Gallstone Disease and Microbiome
Abstract
:1. Introduction
2. Oral Cavity Bacterial Communities and GSD
3. Biliary Tract Microbiome
4. Helicobacter Pylori and Helicobacter spp. in Bile, Gallbladder Tissue, and Gallstones
5. Bile Acids, Microbiota, and Bile Lithogenicity
6. Gallstone Microbiome
7. Gut Microbiome and Cholecystectomy
8. Conclusions
Funding
Conflicts of Interest
References
- Kratzer, W.; Mason, R.A.; Kachele, V. Prevalence of gallstones in sonographic surveys worldwide. J. Clin. Ultrasound 1999, 27, 1–7. [Google Scholar] [CrossRef]
- Everhart, J.E.; Ruhl, C.E. Burden of digestive diseases in the United States part I: Overall and upper gastrointestinal diseases. Gastroenterology 2009, 136, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Pak, M.; Lindseth, G. Risk Factors for Cholelithiasis. Gastroenterol. Nurs. 2016, 39, 297–309. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver (EASL). EASL Clinical Practice Guidelines on the prevention, diagnosis and treatment of gallstones. J. Hepatol. 2016, 65, 146–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutt, C.; Jenssen, C.; Barreiros, A.P.; Götze, T.O.; Stokes, C.S.; Jansen, P.L.; Neubrand, M.; Lammert, F. Aktualisierte S3-Leitlinie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) und der Deutschen Gesellschaft für Allgemein- und Viszeralchirurgie (DGAV) zur Prävention, Diagnostik und Behandlung von Gallensteinen. Z. Gastroenterol. 2018, 56, 912–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maki, T. Pathogenesis of calcium bilirubinate gallstone: Role of E. coli, beta glucuronidase and coagulation by inorganic ions, polyelectrolytes, and agitation. Ann. Surg. 1966, 164, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Kawai, M.; Iwahashi, M.; Uchiyama, K.; Ochiai, M.; Tanimura, H.; Yamaue, H. Gram-positive cocci are associated with the formation of completely pure cholesterol stones. Am. J. Gastroenterol. 2002, 97, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.H.; Portincasa, P.; Afdhal, N.H.; Wang, D.Q. Lith genes and genetic analysis of cholesterol gallstone formation. Gastroenterol. Clin. N. Am. 2010, 39, 185–207, vii–viii. [Google Scholar] [CrossRef] [PubMed]
- Yoon, W.J.; Kim, H.N.; Park, E.; Ryu, S.; Chang, Y.; Shin, H.; Kim, H.L.; Yi, S.Y. The Impact of Cholecystectomy on the Gut Microbiota: A Case-Control Study. J. Clin. Med. 2019, 8, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Qi, M.; Qin, C.; Hong, J. Role of the biliary microbiome in gallstone disease. Expert Rev. Gastroenterol. Hepatol. 2018, 12, 1193–1205. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J.; Li, J.; Yan, P.; Jin, Y.; Zhang, R.; Yue, W.; Guo, Q.; Geng, J. Cholecystectomy Damages Aging-Associated Intestinal Microbiota Construction. Front. Microbiol. 2018, 9, 1402. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Zhang, Z.; Liu, B.; Hou, D.; Liang, Y.; Zhang, J.; Shi, P. Gut microbiota dysbiosis and bacterial community assembly associated with cholesterol gallstones in large-scale study. BMC Genom. 2013, 14, 669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keren, N.; Konikoff, F.M.; Paitan, Y.; Gabay, G.; Reshef, L.; Naftali, T.; Gophna, U. Interactions between the intestinal microbiota and bile acids in gallstones patients. Environ. Microbiol. Rep. 2015, 7, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Molinero, N.; Ruiz, L.; Milani, C.; Gutiérrez-Díaz, I.; Sánchez, B.; Mangifesta, M.; Segura, J.; Cambero, I.; Campelo, A.B.; García-Bernardo, C.M.; et al. The human gallbladder microbiome is related to the physiological state and the biliary metabolic profile. Microbiome 2019, 7, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molinero, N.; Ruiz, L.; Sánchez, B.; Margolles, A.; Delgado, S. Intestinal Bacteria Interplay with Bile and Cholesterol Metabolism: Implications on Host Physiology. Front. Physiol. 2019, 10, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Ciaula, A.; Portincasa, P. Recent advances in understanding and managing cholesterol gallstones. F1000Res 2018, 7, F1000, Faculty Rev-1529. [Google Scholar] [CrossRef]
