Establishment of a Challenge Model for Sheeppox Virus Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Design and Collection of Samples
2.3. Molecular Analyses of Different Sample Matrices
2.4. Serological Examination
2.5. Sequencing of SPPV-“India/2013/Surankote” and SPPV-“Egypt/2018”
3. Results
3.1. Clinical Signs after Experimental Infection
3.2. Viremia and Shedding of Virus
3.3. Presence of Viral Gnome in Organ Samples
3.4. Serological Response
3.5. Full Genome Sequencing of SPPV-“India/2013/Surankote” and SPPV-“Egypt/2018”
4. Discussion
4.1. Genetic Relationship of SPPV-“India/2013/Surankote” and SPPV-“Egypt/2018”
4.2. Pathogenesis in Sheep after Experimental Infection
4.3. Establishment of a Challenge Model for SPPV Infections
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- King, A.M.Q.; Adams, M.J.; Carstens, E.B.; Lefkowitz, E. Virus Taxonomy—Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses; Elsevier Academic Press: San Diego, CA, USA, 2012; pp. 291–309. [Google Scholar]
- International Committee on Taxonomy of Viruses. Virus Taxonomy: 2019 Release. Available online: https://talk.ictvonline.org/taxonomy/ (accessed on 9 September 2020).
- Babiuk, S.; Bowden, T.R.; Boyle, D.B.; Wallace, D.B.; Kitching, R.P. Capripoxviruses: An emerging worldwide threat to sheep, goats and cattle. Transbound. Emerg. Dis. 2008, 55, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Bowden, T.R.; Babiuk, S.L.; Parkyn, G.R.; Copps, J.S.; Boyle, D.B. Capripoxvirus tissue tropism and shedding: A quantitative study in experimentally infected sheep and goats. Virology 2008, 371, 380–393. [Google Scholar] [CrossRef] [Green Version]
- Boumart, Z.; Daouam, S.; Belkourati, I.; Rafi, L.; Tuppurainen, E.; Tadlaoui, K.O.; El Harrak, M. Comparative innocuity and efficacy of live and inactivated sheeppox vaccines. BMC Vet. Res. 2016, 12, 133. [Google Scholar] [CrossRef] [Green Version]
- Kitching, P. Progress towards sheep and goat pox vaccines. Vaccine 1983, 1, 4–9. [Google Scholar] [CrossRef]
- Babiuk, S.; Bowden, T.R.; Parkyn, G.; Dalman, B.; Hoa, D.M.; Long, N.T.; Vu, P.P.; Bieu, D.X.; Copps, J.; Boyle, D.B. Yemen and Vietnam capripoxviruses demonstrate a distinct host preference for goats compared with sheep. J. Gen. Virol. 2009, 90, 105–114. [Google Scholar] [CrossRef]
- Kitching, R.P.; Carn, V.M. Sheep pox and goat pox. In Office International des Epizooties Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (Mammals, Birds and Bees); OIE: Paris, France, 2004. [Google Scholar]
- Carn, V.M. Control of capripoxvirus infections. Vaccine 1993, 11, 1275–1279. [Google Scholar] [CrossRef]
- Bhanuprakash, V.; Indrani, B.K.; Hosamani, M.; Singh, R.K. The current status of sheep pox disease. Comp. Immunol. Microbiol. Infect. Dis. 2006, 29, 27–60. [Google Scholar] [CrossRef]
- Rao, T.V.; Bandyopadhyay, S.K. A comprehensive review of goat pox and sheep pox and their diagnosis. Anim. Health Res. Rev. 2000, 1, 127–136. [Google Scholar] [CrossRef]
- Tuppurainen, E.S.M.; Venter, E.H.; Shisler, J.L.; Gari, G.; Mekonnen, G.A.; Juleff, N.; Lyons, N.A.; De Clercq, K.; Upton, C.; Bowden, T.R.; et al. Review: Capripoxvirus Diseases: Current Status and Opportunities for Control. Transbound. Emerg. Dis. 2017, 64, 729–745. [Google Scholar] [CrossRef]
