Proteomic 2D-DIGE Analysis of Milk Whey from Dairy Cows with Staphylococcus aureus Mastitis Reveals Overexpression of Host Defense Proteins
Abstract
1. Introduction
2. Materials and Methods
2.1. Cows and Sample Collection
2.2. Somatic Cell Counts (SCC) and Microbiological Examination
2.3. Sample Processing and Two-Dimensional Differential Gel Electrophoresis (2D-DIGE)
2.4. In-Gel Digestion and Liquid Chromatography–Tandem Mass Spectrometry (LC–MS/MS) Analysis
2.5. Protein Identification
2.6. Gene Ontology (GO) and Pathway Enrichment Analyses
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Halasa, T.; Huijps, K.; Østerås, O.; Hogeveen, H. Economic effects of bovine mastitis and mastitis management: A review. Vet. Q. 2007, 29, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Hogeveen, H.; Huijps, K.; Lam, T.J. Economic Aspects of Mastitis: New Developments. N. Z. Vet. J. 2011, 59, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Bannerman, D.D.; Paape, M.J.; Lee, J.-W.; Zhao, X.; Hope, J.C.; Rainard, P. Escherichia coli and Staphylococcus aureus Elicit Differential Innate Immune Responses following Intramammary Infection. Clin. Diagn. Lab. Immunol. 2004, 11, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Atalla, H.; Gyles, C.; Mallard, B. Persistence of a Staphylococcus aureus Small Colony Variants (S. Aureus Scv) within Bovine Mammary Epithelial Cells. Vet. Microbiol. 2010, 143, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Barkema, H.; Schukken, Y.; Zadoks, R. Invited Review: The Role of Cow, Pathogen, and Treatment Regimen in the Therapeutic Success of Bovine Staphylococcus aureus Mastitis. J. Dairy Sci. 2006, 89, 1877–1895. [Google Scholar] [CrossRef]
- Bannerman, D.D. Pathogen-dependent induction of cytokines and other soluble inflammatory mediators during intramammary infection of dairy cows1. J. Anim. Sci. 2009, 87, 10–25. [Google Scholar] [CrossRef]
- Kim, Y.; Atalla, H.; Mallard, B.A.; Robert, C.; A Karrow, N. Changes in Holstein cow milk and serum proteins during intramammary infection with three different strains of Staphylococcus aureus. BMC Vet. Res. 2011, 7, 51. [Google Scholar] [CrossRef]
- Reinhardt, T.A.; Sacco, R.E.; Nonnecke, B.J.; Lippolis, J.D. Bovine milk proteome: Quantitative changes in normal milk exosomes, milk fat globule membranes and whey proteomes resulting from Staphylococcus aureus mastitis. J. Proteomics 2013, 82, 141–154. [Google Scholar] [CrossRef]
- Abdelmegid, S.; Murugaiyan, J.; Schenkel, F.; Caswell, J.L.; Kelton, D.; Kirby, G. Identification of Host Defense-Related Proteins Using Label-Free Quantitative Proteomic Analysis of Milk Whey from Cows with Staphylococcus aureus Subclinical Mastitis. Int. J. Mol. Sci. 2017, 19, 78. [Google Scholar] [CrossRef]
- Harmon, R.; Eberhart, R.; Jasper, D. Microbiological Procedures for the Diagnosis of Bovine Udder Infection; National Mastitis Council: Arlington, VA, USA, 1990. [Google Scholar]
- Atalla, H.; Gyles, C.; Jacob, C.L.; Moisan, H.; Malouin, F.; Mallard, B.A. Characterization of a Staphylococcus aureus Small Colony Variant (SCV) Associated with Persistent Bovine Mastitis. Foodborne Pathog. Dis. 2008, 5, 785–799. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and Integrative Analysis of Large Gene Lists Using David Bioinformatics Resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, M.; Kanehisa, M. Using the Kegg Database Resource. Curr. Protoc. Bioinform. 2012, 11, 1.12.1–1.12.54. [Google Scholar] [CrossRef] [PubMed]
- Staphylococcus aureus—Swiss-Model Repository. Available online: https://swissmodel.expasy.org/repository/species/93061 (accessed on 26 November 2020).