- Ridlon, J.M.; Kang, D.J.; Hylemon, P.B.; Bajaj, J.S. Bile acids and the gut microbiome. Curr. Opin. Gastroenterol. 2014, 30, 332–338. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.L.; Takeda, K.; Sundrud, M.S. Emerging roles of bile acids in mucosal immunity and inflammation. Mucosal Immunol. 2019, 12, 851–861. [Google Scholar] [CrossRef] [Green Version]
- Fremont-Rahl, J.J.; Ge, Z.; Umana, C.; Whary, M.T.; Taylor, N.S.; Muthupalani, S.; Carey, M.C.; Fox, J.G.; Maurer, K.J. An analysis of the role of the indigenous microbiota in cholesterol gallstone pathogenesis. PLoS ONE 2013, 8, e70657. [Google Scholar] [CrossRef] [Green Version]
- Chhibber-Goel, J.; Singhal, V.; Bhowmik, D.; Vivek, R.; Parakh, N.; Bhargava, B.; Sharma, A. Linkages between oral commensal bacteria and atherosclerotic plaques in coronary artery disease patients. NPJ Biofilms Microbiomes 2016, 2, 7. [Google Scholar] [CrossRef]
- Casarin, R.C.V.; Barbagallo, A.; Meulman, T.; Santos, V.R.; Sallum, E.A.; Nociti, F.H.; Duarte, P.M.; Casati, M.Z.; Gonçalves, R.B. Subgingival biodiversity in subjects with uncontrolled type-2 diabetes and chronic periodontitis. J. Periodontal Res. 2013, 48, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Goodson, J.M.; Groppo, D.; Halem, S.; Carpino, E. Is obesity an oral bacterial disease? J. Dent. Res. 2009, 88, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Farrell, J.J.; Zhang, L.; Zhou, H.; Chia, D.; Elashoff, D.; Akin, D.; Paster, B.J.; Joshipura, K.; Wong, D.T. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut 2012, 61, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Peters, B.A.; Wu, J.; Pei, Z.; Yang, L.; Purdue, M.P.; Freedman, N.D.; Jacobs, E.J.; Gapstur, S.M.; Hayes, R.B.; Ahn, J. Oral microbiome composition reflects prospective risk for esophageal cancers. Cancer Res. 2017, 77, 6777–6787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flemer, B.; Warren, R.D.; Barrett, M.P.; Cisek, K.; Das, A.; Jeffery, I.B.; Hurley, E.; O’Riordain, M.; Shanahan, F.; O’Toole, P.W. The oral microbiota in colorectal cancer is distinctive and predictive. Gut 2018, 67, 1454–1463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corrêa, J.D.; Fernandes, G.R.; Calderaro, D.C.; Mendonça, S.M.S.; Silva, J.M.; Albiero, M.L.; Cunha, F.Q.; Xiao, E.; Ferreira, G.A.; Teixeira, A.L.; et al. Oral microbial dysbiosis linked to worsened periodontal condition in rheumatoid arthritis patients. Sci. Rep. 2019, 9, 8379. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Xu, T.; Huang, G.; Jiang, S.; Gu, Y.; Chen, F. Oral microbiomes: More and more importance in oral cavity and whole body. Protein Cell 2018, 9, 488–500. [Google Scholar] [CrossRef] [Green Version]
- Verma, D.; Garg, P.K.; Dubey, A.K. Insights into the human oral microbiome. Arch. Microbiol. 2018, 200, 525–540. [Google Scholar] [CrossRef]
- Willis, J.R.; Gabaldón, T. The Human Oral Microbiome in Health and Disease: From Sequences to Ecosystems. Microorganisms 2020, 8, 308. [Google Scholar] [CrossRef] [Green Version]
- Wade, W.G. The oral microbiome in health and disease. Pharmacol. Res. 2013, 69, 137–143. [Google Scholar] [CrossRef]
- Zaura, E.; Keijser, B.J.; Huse, S.M.; Crielaard, W. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol. 2009, 9, 259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewhirst, F.E.; Chen, T.; Izard, J.; Paster, B.J.; Tanner, A.C.; Yu, W.H.; Lakshmanan, A.; Wade, W.G. The human oral microbiome. J. Bacteriol. 2010, 192, 5002–5017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Bars, P.; Matamoros, S.; Montassier, E.; Le Vacon, F.; Potel, G.; Soueidan, A.; Jordana, F.; de La Cochetière, M.F. The oral cavity microbiota: Between health, oral disease, and cancers of the aerodigestive tract. Can. J. Microbiol. 2017, 63, 475–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, F.; Shen, H.; Li, Z.; Meng, F.; Li, L.; Yang, J.; Chen, Y.; Bo, X.; Zhang, X.; Ni, M. Influence of the Biliary System on Biliary Bacteria Revealed by Bacterial Communities of the Human Biliary and Upper Digestive Tracts. PLoS ONE 2016, 11, e0150519. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Ye, F.; Xie, L.; Yang, J.; Li, Z.; Xu, P.; Meng, F.; Li, L.; Chen, Y.; Bo, X.; et al. Metagenomic sequencing of bile from gallstone patients to identify different microbial community patterns and novel biliary bacteria. Sci. Rep. 2015, 5, 17450. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.Y.; Pratap, S.; Southerland, J.H.; Farmer-Dixon, C.M.; Lakshmyya, K.; Gangula, P.R. Role of oral and gut microbiome in nitric oxide-mediated colon motility. Nitric Oxide 2018, 73, 81–88. [Google Scholar] [CrossRef]