- Boshra, H.; Truong, T.; Babiuk, S.; Hemida, M.G. Seroprevalence of Sheep and Goat Pox, Peste Des Petits Ruminants and Rift Valley Fever in Saudi Arabia. PLoS ONE 2015, 10, e0140328. [Google Scholar] [CrossRef] [Green Version]
- OIE. Technical Disease Card: Sheep Pox and Goat Pox; OIE: Paris, France, 2013. [Google Scholar]
- OIE. Sheep pox and goat pox. In OIE Terrestrial Manual 2017; Chapter 2.7.13; OIE: Paris, France, 2017. [Google Scholar]
- Kitching, R.P.; Taylor, W.P. Transmission of capripoxvirus. Res. Vet. Sci. 1985, 39, 196–199. [Google Scholar] [CrossRef]
- Mellor, P.S.; Kitching, R.P.; Wilkinson, P.J. Mechanical transmission of capripox virus and African swine fever virus by Stomoxys calcitrans. Res. Vet. Sci. 1987, 43, 109–112. [Google Scholar] [CrossRef]
- Chamchod, F. Modeling the spread of capripoxvirus among livestock and optimal vaccination strategies. J. Theor. Biol. 2018, 437, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Davies, F.G. Characteristics of a virus causing a pox disease in sheep and goats in Kenya, with observation on the epidemiology and control. J. Hyg. 1976, 76, 163–171. [Google Scholar] [CrossRef]
- Yeruham, I.; Yadin, H.; Van Ham, M.; Bumbarov, V.; Soham, A.; Perl, S. Economic and epidemiological aspects of an outbreak of sheeppox in a dairy sheep flock. Vet Rec. 2007, 160, 236–237. [Google Scholar] [CrossRef]
- OIE. OIE-Listed Diseases, Infections and Infestations in Force in 2020. Available online: https://www.oie.int/animal-health-in-the-world/oie-listed-diseases-2020/ (accessed on 16 October 2020).
- Tulman, E.R.; Afonso, C.L.; Lu, Z.; Zsak, L.; Kutish, G.F.; Rock, D.L. Genome of lumpy skin disease virus. J. Virol. 2001, 75, 7122–7130. [Google Scholar] [CrossRef] [Green Version]
- Tulman, E.R.; Afonso, C.L.; Lu, Z.; Zsak, L.; Sur, J.H.; Sandybaev, N.T.; Kerembekova, U.Z.; Zaitsev, V.L.; Kutish, G.F.; Rock, D.L. The genomes of sheeppox and goatpox viruses. J. Virol. 2002, 76, 6054–6061. [Google Scholar] [CrossRef] [Green Version]
- Biswas, S.; Noyce, R.S.; Babiuk, L.A.; Lung, O.; Bulach, D.M.; Bowden, T.R.; Boyle, D.B.; Babiuk, S.; Evans, D.H. Extended sequencing of vaccine and wild-type capripoxvirus isolates provides insights into genes modulating virulence and host range. Transbound. Emerg. Dis. 2020, 67, 80–97. [Google Scholar] [CrossRef]
- Wolff, J.; King, J.; Moritz, T.; Pohlmann, A.; Hoffmann, D.; Beer, M.; Hoffmann, B. Experimental Infection and Genetic Characterization of Two Different Capripox Virus Isolates in Small Ruminants. Viruses 2020, 12, 1098. [Google Scholar] [CrossRef]
- Forth, J.H.; Forth, L.F.; King, J.; Groza, O.; Hubner, A.; Olesen, A.S.; Hoper, D.; Dixon, L.K.; Netherton, C.L.; Rasmussen, T.B.; et al. A Deep-Sequencing Workflow for the Fast and Efficient Generation of High-Quality African Swine Fever Virus Whole-Genome Sequences. Viruses 2019, 11, 846. [Google Scholar] [CrossRef] [Green Version]
- Bhanuprakash, V.; Hosamani, M.; Singh, R.K. Prospects of control and eradication of capripox from the Indian subcontinent: A perspective. Antivir. Res. 2011, 91, 225–232. [Google Scholar] [CrossRef]
- Bhanuprakash, V.; Moorthy, A.R.; Krishnappa, G.; Srinivasa Gowda, R.N.; Indrani, B.K. An epidemiological study of sheep pox infection in Karnataka State, India. Rev. Sci. Tech. 2005, 24, 909–920. [Google Scholar] [CrossRef] [PubMed]
