The Obesity-Related Gut Bacterial and Viral Dysbiosis Can Impact the Risk of Colon Cancer Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. 16S rRNA Gene Library Preparation Targeted Sequencing
2.3. Bioinformatics Analysis
2.4. Detection of the HPyV Genomes
2.5. Statistical Analysis
3. Results
3.1. Alpha Diversity
3.2. Specific OTUs
3.3. Microbiome Composition of HPyV-Positive Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bhandari, A.; Woodhouse, M.; Gupta, S. Colorectal cancer is a leading cause of cancer incidence and mortality among adults younger than 50 years in the USA: A seer-based analysis with comparison to other young-onset cancers. J. Investig. Med. 2017, 65, 311–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meza, R.; Jeon, J.; Renehan, A.G.; Luebeck, E.G. Colorectal cancer incidence trends in the united states and united kingdom: Evidence of right- to left-sided biological gradients with implications for screening. Cancer Res. 2010, 70, 5419–5429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, R.S.; Nishihara, R.; Cao, Y.; Song, M.; Mima, K.; Qian, Z.R.; Nowak, J.A.; Kosumi, K.; Hamada, T.; Masugi, Y.; et al. Association of dietary patterns with risk of colorectal cancer subtypes classified by fusobacterium nucleatum in tumor tissue. JAMA Oncol. 2017, 3, 921–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.; Hunter, D.J.; Spiegelman, D.; Bergkvist, L.; Berrino, F.; Van den Brandt, P.A.; Buring, J.E.; Colditz, G.A.; Freudenheim, J.L.; Fuchs, C.S.; et al. Dietary fiber intake and risk of colorectal cancer: A pooled analysis of prospective cohort studies. JAMA 2005, 294, 2849–2857. [Google Scholar] [CrossRef] [Green Version]
- Jensen, B.W.; Bjerregaard, L.G.; Angquist, L.; Gogenur, I.; Renehan, A.G.; Osler, M.; Sorensen, T.I.A.; Baker, J.L. Change in weight status from childhood to early adulthood and late adulthood risk of colon cancer in men: A population-based cohort study. Int. J. Obes. 2018, 42, 1797–1803. [Google Scholar] [CrossRef]
- Vernieri, C.; Casola, S.; Foiani, M.; Pietrantonio, F.; De Braud, F.; Longo, V. Targeting cancer metabolism: Dietary and pharmacologic interventions. Cancer Discov. 2016, 6, 1315–1333. [Google Scholar] [CrossRef] [Green Version]
- Tjalsma, H.; Boleij, A.; Marchesi, J.R.; Dutilh, B.E. A bacterial driver-passenger model for colorectal cancer: Beyond the usual suspects. Nature reviews. Microbiology 2012, 10, 575–582. [Google Scholar] [CrossRef]
- Kean, J.M.; Rao, S.; Wang, M.; Garcea, R.L. Seroepidemiology of human polyomaviruses. PLoS Pathog. 2009, 5, e1000363. [Google Scholar] [CrossRef] [Green Version]
- Viscidi, R.P.; Rollison, D.E.; Sondak, V.K.; Silver, B.; Messina, J.L.; Giuliano, A.R.; Fulp, W.; Ajidahun, A.; Rivanera, D. Age-specific seroprevalence of merkel cell polyomavirus, bk virus, and jc virus. Clin. Vaccine Immunol. 2011, 18, 1737–1743. [Google Scholar] [CrossRef] [Green Version]
- Baez, C.F.; Brandao Varella, R.; Villani, S.; Delbue, S. Human polyomaviruses: The battle of large and small tumor antigens. Virology 2017, 8, 1178122–17744785. [Google Scholar] [CrossRef]