- Bhandari, S.; Reddy, M.; Shahzad, G. Association between oral hygiene and ultrasound-confirmed gallstone disease in US population. Eur. J. Gastroenterol. Hepatol. 2017, 29, 861–862. [Google Scholar] [CrossRef]
- Geetha, A. Evidence for oxidative stress in the gall bladder mucosa of gall stone patients. J. Biochem. Mol. Biol. Biophys. 2002, 6, 427–432. [Google Scholar] [CrossRef]
- Aleksunes, L.M.; Manautou, J.E. Emerging role of Nrf2 in protecting against hepatic and gastrointestinal disease. Toxicol. Pathol. 2007, 35, 459–473. [Google Scholar] [CrossRef]
- Dyck, P.A.; Hoda, F.; Osmer, E.S.; Green, R.M. Microarray analysis of hepatic gene expression in gallstone-susceptible and gallstone-resistant mice. Mamm. Genome 2003, 14, 601–610. [Google Scholar] [CrossRef]
- Si, J.; Lee, C.; Ko, G. Oral Microbiota: Microbial Biomarkers of Metabolic Syndrome Independent of Host Genetic Factors. Front. Cell. Infect. Microbiol. 2017, 7, 516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teles, R.; Wang, C.-Y. Mechanisms involved in the association between periodontal diseases and cardiovascular disease. Oral Dis. 2011, 17, 450–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grigor’eva, I.N.; Logvinenko, E.V.; Yamlikhanova, A.Y.; Romanova, T.I. View of cholelithiasis through the prism of metabolic syndrome. Bull. Sib. Branch RAMS 2011, 31, 72–78. [Google Scholar]
- Palazzo, M.; Balsari, A.; Rossini, A.; Selleri, S.; Calcaterra, C.; Gariboldi, S.; Zanobbio, L.; Arnaboldi, F.; Shirai, Y.F.; Serrao, G.; et al. Activation of enteroendocrine cells via TLRs induces hormone, chemokine, and defensin secretion. J. Immunol. 2007, 178, 4296–4303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Csendes, A.; Burdiles, P.; Maluenda, F.; Diaz, J.C.; Csendes, P.; Mitru, N. Simultaneous bacteriologic assessment of bile from gallbladder and common bile duct in control subjects and patients with gallstones and common duct stones. Arch. Surg. 1996, 131, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Helaly, G.F.; El-Ghazzawi, E.F.; Kazem, A.H.; Dowidar, N.L.; Anwar, M.M.; Attia, N.M. Detection of Helicobacter pylori infection in Egyptian patients with chronic calcular cholecystitis. Br. J. Biomed. Sci. 2014, 71, 13–18. [Google Scholar] [CrossRef]
- Neri, V.; Margiotta, M.; de Francesco, V.; Ambrosi, A.; Valle, N.D.; Fersini, A.; Tartaglia, N.; Minenna, M.F.; Ricciardelli, C.; Giorgio, F.; et al. DNA sequences and proteic antigens of H. pylori in cholecystic bile and tissue of patients with gallstones. Aliment. Pharmacol. Ther. 2005, 22, 715–720. [Google Scholar] [CrossRef]
- Kaufman, H.S.; Magnuson, T.H.; Lillemoe, K.D.; Frasca, P.; Pitt, H.A. The role of bacteria in gallbladder and common duct stone formation. Ann. Surg. 1989, 209, 584–592. [Google Scholar] [CrossRef]
- Maurer, K.J.; Ihrig, M.M.; Rogers, A.B.; Ng, V.; Bouchard, G.; Leonard, M.R.; Carey, M.C.; Fox, J.G. Identification of cholelithogenic enterohepatic helicobacter species and their role in murine cholesterol gallstone formation. Gastroenterology 2005, 128, 1023–1033. [Google Scholar] [CrossRef] [PubMed]
- Stewart, L.; Griffiss, J.M.; Jarvis, G.A.; Way, L.W. Gallstones containing bacteria are biofilms: Bacterial slime production and ability to form pigment solids determines infection severity and bacteremia. J. Gastrointest. Surg. 2007, 11, 983–984. [Google Scholar] [CrossRef] [PubMed]