- Manjunatha Reddy, G.B.; Balamurugan, V.; Suresh, K.P.; Hemadri, D.; Patil, S.S.; Govindaraj, G. Epidemiology and Impact Analysis of Sheep and Goat Pox; ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI) Annual Report; ICAR: New Delhi, India, 2015. [Google Scholar]
- Fares, M.; Fawzy, M.; Shahin, M.; Elshahidy, M. A Comprehensive Review of Sheep and Goat Pox Viruses: Perspective of Their Epidemiology and Economic Importance in Egypt. SCVMJ 2019, 24, 313–328. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, M.A.; Khafagi, M.H. Detection, identification, and differentiation of sheep pox virus and goat pox virus from clinical cases in Giza Governorate, Egypt. Vet. World 2016, 9, 1445–1449. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elfatah, E.B.; El-Mekkawi, M.F.; Bastawecy, I.M.; Fawzi, E.M. Identification and phylogentic analysis of sheep pox during an outbreak of sheep in Sharkia Governorate, Egypt. Genet. Mol. Res. 2018, 17, gmr16039901. [Google Scholar] [CrossRef]
- Wolff, J.; Krstevski, K.; Beer, M.; Hoffmann, B. Minimum Infective Dose of a Lumpy Skin Disease Virus Field Strain from North Macedonia. Viruses 2020, 12, 768. [Google Scholar] [CrossRef] [PubMed]
- Carn, V.M.; Kitching, R.P. The clinical response of cattle experimentally infected with lumpy skin disease (Neethling) virus. Arch. Virol. 1995, 140, 503–513. [Google Scholar] [CrossRef]
- Hoffmann, B.; Depner, K.; Schirrmeier, H.; Beer, M. A universal heterologous internal control system for duplex real-time RT-PCR assays used in a detection system for pestiviruses. J. Virol. Methods 2006, 136, 200–209. [Google Scholar] [CrossRef]
- Dietze, K.; Moritz, T.; Alexandrov, T.; Krstevski, K.; Schlottau, K.; Milovanovic, M.; Hoffmann, D.; Hoffmann, B. Suitability of group-level oral fluid sampling in ruminant populations for lumpy skin disease virus detection. Vet. Microbiol. 2018, 221, 44–48. [Google Scholar] [CrossRef]
- Spearman, C. The Method of ‘Right and Wrong Cases’ (‘Constant Stimuli’) without Gauss’s Formulae. Br. J. Psychol. 1908, 2, 227–242. [Google Scholar] [CrossRef]
- Kärber, G. Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 1931, 162, 480–483. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Möller, J.; Moritz, T.; Schlottau, K.; Krstevski, K.; Hoffmann, D.; Beer, M.; Hoffmann, B. Experimental lumpy skin disease virus infection of cattle: Comparison of a field strain and a vaccine strain. Arch. Virol. 2019, 164, 2931–2941. [Google Scholar] [CrossRef]
- Hajjou, S.; Khataby, K.; Amghar, S.; El Fahime, M.; El Harrak, M.; Fakiri, M.; Loutfi, C. Assessment and comparison of the pathogenicity of Sheeppox Virus strains isolated in Morocco. Iran. J. Microbiol. 2017, 9, 372–380. [Google Scholar]
- Hamdi, J.; Bamouh, Z.; Jazouli, M.; Boumart, Z.; Tadlaoui, K.O.; Fihri, O.F.; El Harrak, M. Experimental evaluation of the cross-protection between Sheeppox and bovine Lumpy skin vaccines. Sci. Rep. 2020, 10, 8888. [Google Scholar] [CrossRef]
- Eschbaumer, M.; Schulz, C.; Wackerlin, R.; Gauly, M.; Beer, M.; Hoffmann, B. Limitations of sandwich ELISAs for bluetongue virus antibody detection. Vet. Rec. 2011, 168, 643. [Google Scholar] [CrossRef]
Animal ID | IND-IV-09 | IND-IV-10 | IND-IV-11 | IND-IN-12 | IND-IN-13 | IND-IN-14 | IND-IC-15 | IND-IC-16 |
Days Until Euthanasia | 14 dpi | 10 dpi | 7 dpi | 14 dpi | 10 dpi | recovered | 27 dpi | recovered |
Animal ID | EG-IV-01 | EG-IV-02 | EG-IV-03 | EG-IN-04 | EG-IN-05 | EG-IN-06 | EG-IC-07 | EG-IC-08 |