- Saltzman, E.T.; Palacios, T.; Thomsen, M.; Vitetta, L. Intestinal microbiome shifts, dysbiosis, inflammation, and non-alcoholic fatty liver disease. Front. Microbiol. 2018, 9, 61. [Google Scholar] [CrossRef] [PubMed]
- Kelly, D.; Yang, L.; Pei, Z. Gut microbiota, fusobacteria, and colorectal cancer. Diseases 2018, 6, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, F.M.; Liu, H.L. Fusobacterium nucleatum and colorectal cancer: A review. World J. Gastrointest. Oncol. 2018, 10, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Chen, J.; Yao, H.; Hu, H. Fusobacterium and colorectal cancer. Front. Oncol. 2018, 8, 371. [Google Scholar] [CrossRef] [PubMed]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: Human gut microbes associated with obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef] [PubMed]
- Nishtar, S.; Gluckman, P.; Armstrong, T. Ending childhood obesity: A time for action. Lancet 2016, 387, 825–827. [Google Scholar] [CrossRef]
- NIH conference. Gastrointestinal surgery for severe obesity. Consensus Development Conference Panel. Ann. Intern. Med. 1991, 115, 956–961. [Google Scholar]
- Campisciano, G.; Palmisano, S.; Cason, C.; Giuricin, M.; Silvestri, M.; Guerra, M.; Macor, D.; De Manzini, N.; Croce, L.S.; Comar, M. Gut microbiota characterisation in obese patients before and after bariatric surgery. Benef. Microbes 2018, 9, 367–373. [Google Scholar] [CrossRef]
- Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef] [Green Version]
- Janda, J.M.; Abbott, S.L.; Bystrom, S.; Probert, W.S. Identification of two distinct hybridization groups in the genus hafnia by 16s rrna gene sequencing and phenotypic methods. J. Clin. Microbiol. 2005, 43, 3320–3323. [Google Scholar] [CrossRef] [Green Version]
- Derrien, M.; Collado, M.C.; Ben-Amor, K.; Salminen, S.; De Vos, W.M. The mucin degrader akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl. Environ. Microbiol. 2008, 74, 1646–1648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Y.; Zhang, Q.; Zhang, Y.; Lu, M.; Liu, Y.; Zheng, T.; Feng, S.; Hao, M.; Shi, H. Muc1 predicts colorectal cancer metastasis: A systematic review and meta-analysis of case controlled studies. PLoS ONE 2015, 10, e0138049. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Jin, S.; Lu, H.; Mi, S.; Shao, W.; Zuo, X.; Yin, H.; Zeng, S.; Shimamoto, F.; Qi, G. Expression of survivin, muc2 and muc5 in colorectal cancer and their association with clinicopathological characteristics. Oncol. Letters 2017, 14, 1011–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopetuso, L.R.; Petito, V.; Graziani, C.; Schiavoni, E.; Paroni Sterbini, F.; Poscia, A.; Gaetani, E.; Franceschi, F.; Cammarota, G.; Sanguinetti, M.; et al. Gut microbiota in health, diverticular disease, irritable bowel syndrome, and inflammatory bowel diseases: Time for microbial marker of gastrointestinal disorders. Dig. Dis. 2018, 36, 56–65. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pena, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. Qiime allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Ritari, J.; Salojarvi, J.; Lahti, L.; De Vos, W.M. Improved taxonomic assignment of human intestinal 16s rrna sequences by a dedicated reference database. BMC Genom. 2015, 16, 1056. [Google Scholar] [CrossRef] [Green Version]