- Hazrah, P.; Oahn, K.T.; Tewari, M.; Pandey, A.K.; Kumar, K.; Mohapatra, T.M.; Shukla, H.S. The frequency of live bacteria in gallstones. HPB 2004, 6, 28–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tajeddin, E.; Sherafat, S.J.; Majidi, M.R.; Alebouyeh, M.; Alizadeh, A.H.; Zali, M.R. Association of diverse bacterial communities in human bile samples with biliary tract disorders: A survey using culture and polymerase chain reaction-denaturing gradient gel electrophoresis methods. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 1331–1339. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.M.; Flechtner, A.D.; La Perle, K.M.; Gunn, J.S. Visualization of extracellular matrix components within sectioned Salmonella biofilms on the surface of human gallstones. PLoS ONE 2014, 9, e89243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monstein, H.J.; Jonsson, Y.; Zdolsek, J.; Svanvik, J. Identification of Helicobacter pylori DNA in human cholesterol gallstones. Scand. J. Gastroenterol. 2002, 37, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.P.; Pereira-Lima, J.C.; Oliveira, A.G.; Guerra, J.B.; Marques, D.L.; Sarmanho, L.; Cabral, M.M.; Queiroz, D.M. Association of the presence of Helicobacter in gallbladder tissue with GSD and cholecystitis. J. Clin. Microbiol. 2003, 41, 5615–5618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abayli, B.; Colakoglu, S.; Serin, M.; Erdogan, S.; Isiksal, Y.F.; Tuncer, I.; Koksal, F.; Demiryurek, H. Helicobacter pylori in the aetiology of cholesterol gallstones. J. Clin. Gastroenterol. 2005, 39, 134–137. [Google Scholar]
- Belzer, C.; Kusters, J.G.; Kuipers, E.J.; van Vliet, A.H.M. Urease induced calcium precipitation by Helicobacter species may initiate gallstone formation. Gut 2006, 55, 1678–1679. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.Y.; Ma, J.H.; Yuan, B.S.; Yin, J.; Liu, L.; Lu, Q.B. Association between Helicobacter pylori infection and gallbladder diseases: A retrospective study. Gastroenterol. Hepatol. 2018, 33, 1207–1212. [Google Scholar] [CrossRef]
- Fatemi, S.M.; Doosti, A.; Shokri, D.; Ghorbani-Dalini, S.; Molazadeh, M.; Tavakoli, H.; Minakari, M.; Tavakkoli, H. Is There a Correlation Between Helicobacter Pylori and Enterohepatic Helicobacter Species and Gallstone Cholecystitis? Middle East J. Dig. Dis. 2018, 10, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Bulajic, M.; Maisonneuve, P.; Schneider-Brachert, W.; Müller, P.; Reischl, U.; Stimec, B.; Lehn, N.; Lowenfels, A.B.; Löhr, M. Helicobacter pylori and the risk of benign and malignant biliary tract disease. Cancer 2002, 95, 1946–1953. [Google Scholar] [CrossRef]
- Fallone, C.A.; Tran, S.; Semret, M.; Discepola, F.; Behr, M.; Barkun, A.N. Helicobacter DNA in bile: Correlation with hepato-biliary diseases. Aliment. Pharmacol. Ther. 2003, 17, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Lee, D.H.; Lee, J.I.; Jeong, S.; Kwon, K.S.; Kim, H.G.; Shin, Y.W.; Kim, Y.S.; Choi, M.S.; Song, S.Y. Identification of Helicobacter pylori in Gallstone, Bile, and Other Hepatobiliary Tissues of Patients with Cholecystitis. Gut Liver 2010, 4, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Dar, M.Y.; Ali, S.; Raina, A.H.; Raina, M.A.; Shah, O.J.; Mudassar, S. Association of Helicobacter pylori with hepatobiliary stone disease, a prospective case control study. Indian J. Gastroenterol. 2016, 35, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, I.; Shabo, I.; Svanvik, J.; Monstein, H.J. Multiple displacement amplification of isolated DNA from human gallstones: Molecular identification of Helicobacter DNA by means of 16S rDNA-based pyrosequencing analysis. Helicobacter 2005, 10, 592–600. [Google Scholar] [CrossRef]
- Luo, Y.Q.; Teng, J.B.; Pan, B.R.; Zhang, X.Y. Liver disease and Helicobacter. World J. Gastroenterol. 1999, 5, 338–344. [Google Scholar] [CrossRef]
- Begley, M.; Gahan, C.G.; Hill, C. The interaction between bacteria and bile. FEMS Microbiol. Rev. 2005, 29, 625–651. [Google Scholar] [CrossRef] [Green Version]
- Hamada, T.; Yokota, K.; Ayada, K.; Hirai, K.; Kamada, T.; Haruma, K.; Chayama, K.; Oguma, K. Detection of Helicobacter hepaticus in human bile samples of patients with biliary disease. Helicobacter 2009, 14, 545–551. [Google Scholar] [CrossRef] [Green Version]
- Arnaout, A.H.; Abbas, S.H.; Shousha, S. Helicobacter pylori is not identified in areas of gastric metaplasia of gall bladder. J. Pathol. 1990, 160, 333–334. [Google Scholar] [CrossRef]
