Levin, Y. MS1-based label-free proteomics using a quadrupole orbitrap mass spectrometer. J. Proteome Res. 2015, 14, 1979–1985. [Google Scholar] [CrossRef] [PubMed]
- Waldbauer, J.; Zhang, L.; Rizzo, A.; Muratore, D. diDO-IPTL: A peptide-labeling strategy for precision quantitative proteomics. Anal. Chem. 2017, 89, 11498–11504. [Google Scholar] [CrossRef]
- Ross, P.L.; Huang, Y.N.; Marchese, J.N.; Williamson, B.; Parker, K.; Hattan, S.; Khainovski, N.; Pillai, S.; Dey, S.; Daniels, S.; et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell Proteom. 2004, 3, 1154–1169. [Google Scholar] [CrossRef] [Green Version]
- Weston, A.J.; Dunlap, W.C.; Beltran, V.H.; Starcevic, A.; Hranueli, D.; Ward, M.; Long, P.F. Proteomics links the redox state to calcium signaling during bleaching of the scleractinian coral Acropora microphthalma on exposure to high solar irradiance and thermal stress. Mol. Cell Proteom. 2015, 14, 585–595. [Google Scholar] [CrossRef] [Green Version]
- Weston, A.J.; Dunlap, W.C.; Shick, J.M.; Klueter, A.; Iglic, K.; Vukelic, A.; Starcevic, A.; Ward, M.; Wells, M.L.; Trick, C.G.; et al. A profile of an endosymbiont-enriched fraction of the coral Stylophora pistillata reveals proteins relevant to microbial-host interactions. Mol. Cell Proteom. 2012, 11, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Mazerolle, M. Improving data analysis in herpetology: Using Akaike’s Information. Criterion (AIC) to assess the strength of biological hypotheses. Amphib.—Reptil. 2006, 27, 169–180. [Google Scholar] [CrossRef]
- Halachmi, N.; Lev, Z. The Sec1 family: A novel family of proteins involved in synaptic transmission and general secretion. J. Neurochem. 1996, 66, 889–897. [Google Scholar] [CrossRef]
- Chen, H.K.; Song, S.N.; Wang, L.H.; Mayfield, A.B.; Chen, Y.J.; Chen, W.N.U.; Chen, C.S. A compartmental comparison of major lipid species in a coral-Symbiodinium endosymbiosis: Evidence that the coral host regulates lipogenesis of its cytosolic lipid bodies. PLoS ONE 2015, 10, e0132519. [Google Scholar] [CrossRef]
- Chen, H.K.; Mayfield, A.B.; Wang, L.H.; Chen, C.S. Coral lipid bodies as the relay center interconnecting diel-dependent lipidomic changes in different cellular compartments. Sci. Rep. 2017, 7, 3244. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.N.U.; Kang, H.J.; Weis, V.M.; Mayfield, A.B.; Fang, L.S.; Chen, C.S. Diel rhythmicity of lipid body formation in a coral-Symbiodinium endosymbiosis. Coral Reefs 2012, 31, 521–534. [Google Scholar] [CrossRef]
- Chen, C.S.; Yeh, S.; Wang, L.; Li, H.H.; Chen, W.N.U. Increased susceptibility of algal symbionts to photo-inhibition resulting from the perturbation of coral gastrodermal membrane trafficking. Sci. China Life Sci. 2012, 55, 599–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, S.E.; Chen, W.N.U.; Chen, H.K.; Lu, C.Y.; Mayfield, A.B.; Fang, L.S.; Chen, C.S. Lipid bodies in coral–dinoflagellate endosymbiosis: Proteomic and ultrastructural studies. Proteomics 2011, 11, 3540–3555. [Google Scholar] [CrossRef]
- Xiang, T.; Nelson, W.; Rodriguez, J.; Tolleter, D.; Grossman, A.R. Symbiodinium transcriptome and global responses of cells to immediate changes in light intensity when grown under autotrophic or mixotrophic conditions. Plant J. 2015, 82, 67–80. [Google Scholar] [CrossRef]