- Rideout, J.R.; He, Y.; Navas-Molina, J.A.; Walters, W.A.; Ursell, L.K.; Gibbons, S.M.; Chase, J.; McDonald, D.; Gonzalez, A.; Robbins-Pianka, A.; et al. Subsampled open-reference clustering creates consistent, comprehensive otu definitions and scales to billions of sequences. PeerJ 2014, 2, e545. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. Search and clustering orders of magnitude faster than blast. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [Green Version]
- Zanotta, N.; Delbue, S.; Signorini, L.; Villani, S.; D’Alessandro, S.; Campisciano, G.; Colli, C.; De Seta, F.; Ferrante, P.; Comar, M. Merkel cell polyomavirus is associated with anal infections in men who have sex with men. Microorganisms 2019, 7, 54. [Google Scholar] [CrossRef] [Green Version]
- Lo, Y.M.; Tein, M.S.; Lau, T.K.; Haines, C.J.; Leung, T.N.; Poon, P.M.; Wainscoat, J.S.; Johnson, P.J.; Chang, A.M.; Hjelm, N.M. Quantitative analysis of fetal DNA in maternal plasma and serum: Implications for noninvasive prenatal diagnosis. Am. J. Hum. Genet. 1998, 62, 768–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Tumor | Obese | Control | Fisher’s Exact Test p Value | |
---|---|---|---|---|
Age (m ± sd) | 74 ± 11 yrs | 44 ± 9 yrs | 44 ± 9 yrs | p < 0.001: T vs. O/C |
Women | 21 | 21 | 20 | p < 0.001: T vs. O/C |
Men | 32 | 4 | 7 | |
BMI (m ± sd) | 26 ± 6 kg/m2 | 37 ± 7 kg/m2 | 22 ± 3 kg/m2 | p < 0.001: O vs. T/C; p < 0.05: T vs. C |
Smoke | 13/53 (24%) | 9/25 (36%) | 3/27 (11%) | - |
Alcohol | 8/53 (15%) | 0 | 0 | p < 0.05: T vs. O/C |
T2DM | 17/53 (32%) | 1/25 (4%) | 0 | p < 0.05: C vs. O/T |
Metric | Tumor | Obese | Control | p Value T vs. O | p Value T vs. C | p Value O vs. C |
---|---|---|---|---|---|---|
Chao1 | 559 ± 187 | 662 ± 201 | 642 ± 248 | 0.1 | 0.3 | 1 |
Observed species | 289 ± 75 | 313 ± 72 | 329 ± 113 | 0.6 | 0.2 | 1 |
Shannon | 4.9 ± 0.6 | 4.7 ± 0.5 | 5 ± 0.8 | 0.3 | 1 | 0.3 |
Bacterial Phyla | Tumor | Obese | Control | p Value FDR | ||||
---|---|---|---|---|---|---|---|---|
Mean | sd | Mean | sd | Mean | sd | LDA Score | ||
Actinobacteria | 1.29% | 1.94% | 3.42% | 7.17% | 2.65% | 4.90% | 0.38 | 5.1 |
Bacteroidetes | 53.08% | 16.11% | 59.33% | 21.79% | 56.41% | 18.82% | 0.33 | 5.5 |
Firmicutes | 32.88% | 13.29% | 30.14% | 14.91% | 35.75% | 16.68% | 0.41 | 5.4 |
Fusobacteria | 0.33% | 1.16% | 0.33% | 1.17% | 0.01% | 0.06% | 0.22 | 4.1 |
Lentisphaerae | 0.06% | 0.16% | 0.01% | 0.03% | 0.03% | 0.07% | 0.38 | 2.8 |
Proteobacteria | 10.83% | 11.96% | 6.08% | 7.70% | 4.74% | 5.57% | 0.11 | 5.5 |
Synergistetes | 0.29% | 0.89% | 0.14% | 0.71% | 0.10% | 0.44% | 0.11 | 4.0 |
Verrucomicrobia | 1.10% | 2.13% | 0.07% | 0.19% | 0.03% | 0.06% | 0.004 | 4.8 |
Tumor | Obese | Control | p Value FDR | ||||||
---|---|---|---|---|---|---|---|---|---|
Phylum | Species | M | sd | m | sd | m | sd | LDA Score | |