- Hänninen, M.L. Sensitivity of Helicobacter pylori to different bile salts. Eur. J. Clin. Microbiol. Infect. Dis. 1991, 10, 515–518. [Google Scholar] [CrossRef]
- Rudi, J.; Rudy, A.; Maiwald, M.; Stremmel, W. Helicobacter sp. are not detectable in bile from German patients with biliary disease. Gastroenterology 1999, 116, 1016–1017. [Google Scholar] [CrossRef]
- Farshad, S.H.; Alborzi, A.; Malek Hosseini, S.A.; Oboodi, B.; Rasouli, M.; Japoni, A.; Nasiri, J. Identification of Helicobacter pylori DNA in Iranian patients with gallstones. Epidemiol. Infect. 2004, 132, 1185–1189. [Google Scholar] [CrossRef] [PubMed]
- Attaallah, W.; Yener, N.; Ugurlu, M.U.; Manukyan, M.; Asmaz, E.; Aktan, A.O. Gallstones and Concomitant Gastric Helicobacter pylori Infection. Gastroenterol. Res. Pract. 2013, 2013, 643109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghazal, A.; El Sabbagh, N.; El Riwini, M. Presence of Helicobacter spp. DNA in the gallbladder of Egyptian patients with gallstone diseases. East. Mediterr. Health J. 2011, 17, 925–929. [Google Scholar] [CrossRef] [PubMed]
- Sabbaghian, M.S.; Ranaudo, J.; Zeng, L.; Alongi, A.P.; Perez-Perez, G.; Shamamian, P. Identification of Helicobacter spp. in bile and gallbladder tissue of patients with symptomatic gallbladder disease. HPB 2010, 12, 129–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherafat, S.J.; Tajeddin, E.; Majidi, M.R.S.; Vaziri, F.; Alebouyen, M.; Alizade, A.H.M.; Mojarad, E.N.; Zali, M.R. Lack of association between Helicobacter pylori infection and biliary tract diseases. Pol. J. Microbiol. 2012, 61, 319–322. [Google Scholar] [CrossRef]
- Mendez-Sanchez, N.; Pichardo, R.; González, J.; Sánchez, H.; Moreno, M.; Barquera, F.; Estevez, H.O.; Uribe, M. Lack of association between Helicobacter sp. colonization and gallstone disease. J. Clin. Gastroenterol. 2001, 32, 138–141. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.T.; Yeh, C.T.; Wu, C.S.; Liaw, Y.F. Detection and partial sequence analysis of Helicobacter pylori DNA in the bile samples. Dig. Dis. Sci. 1995, 40, 2214–2219. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, I.; Lindgren, S.; Eriksson, S.; Wadstrom, T. Serum antibodies to Helicobacter hepaticus and Helicobacter pylori in patients with chronic liver disease. Gut 2000, 46, 410–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kountouras, J.; Tsiaousi, E.; Trigonis, S.; Zavos, C.; Kouklakis, G. Helicobacter pylori infection in a Greek cohort with biliary disease. Br. J. Biomed. Sci. 2014, 71, 178–179. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.S.; Chen, J.H. The mechanism of enterohepatic circulation in the formation of gallstone disease. J. Membr. Biol. 2014, 247, 1067–1082. [Google Scholar] [CrossRef] [Green Version]
- Kasprzak, A.; Szmyt, M.; Malkowski, W.; Przybyszewska, W.; Helak-Lapaj, C.; Seraszek-Jaros, A.; Surdacka, A.; Małkowska-Lanzafame, A.; Kaczmarek, E. Analysis of immunohistochemical expression of proinflammatory cytokines (IL-1alpha, IL-6, and TNF-alpha) in gallbladder mucosa: Comparative study in acute and chronic calculous cholecystitis. Folia Morphol. 2015, 74, 65–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sipos, P.; Krisztina, H.; Blázovics, A.; Fehér, J. Cholecystitis, gallstones and free radical reactions in human gallbladder. Med. Sci. Monit. 2001, 7, 84–88. [Google Scholar] [PubMed]
- Griniatsos, J.; Sougioultzis, S.; Giaslakiotis, K.; Gazouli, M.; Prassas, E.; Felekouras, E.; Michail, O.; Avgerinos, E.; Pikoulis, E.; Kouraklis, G.; et al. Does Helicobacter pylori identification in the mucosa of the gallbladder correlate with cholesterol gallstone formation? West Indian Med. J. 2009, 58, 428–432. [Google Scholar] [PubMed]
- Stathopoulos, P.; Zundt, B.; Spelsberg, F.W.; Kolligs, L.; Diebold, J.; Goke, B.; Jüngst, D. Relation of gallbladder function and Helicobacter pylori infection to gastric mucosa inflammation in patients with symptomatic cholecystolithiasis. Digestion 2006, 73, 69–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cen, L.; Pan, J.; Zhou, B.; Yu, C.; Li, Y.; Chen, W.; Shen, Z. HelicobacterPylori infection of the gallbladder and the risk of chronic cholecystitis and GSD: A systematic review and meta-analysis. Helicobacter 2018, 23. [Google Scholar] [CrossRef]