Days Until Euthanasia | recovered | 14 dpi | recovered | 16 dpi | 16 dpi | 14 dpi | 27 dpi | 14 dpi |
Evaluation Group | Symptomatic | Score |
---|---|---|
General condition | Unremarkable | 0 |
Reduced activity | 1 | |
Reduced activity, depressive | 2 | |
Increased resting, clearly reduced activity | 3 | |
Apathy and/or lateral position, animal does not react to stimuli | Abandonment | |
Feed and water intake | Unremarkable | 0 |
Reduced feed or water intake, increased salivation | 1 | |
Clearly reduced feed or water intake, slight weight loss | 2 | |
No feed or water intake (1 day), marked weight loss | 3 | |
No feed or water intake (2 day), weight loss >10% compared to the day of experimental infection | Abandonment | |
Respiratory tract | Unremarkable | 0 |
Slightly difficult breathing | 1 | |
Marked difficult breathing, breathing sound, slight abdominal breathing | 2 | |
Marked difficult breathing, clear breathing sound, moderate abdominal breathing | 3 | |
Strong difficult breathing, strong breathing sound, strong abdominal breathing | Abandonment | |
Nasal discharge | Not observed | 0 |
Slight to moderate nasal discharge, nose not/only slightly sticky | 1 | |
Strong nasal discharge, nose clearly sticky | 2 | |
Skin changes | Unremarkable | 0 |
Sporadic skin nodules/lesions/papules | 1 | |
Many skin nodules/lesions/papules | 2 | |
Generalized skin lesions/nodules/papules | 3 | |
Multiple abscesses or phlegmons | Abandonment | |
Additional clinical signs | Lameness | 1 |
Mild swelling of cervical lymph node | 1 | |
Strong swelling of cervical lymph node | 2 |
SPPV-“India/2013/Surankote” | Capri-p32-Taq-FAM | |||||||
---|---|---|---|---|---|---|---|---|
Organ Sample | Intravenously | Intranasally | In-Contact | |||||
IND-IV-09 | IND-IV-10 | IND-IV-11 | IND-IN-12 | IND-IN-13 | IND-IN-14 | IND-IC-15 | IND-IC-16 | |
cervical lymph node | 31.0 | 33.0 | 32.4 | 34.7 | 25.9 | no Cq | 30.4 | no Cq |
mediastinal lymph node | no Cq | 33.0 | 31.0 | no Cq | no Cq | no Cq | no Cq | no Cq |
mesenterial lymph node | no Cq | no Cq | no Cq | no Cq | no Cq | no Cq | 35.6 | no Cq |
liver | no Cq | no Cq | 34.1 | no Cq | 36.4 | no Cq | 35.7 | no Cq |
spleen | no Cq | no Cq | 36.4 | no Cq | 34.3 | no Cq | no Cq | no Cq |
lung | 34.3 | 26.8 | 22.8 | no Cq | 33.1 | no Cq | 37.0 | no Cq |
Additional Samples | ||||||||
coagulated heart blood | - | - | 29.4 | - | - | - | - | - |
lung fluid | - | - | 31.4 | - | - | - | - | - |
Location of Skin Sample | ||||||||
breast | - | 29.5 | - | - | 28.5 | - | - | - |
- | 19.4 | - | - | 29.5 | - | - | - | |
- | 28.9 | - | - | 23.1 | - | - | - | |
- | 20.4 | - | - | 28.3 | - | - | - | |
axilla | 16.6 | 28.4 | 21.2 | 36.3 | 27.4 | - | 25.9 | - |
29.7 | 25.0 | 27.9 | 36.5 | 23.9 | - | 23.3 | - | |
27.3 | 30.7 | 30.4 | 36.3 | 24.2 | - | 24.5 | - | |
29.2 | 20.9 | 24.0 | 37.2 | 23.4 | - | 28.1 | - | |
back | - | - | - | - | 23.3 | - | - | - |
- | - | - | - | 26.2 | - | - | - | |
- | - | - | - | 17.4 | - | - | - | |
- | - | - | - | 16.9 | - | - | - | |
hind leg | - | 32.8 | - | - | 21.3 | - | 21.0 | - |
- | 31.7 | - | - | 18.5 | - | 19.7 | - | |
- | 30.5 | - | - | 18.4 | - | 20.5 | - | |
- | 32.0 | - | - | 18.1 | - | 19.3 | - | |
tail | - | - | - | - | - | - | 19.5 | - |
scrotum | - | 20.1 | - | - | 25.9 | - | 21.0 | - |
- | - | - | - | 27.8 | - | 19.7 | - | |