B | Alistipes putredinis | 3.03% | 3.02% | 0.88% | 1.41% | 3.02% | 2.81% | 0.03 | 5.0 |
Alistipes senegalensis | 1.54% | 3.11% | 0.41% | 0.92% | 0.52% | 0.87% | 0.02 | 4.8 | |
Barnesiella intestinihominis | 0.05% | 0.11% | 0.02% | 0.04% | 0.11% | 0.18% | 0.03 | 2.9 | |
F | Blautia wexlerae | 0.25% | 1.38% | 0.46% | 1.10% | 0.84% | 3.01% | 0.02 | 4.5 |
Christensenella minuta | 0.20% | 0.64% | 0.00% | 0.00% | 0.11% | 0.27% | 0.03 | 4.0 | |
Clostridium bartlettii | 0.32% | 0.79% | 1.90% | 4.29% | 0.29% | 0.74% | 0.05 | 4.9 | |
Clostridium bolteae | 0.01% | 0.01% | 0.03% | 0.08% | 0.01% | 0.02% | 0.00 | 4.6 | |
Clostridium clariflavum | 0.10% | 0.22% | 0.00% | 0.01% | 0.22% | 0.40% | 0.03 | 4.1 | |
Eubacterium rectale | 0.03% | 0.05% | 0.10% | 0.15% | 0.35% | 0.57% | 0.02 | 4.2 | |
Lactobacillus rogosae | 0.10% | 0.15% | 0.11% | 0.19% | 0.43% | 0.54% | 0.02 | 4.3 | |
Papillibacter cinnamivorans | 0.16% | 0.32% | 0.01% | 0.02% | 0.38% | 0.96% | 0.03 | 4.3 | |
Ruminococcus faecis | 0.12% | 0.42% | 0.12% | 0.58% | 0.08% | 0.17% | 0.03 | 3.7 | |
P | Hafnia alvei | 7.81% | 11.15% | 1.83% | 6.82% | 0.78% | 1.49% | 0.00 | 5.6 |
Parasutterella excrementihominis | 0.13% | 0.41% | 1.21% | 2.90% | 1.19% | 2.76% | 0.02 | 4.7 | |
Yokenella regensburgei | 0.13% | 0.50% | 0.02% | 0.07% | 0.00% | 0.00% | 0.03 | 3.8 | |
V | Akkermansia muciniphila | 1.10% | 2.13% | 0.07% | 0.19% | 0.03% | 0.06% | 0.01 | 4.8 |
Virus | Tumor (53) | Mean Viral Load (Copies/mL) | Control (27) | Mean Viral Load (Copies/mL) | Obese (27) | Mean Viral Load (Copies/mL) |
---|---|---|---|---|---|---|
BKPyV+/tot (%) | 2/53 (3.8%) | 6 × 103 | 0/27 | 0/27 | ||
MCPyV+/tot (%) | 4/53 (7.6%) | 4.2 × 105 | 1/27 (3.7%) | 8 x104 | 2/27 (7.4%) | 3.3 × 104 |
HPyV+/tot (%) | 6/53 (9.4%) | 2.1 × 105 | 1/27 (3.7%) | 8 x104 | 2/27 (7.4%) | 3.3 × 104 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campisciano, G.; de Manzini, N.; Delbue, S.; Cason, C.; Cosola, D.; Basile, G.; Ferrante, P.; Comar, M.; Palmisano, S. The Obesity-Related Gut Bacterial and Viral Dysbiosis Can Impact the Risk of Colon Cancer Development. Microorganisms 2020, 8, 431. https://doi.org/10.3390/microorganisms8030431
Campisciano G, de Manzini N, Delbue S, Cason C, Cosola D, Basile G, Ferrante P, Comar M, Palmisano S. The Obesity-Related Gut Bacterial and Viral Dysbiosis Can Impact the Risk of Colon Cancer Development. Microorganisms. 2020; 8(3):431. https://doi.org/10.3390/microorganisms8030431
Chicago/Turabian StyleCampisciano, Giuseppina, Nicolò de Manzini, Serena Delbue, Carolina Cason, Davide Cosola, Giuseppe Basile, Pasquale Ferrante, Manola Comar, and Silvia Palmisano. 2020. "The Obesity-Related Gut Bacterial and Viral Dysbiosis Can Impact the Risk of Colon Cancer Development" Microorganisms 8, no. 3: 431. https://doi.org/10.3390/microorganisms8030431
APA StyleCampisciano, G., de Manzini, N., Delbue, S., Cason, C., Cosola, D., Basile, G., Ferrante, P., Comar, M., & Palmisano, S. (2020). The Obesity-Related Gut Bacterial and Viral Dysbiosis Can Impact the Risk of Colon Cancer Development. Microorganisms, 8(3), 431. https://doi.org/10.3390/microorganisms8030431