- Gad Elhak, N.; Abd Elwahab, M.; Nasif, W.A.; Abo-Elenein, A.; Abdalla, T.; el-Shobary, M.; Haleem, M.; Yaseen, A.; el-Ghawalby, N.; Ezzat, F. Prevalence of Helicobacter pylori, gastric myoelectrical activity, gastric mucosal changes and dyspeptic symptoms before and after laparoscopic cholecystectomy. Hepatogastroenterology 2004, 51, 485–490. [Google Scholar]
- Takahashi, Y.; Yamamichi, N.; Shimamoto, T.; Mochizuki, S.; Fujishiro, M.; Takeuchi, C.; Sakaguchi, Y.; Niimi, K.; Ono, S.; Kodashima, S.; et al. Helicobacter pylori infection is positively associated with gallstones: A large-scale cross-sectional study in Japan. J. Gastroenterol. 2014, 49, 882–889. [Google Scholar] [CrossRef]
- Zhang, F.M.; Yu, C.H.; Chen, H.T.; Shen, Z.; Hu, F.L.; Yuan, X.P.; Xu, G.Q. Helicobacter pylori infection is associated with gallstones: Epidemiological survey in China. World J. Gastroenterol. 2015, 21, 8912–8919. [Google Scholar] [CrossRef]
- Figura, N.; Cetta, F.; Angelico, M.; Montalto, G.; Cetta, D.; Pacenti, L.; Vindigni, C.; Vaira, D.; Festuccia, F.; De Santis, A.; et al. Most Helicobacter pylori-infected patients have specific antibodies, and some also have H. pylori antigens and genomic material in bile. Is it a risk factor for gallstone formation? Dig. Dis. Sci. 1998, 43, 854–862. [Google Scholar] [CrossRef]
- Sripa, B.; Kanla, P.; Sinawat, P.; Haswell-Elkins, M.R. Opisthorchiasis-associated biliary stones: Light and scanning electron microscopic study. World J. Gastroenterol. 2004, 10, 3318–3321. [Google Scholar] [CrossRef] [Green Version]
- Saltykova, I.V.; Petrov, V.A.; Logacheva, M.D.; Ivanova, P.G.; Merzlikin, N.V.; Sazonov, A.E.; Ogorodova, L.M.; Brindley, P.J. Biliary Microbiota, Gallstone Disease and Infection with Opisthorchis felineus. PLoS Negl. Trop. Dis. 2016, 10, e0004809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farina, A.; Dumonceau, J.-M.; Lescuyer, P. Proteomic analysis of human bile and potential applications for cancer diagnosis. Expert Rev. Proteom. 2009, 6, 285–301. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.M.; Chiu, T.H.T.; Chang, C.C.; Lin, M.N.; Lin, C.L. Plant-Based Diet, Cholesterol, and Risk of Gallstone Disease: A Prospective Study. Nutrients 2019, 11, 335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, L.A.; Veysey, M.J.; Bathgate, T.; King, A.; French, G.; Smeeton, N.C.; Murphy, G.M.; Dowling, R.H. Mechanism for the transit-induced increase in colonic deoxycholic acid formation in cholesterol GSD. Gastroenterology 2000, 119, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.Y.; Portincasa, P.; Liu, M.; Tso, P.; Wang, D.Q.-H. Mouse models of gallstone disease. Curr. Opin. Gastroenterol. 2018, 34, 59–70. [Google Scholar] [CrossRef]
- Ramírez-Pérez, O.; Cruz-Ramón, V.; Chinchilla-López, P.; Méndez-Sánchez, N. The Role of the Gut Microbiota in Bile Acid Metabolism. Ann. Hepatol. 2017, 16, s15–s20. [Google Scholar] [CrossRef]
- Ridlon, J.M.; Harris, S.C.; Bhowmik, S.; Kang, D.-J.; Hylemon, P.B. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 2016, 7, 22–39. [Google Scholar] [CrossRef] [Green Version]
- Berr, F.; Kullak-Ublick, G.A.; Paumgartner, G.; Münzing, W.; Hylemon, P.B. 7 alpha-dehydroxylating bacteria enhance deoxycholic acid input and cholesterol saturation of bile in patients with gallstones. Gastroenterology 1996, 111, 1611–1620. [Google Scholar] [CrossRef]
- Wells, J.E.; Berr, F.; Thomas, L.A.; Dowling, R.H.; Hylemon, P.B. Isolation and characterization of cholic acid 7alpha-dehydroxylating fecal bacteria from cholesterol gallstone patients. J. Hepatol. 2000, 32, 4–10. [Google Scholar] [CrossRef]
- Urdaneta, V.; Casadesús, J. Interactions between Bacteria and Bile Salts in the Gastrointestinal and Hepatobiliary Tracts. Front. Med. 2017, 4, 163. [Google Scholar] [CrossRef]