- Mayfield, A.B.; Chen, C.S.; Liu, P.J. Decreased green fluorescent protein-like chromoprotein gene expression in specimens of the reef-building coral Pocillopora damicornis undergoing high temperature-induced bleaching. Platax 2014, 11, 1–23. [Google Scholar]
- Mayfield, A.B.; Hsiao, Y.Y.; Fan, T.Y.; Chen, C.S.; Gates, R.D. Evaluating the temporal stability of stress-activated protein kinase and cytoskeleton gene expression in the Pacific corals Pocillopora damicornis and Seriatopora hystrix. J. Exp. Mar. Biol. Ecol. 2010, 395, 215–222. [Google Scholar] [CrossRef]
- Mayfield, A.B.; Chen, C.S.; Dempsey, A.C. Biomarker profiling in reef corals of Tonga’s Ha’apai and Vava’u Archipelagos. PLoS ONE 2017, 12, e0185857. [Google Scholar] [CrossRef] [Green Version]
- Mayfield, A.B.; Chen, C.S.; Dempsey, A.C. Identifying corals displaying aberrant behavior in Fiji’s Lau Archipelago. PLoS ONE 2017, 12, e0177267. [Google Scholar] [CrossRef] [Green Version]
- Mayfield, A.B.; Chen, C.S.; Dempsey, A.C. The molecular ecophysiology of closely related pocilloporid corals of New Caledonia. Platax 2017, 14, 1–45. [Google Scholar]
- Salas, B.H.; Haslun, J.A.; Strychar, K.B.; Ostrom, P.H.; Cervino, J.M. Site-specific variation in gene expression from Symbiodinium spp. associated with offshore and inshore Porites astreoides in the lower Florida Keys is lost with bleaching and disease stress. PLoS ONE 2017, 12, e0173350. [Google Scholar] [CrossRef] [PubMed]
- Mayfield, A.B.; Chen, C.S.; Dempsey, A.C.; Bruckner, A.W. The molecular ecophysiology of closely related pocilloporids from the South Pacific: A case study from the Austral and Cook Islands. Platax 2016, 13, 1–25. [Google Scholar]
- Mayfield, A.B.; Dempsey, A.C.; Inamdar, J.; Chen, C.S. A statistical platform for assessing coral health in an era of changing global climate-I: A case study from Fiji’s Lau Archipelago. Platax 2018, 15, 1–35. [Google Scholar]
- Mayfield, A.B.; Chen, C.S.; Dempsey, A.C. Modeling environmentally-mediated variation in reef coral physiology. J. Sea Res. 2019, 145, 44–54. [Google Scholar] [CrossRef]
- Mayfield, A.B.; Gates, R.D.; Fan, T.Y.; Putnam, H.M. Physiological and molecular responses to ocean acidification in a model marine symbiosis. Mar. Biol. In review.
- Mayfield, A.B.; Chen, C.S. Enabling coral reef triage via molecular biotechnology and artificial intelligence. Platax 2019, 16, 23–47. [Google Scholar]
- Putnam, H.M.; Barott, K.; Ainsworth, T.D.; Gates, R.D. The vulnerability and resilience of reef-building corals. Current Biol. 2017, 27, R528–R540. [Google Scholar] [CrossRef] [Green Version]
- Mayfield, A.B.; Wang, Y.B.; Chen, C.S.; Chen, S.H.; Lin, C.Y. Compartment-specific transcriptomics in a reef-building coral exposed to elevated temperatures. Mol. Ecol. 2014, 23, 5816–5830. [Google Scholar] [CrossRef]
Sample Code | Temp. | Site of Origin | Interaction | Tank | RNA-Seq? | iTRAQ? | iTRAQ Batch-Label (Quantity) |
---|---|---|---|---|---|---|---|
HBH-var1 | variable | Houbihu | HBH-var | HBH-V1 | yes | yes | B-114 (18 µL) |
HBH-var2 | variable | Houbihu | HBH-var | HBH-V2 | yes | no | NA |
HBH-var4 | variable | Houbihu | HBH-var | HBH-V2 | yes | no | NA |
HBH-var6 | variable | Houbihu | HBH-var | HBH-V3 | no | yes | A-114 (18 µL) |