prepuce | - | 18.4 | - | - | 17.6 | - | 18.9 | - |
- | 18.2 | - | - | - | - | 16.7 | - | |
pox-like lesion lung | 35.7 | - | - | - | - | - | 21.9 | - |
35.4 | - | - | - | - | - | 33.8 | - |
SPPV-“Egypt/2018” | Capri-p32-Taq-FAM | |||||||
---|---|---|---|---|---|---|---|---|
Organ Sample | Intravenously | Intranasally | In-Contact | |||||
EG-IV-01 | EG-IV-02 | EG-IV-03 | EG-IN-04 | EG-IN-05 | EG-IN-06 | EG-IC-07 | EG-IC-08 | |
cervical lymph node | no Cq | 32.0 | no Cq | 32.2 | no Cq | no Cq | 27.0 | 28.8 |
mediastinal lymph node | 36.5 | no Cq | no Cq | 37.2 | no Cq | no Cq | 33.2 | 39.3 |
mesenterial lymph node | no Cq | 36.7 | no Cq | no Cq | 35.7 | no Cq | 37.4 | no Cq |
liver | no Cq | no Cq | no Cq | no Cq | no Cq | no Cq | no Cq | no Cq |
spleen | 37.7 | 31.9 | 37.4 | 39.1 | no Cq | 38.1 | 39.1 | 36.8 |
lung | no Cq | 30.4 | 37.4 | 33.8 | 33.2 | 34.3 | 35.2 | 33.6 |
Additional Samples | ||||||||
brain | - | - | - | - | - | - | - | no Cq |
- | - | - | - | - | - | - | no Cq | |
- | - | - | - | - | - | - | no Cq | |
nasal septum | - | - | - | 21.3 | 28.1 | - | - | - |
Location of Skin Sample | - | - | - | |||||
ear | - | - | - | - | 16.7 | - | - | - |
- | - | - | - | 14.7 | - | - | - | |
- | - | - | - | 16.0 | - | - | - | |
foreleg | - | - | - | - | - | - | 18.0 | - |
- | - | - | - | - | - | 20.2 | - | |
axilla | - | 22.2 | - | - | - | - | - | 23.8 |
- | 21.0 | - | - | - | - | - | 22.4 | |
- | 22.0 | - | - | - | - | - | 28.5 | |
- | 18.8 | - | - | - | - | - | - | |
hind leg | - | - | - | - | - | - | 19.8 | - |
tail | - | - | - | - | - | - | 18.0 | - |
- | - | - | - | - | - | 19.0 | - | |
- | - | - | - | - | - | 20.1 | - | |
prepuce | - | 16.3 | - | 22.3 | - | - | 20.5 | 18.2 |
- | 14.7 | - | 19.9 | - | - | 16.4 | - | |
pox-like lesion lung | - | - | - | 26.5 | 32.9 | - | - | - |
- | - | - | 26.2 | - | - | - | - | |
- | - | - | 27.7 | - | - | - | - | |
healed skin lesion | 28.1 | - | 23.5 | - | 24.1 | - | - | - |
27.8 | - | 19.8 | - | - | - | - | - | |
32.1 | - | 24.6 | - | - | - | - | - | |
28.4 | - | 30.3 | - | - | - | - | - | |
25.7 | - | - | - | - | - | - | - | |
encrusted skin lesion | - | - | 13.8 | - | - | - | - | - |
- | - | 15.5 | - | - | - | - | - | |
- | - | 15.9 | - | - | - | - | - | |
- | - | 17.8 | - | - | - | - | - | |
- | - | 14.1 | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolff, J.; Abd El Rahman, S.; King, J.; El-Beskawy, M.; Pohlmann, A.; Beer, M.; Hoffmann, B. Establishment of a Challenge Model for Sheeppox Virus Infection. Microorganisms 2020, 8, 2001. https://doi.org/10.3390/microorganisms8122001
Wolff J, Abd El Rahman S, King J, El-Beskawy M, Pohlmann A, Beer M, Hoffmann B. Establishment of a Challenge Model for Sheeppox Virus Infection. Microorganisms. 2020; 8(12):2001. https://doi.org/10.3390/microorganisms8122001
Chicago/Turabian StyleWolff, Janika, Sahar Abd El Rahman, Jacqueline King, Mohamed El-Beskawy, Anne Pohlmann, Martin Beer, and Bernd Hoffmann. 2020. "Establishment of a Challenge Model for Sheeppox Virus Infection" Microorganisms 8, no. 12: 2001. https://doi.org/10.3390/microorganisms8122001
APA StyleWolff, J., Abd El Rahman, S., King, J., El-Beskawy, M., Pohlmann, A., Beer, M., & Hoffmann, B. (2020). Establishment of a Challenge Model for Sheeppox Virus Infection. Microorganisms, 8(12), 2001. https://doi.org/10.3390/microorganisms8122001