- Kim, G.B.; Miyamoto, C.M.; Meighen, E.A.; Lee, B.H. Cloning and characterization of the bile salt hydrolase genes (bsh) from Bifidobacterium bifidum strains. Appl. Environ. Microbiol. 2004, 70, 5603–5612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutherland, J.D.; Macdonald, I.A. The metabolism of primary, 7-oxo, and 7 beta-hydroxy bile acids by Clostridium absonum. J. Lipid Res. 1982, 23, 726–732. [Google Scholar] [PubMed]
- Antharam, V.C.; McEwen, D.C.; Garrett, T.J.; Dossey, A.T.; Li, E.C.; Kozlov, A.N.; Mesbah, Z.; Wang, G.P. An Integrated Metabolomic and Microbiome Analysis Identified Specific Gut Microbiota Associated with Fecal Cholesterol and Coprostanol in Clostridium difficile Infection. PLoS ONE 2016, 11, e0148824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gérard, P.; Lepercq, P.; Leclerc, M.; Gavini, F.; Raibaud, P.; Juste, C. Bacteroides sp. strain D8, the first cholesterol-reducing bacterium isolated from human feces. Appl. Environ. Microbiol. 2007, 73, 5742–5749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Guo, M.J.; Gao, Q.; Yang, J.F.; Yang, L.; Pang, X.L.; Jiang, X.J. The effects of probiotics on total cholesterol: A meta-analysis of randomized controlled trials. Medicine 2018, 97, e9679. [Google Scholar] [CrossRef]
- Pereira, D.I.; Gibson, G.R. Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Appl. Environ. Microbiol. 2002, 68, 4689–4693. [Google Scholar] [CrossRef] [Green Version]
- Horáčková, Š.; Plocková, M.; Demnerová, K. Importance of microbial defence systems to bile salts and mechanisms of serum cholesterol reduction. Biotechnol. Adv. 2018, 36, 682–690. [Google Scholar] [CrossRef]
- Jones, M.L.; Martoni, C.J.; Parent, M.; Prakash, S. Cholesterol-lowering efficacy of a microencapsulated bile salt hydrolase-active Lactobacillus reuteri NCIMB 30242 yoghurt formulation in hypercholesterolaemic adults. Br. J. Nutr. 2012, 107, 1505–1513. [Google Scholar] [CrossRef] [Green Version]
- Porez, G.; Prawitt, J.; Gross, B.; Staels, B. Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease. J. Lipid Res. 2012, 53, 1723–1737. [Google Scholar] [CrossRef] [Green Version]
- Moschetta, A.; Bookout, A.L.; Mangelsdorf, D.J. Prevention of cholesterol gallstone disease by FXR agonists in a mouse model. Nat. Med. 2004, 10, 1352–1358. [Google Scholar] [CrossRef] [PubMed]
- Wahlström, A.; Kovatcheva-Datchary, P.; Ståhlman, M.; Bäckhed, F.; Marschall, H.U. Crosstalk between Bile Acids and Gut Microbiota and Its Impact on Farnesoid X Receptor Signalling. Dig. Dis. 2017, 35, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Devkota, S.; Chang, E.B. Interactions between Diet, Bile Acid Metabolism, Gut Microbiota, and Inflammatory Bowel Diseases. Dig. Dis. 2015, 33, 351–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez-Díaz, I.; Molinero, N.; Cabrera, A.; Rodríguez, J.I.; Margolles, A.; Delgado, S.; González, S. Diet: Cause or Consequence of the Microbial Profile of GSD Disease? Nutrients 2018, 10, 1307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Requena, T.; Martínez-Cuesta, M.C.; Peláez, C. Diet and microbiota linked in health and disease. Food Funct. 2018, 9, 688–704. [Google Scholar] [CrossRef] [Green Version]
- Inagaki, T.; Moschetta, A.; Lee, Y.-K.; Peng, L.; Zhao, G.; Downes, M.; Yu, R.T.; Shelton, J.M.; Richardson JARepa, J.J.; Mangelsdorf, D.J.; et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc. Natl. Acad. Sci. USA 2006, 103, 3920–3925. [Google Scholar] [CrossRef] [Green Version]
- Islam, K.B.; Fukiya, S.; Hagio, M.; Fujii, N.; Ishizuka, S.; Ooka, T.; Ogura, Y.; Hayashi, T.; Yokota, A. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 2011, 141, 1773–1781. [Google Scholar] [CrossRef]
- Dethlefsen, L.; McFall-Ngai, M.; Relman, D.A. An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature 2007, 449, 811–818. [Google Scholar] [CrossRef]
- Jones, B.V.; Begley, M.; Hill, C.; Gahan, C.G.; Marchesi, J.R. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl. Acad. Sci. USA 2008, 105, 13580–13585. [Google Scholar] [CrossRef] [Green Version]
- Vizoso Pinto, M.G.; Franz, C.M.; Schillinger, U.; Holzapfel, W.H. Lactobacillus spp. with in vitro probiotic properties from human faeces and traditional fermented products. Int. J. Food Microbiol. 2006, 109, 205–214. [Google Scholar] [CrossRef]