HBH-stab1 | stable | Houbihu | HBH-stab | HBH-S1 | no | yes | B-115 (22 µL) |
HBH-stab3 | stable | Houbihu | HBH-stab | HBH-S2 | yes | yes | B-116 (18 µL) |
HBH-stab4 | stable | Houbihu | HBH-stab | HBH-S2 | yes | no | NA |
HBH-stab5 | stable | Houbihu | HBH-stab | HBH-S3 | yes | yes | A-115 (22 µL) |
HBH-stab6 | stable | Houbihu | HBH-stab | HBH-S3 | no | yes | A-116 (18 µL) |
HWN-var1 | variable | Houwan | HWN-var | HWN-V1 | yes | yes | A-117 (17 µL) |
HWN-var2 | variable | Houwan | HWN-var | HWN-V1 | yes | no | NA |
HWN-var3 | variable | Houwan | HWN-var | HWN-V2 | yes | yes | B-119 (20 µL) |
HWN-var5 | variable | Houwan | HWN-var | HWN-V3 | no | yes | B-117 (17 µL) |
HWN-stab1 | stable | Houwan | HWN-stab | HWN-S1 | yes | yes | B-118 (18 µL) |
HWN-stab3 | stable | Houwan | HWN-stab | HWN-S2 | yes | no | NA |
HWN-stab4 | stable | Houwan | HWN-stab | HWN-S2 | no | yes | A-118 (18 µL) |
HWN-stab5 | stable | Houwan | HWN-stab | HWN-S3 | yes | no | NA |
HWN-stab6 | stable | Houwan | HWN-stab | HWN-S3 | no | yes | A-119 (20 µL) |
Experimental Factor | #Proteins | BIC | Host Coral Proteins | Sym Proteins | Unknown Proteins |
---|---|---|---|---|---|
Site of origin | 2 | 7.45 | c29399_g1 * | ||
c104_g1 | |||||
Temperature (temp.) | 2 | 16.3 | c45667_g1 * | c103260_g1 | |
Site of origin x temp. | 4 | 17.4 | c197443_g1 | c79881_g1 | c103260_g1 |
c75958_g1 |
Accession | DCP/ POI | Compart-ment | Protein (Figure) | Protein Function | RSA Trend | SDA Models | SRA Models |
---|---|---|---|---|---|---|---|
c29399_g1 | DCP | Sym | sec34 (3a) | Golgi trafficking | HWN-stab>all others | site, interaction | site |
c45667_g1 | DCP | Sym | sec1a (3b) | Golgi trafficking | HBH-var>all others a | temperature | temperature |
c64657_g1 | DCP | unknown | unknown (3c) | unknown | HBH-var>all others a | ||
c83543_g1 | DCP | bacteria | nucleotidyltransferase (3d) | DNA replication | HBH-var>all others a | interaction | |
c103260_g1 | POI | unknown | unknown | unknown | ND | temperature | temperature, interaction |
c79881_g1 | POI | Sym | PCP (g1) | photosynthesis | HWN>HBH * | interaction | |
c104_g1 | POI | Sym | ring finger | protein QC | ND | interaction | site |
c197443_g1 | POI | host | Pao retrotransposon peptidase | DNA modification | ND | interaction | |
c75958_g1 | POI | host | zinc finger CCCH domain- containing protein 3-like | mRNA processing | ND | interaction | |
c65095_g1 | POI | host | calmodulin | calcium regulation | ND | temperature | |
c79881_g2 | POI | Sym | PCP (g2) | photosynthesis | HWN>HBH * | interaction |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayfield, A.B. Proteomic Signatures of Corals from Thermodynamic Reefs. Microorganisms 2020, 8, 1171. https://doi.org/10.3390/microorganisms8081171
Mayfield AB. Proteomic Signatures of Corals from Thermodynamic Reefs. Microorganisms. 2020; 8(8):1171. https://doi.org/10.3390/microorganisms8081171
Chicago/Turabian StyleMayfield, Anderson B. 2020. "Proteomic Signatures of Corals from Thermodynamic Reefs" Microorganisms 8, no. 8: 1171. https://doi.org/10.3390/microorganisms8081171
APA StyleMayfield, A. B. (2020). Proteomic Signatures of Corals from Thermodynamic Reefs. Microorganisms, 8(8), 1171. https://doi.org/10.3390/microorganisms8081171