- Tanaka, H.; Doesburg, K.; Iwasaki, T.; Mierau, I. Screening of lactic acid bacteria for bile salt hydrolase activity. J. Dairy Sci. 1999, 82, 2530–2535. [Google Scholar] [CrossRef]
- Zheng, B.; Jiang, X.; Cheng, H.; Guo, L.; Zhang, J.; Xu, H.; Yu, X.; Huang, C.; Ji, J.; Ying, C.; et al. Genome characterization of two bile-isolated Vibrio fluvialis strains: An insight into pathogenicity and bile salt adaption. Sci. Rep. 2017, 7, 11827. [Google Scholar] [CrossRef] [PubMed]
- Masco, L.; Crockaert, C.; Van Hoorde, K.; Swings, J.; Huys, G. In vitro assessment of the gastrointestinal transit tolerance of taxonomic reference strains from human origin and probiotic product isolates of Bifidobacterium. J. Dairy Sci. 2007, 90, 3572–3578. [Google Scholar] [CrossRef] [PubMed]
- Ramana Ramya, J.; Thanigai Arul, K.; Epple, M.; Giebel, U.; Guendel-Graber, J.; Jayanthi, V.; Sharma, M.; Rela, M.; Narayana Kalkura, S. Chemical and structural analysis of gallstones from the Indian subcontinent. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 78, 878–885. [Google Scholar] [CrossRef] [PubMed]
- Swidsinski, A.; Ludwig, W.; Pahlig, H.; Priem, F. Molecular genetic evidence of bacterial colonization of cholesterol gallstones. Gastroenterology 1995, 108, 860–864. [Google Scholar] [CrossRef]
- Lee, D.K.; Tarr, P.I.; Haigh, W.G.; Lee, S.P. Bacterial DNA in Mixed Cholesterol Gallstones. Am. J. Gastroenterol. 1999, 94, 3502–3506. [Google Scholar] [CrossRef] [PubMed]
- Kose, S.H.; Grice, K.; Orsi, W.D.; Ballal, M.; Coolen, M.J.L. Metagenomics of pigmented and cholesterol gallstones: The putative role of bacteria. Sci. Rep. 2018, 8, 11218. [Google Scholar] [CrossRef]
- Stewart, L.; Grifiss, J.M.; Jarvis, G.A.; Way, L.W. Biliary bacterial factors determine the path of gallstone formation. Am. J. Surg. 2006, 192, 598–603. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, Y.; Liu, Y.; Nie, Y.; Xu, P.; Xia, B.; Tian, F.; Sun, Q. Cholesterol gallstones and bile host diverse bacterial communities with potential to promote the formation of gallstones. Microb. Pathog. 2015, 83–84, 57–63. [Google Scholar] [CrossRef]
- Stewart, L.; Smith, A.L.; Pellegrini, C.A.; Motson, R.W.; Way, L.W. Pigment gallstones form as a composite of bacterial micro-colonies and pigment solids. Ann. Surg. 1987, 206, 242–250. [Google Scholar] [CrossRef]
- Sauter, G.H.; Moussavian, A.C.; Meyer, G.; Steitz, H.O.; Parhofer, K.G.; Jüngst, D. Bowel habits and bile acid malabsorption in the months after cholecystectomy. Am. J. Gastroenterol. 2002, 97, 1732–1735. [Google Scholar] [CrossRef]
- Sarashina-Kida, H.; Negishi, H.; Nishio, J.; Suda, W.; Nakajima, Y.; Yasui-Kato, M.; Iwaisako, K.; Kang, S.; Endo, N.; Yanai, H.; et al. Gallbladder-derived surfactant protein D regulates gut commensal bacteria for maintaining intestinal homeostasis. Proc. Natl. Acad. Sci. USA 2017, 114, 10178–10183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fall, K.; Ye, W.; Nyrén, O. Risk for gastric cancer after cholecystectomy. Am. J. Gastroenterol. 2007, 102, 1180–1184. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.K.; Yeh, J.H.; Lin, C.L.; Peng, C.L.; Sung, F.C.; Hwang, I.M.; Kao, C.H. Cancer risk in patients with GSD and after cholecystectomy: A nationwide cohort study. J. Gastroenterol. 2014, 49, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Goldacre, M.J.; Wotton, C.J.; Abisgold, J.; Yeates, D.G.; Collins, J. Association between cholecystectomy and intestinal cancer: A national record linkage study. Ann. Surg. 2012, 256, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigor’eva, I.N.; Romanova, T.I. Gallstone Disease and Microbiome. Microorganisms 2020, 8, 835. https://doi.org/10.3390/microorganisms8060835
Grigor’eva IN, Romanova TI. Gallstone Disease and Microbiome. Microorganisms. 2020; 8(6):835. https://doi.org/10.3390/microorganisms8060835
Chicago/Turabian StyleGrigor’eva, Irina N., and Tatyana I. Romanova. 2020. "Gallstone Disease and Microbiome" Microorganisms 8, no. 6: 835. https://doi.org/10.3390/microorganisms8060835
APA StyleGrigor’eva, I. N., & Romanova, T. I. (2020). Gallstone Disease and Microbiome. Microorganisms, 8(6), 835. https://doi.org/10.3390/microorganisms8060835