- Maity, S.; Das, D.; Ambatipudi, K. Quantitative Alterations in Bovine Milk Proteome from Healthy, Subclinical and Clinical Mastitis During S. Aureus Infection. J. Proteomics 2020, 223, 103815. [Google Scholar] [CrossRef] [PubMed]
- Pisanu, S.; Cacciotto, C.; Pagnozzi, D.; Puggioni, G.M.G.; Uzzau, S.; Ciaramella, P.; Guccione, J.; Penati, M.; Pollera, C.; Moroni, P.; et al. Proteomic changes in the milk of water buffaloes (Bubalus bubalis) with subclinical mastitis due to intramammary infection by Staphylococcus aureus and by non-aureus staphylococci. Sci. Rep. 2019, 9, 15850. [Google Scholar] [CrossRef]
- Huang, J.; Luo, G.; Zhang, Z.; Wang, X.; Ju, Z.; Qi, C.; Zhang, Y.; Wang, C.; Li, R.; Li, J.; et al. iTRAQ-proteomics and bioinformatics analyses of mammary tissue from cows with clinical mastitis due to natural infection with Staphylococci aureus. BMC Genom. 2014, 15, 1–14. [Google Scholar] [CrossRef]
- Smolenski, G.A.; Broadhurst, M.; Stelwagen, K.; Haigh, B.; Wheeler, T.T. Host defence related responses in bovine milk during an experimentally induced Streptococcus uberis infection. Proteome Sci. 2014, 12, 19. [Google Scholar] [CrossRef]
- Thomas, F.C.; Mudaliar, M.; Tassi, R.; McNeilly, T.N.; Burchmore, R.; Burgess, K.; Herzyk, P.; Zadoks, R.; Eckersall, P.D. Mastitomics, the integrated omics of bovine milk in an experimental model of Streptococcus uberis mastitis: 3. Untargeted metabolomics. Mol. BioSyst. 2016, 12, 2762–2769. [Google Scholar] [CrossRef]
- Larsen, L.; Hinz, K.; Jørgensen, A.; Møller, H.; Wellnitz, O.; Bruckmaier, R.; Kelly, A.L. Proteomic and peptidomic study of proteolysis in quarter milk after infusion with lipoteichoic acid from Staphylococcus aureus. J. Dairy Sci. 2010, 93, 5613–5626. [Google Scholar] [CrossRef]
- Boehmer, J.L. Proteomic Analyses of Host and Pathogen Responses during Bovine Mastitis. J. Mammary Gland. Biol. Neoplasia 2011, 16, 323–338. [Google Scholar] [CrossRef]
- Boehmer, J.L.; Bannerman, D.; Shefcheck, K.; Ward, J. Proteomic Analysis of Differentially Expressed Proteins in Bovine Milk During Experimentally Induced Escherichia coli Mastitis. J. Dairy Sci. 2008, 91, 4206–4218. [Google Scholar] [CrossRef]
- Hogarth, C.J.; Fitzpatrick, J.L.; Nolan, A.M.; Young, F.J.; Pitt, A.R.; Eckersall, P.D. Differential protein composition of bovine whey: A comparison of whey from healthy animals and from those with clinical mastitis. Proteomics 2004, 4, 2094–2100. [Google Scholar] [CrossRef] [PubMed]
- Smolenski, G.; Haines, S.; Kwan, F.Y.-S.; Bond, J.; Farr, V.; Davis, S.R.; Stelwagen, A.K.; Wheeler, T.T. Characterisation of Host Defence Proteins in Milk Using a Proteomic Approach. J. Proteome Res. 2007, 6, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Murakami, K.; Wallingford, J.C.; Yuki, Y. Identification of low-abundance proteins of bovine colostral and mature milk using two-dimensional electrophoresis followed by microsequencing and mass spectrometry. Electrophoresis 2002, 23, 1153–1160. [Google Scholar] [CrossRef]
- Ibeagha-Awemu, E.M.; Ibeagha, A.E.; Messier, S.; Zhao, X. Proteomics, Genomics, and Pathway Analyses of Escherichia Coli and Staphylococcus Aureus Infected Milk Whey Reveal Molecular Pathways and Networks Involved in Mastitis. J. Proteome Res. 2010, 9, 4604–4619. [Google Scholar] [CrossRef]
- Rainard, P.; Riollet, C. Innate immunity of the bovine mammary gland. Vet. Res. 2006, 37, 369–400. [Google Scholar] [CrossRef]
- Kaetzel, C.S. The polymeric immunoglobulin receptor: Bridging innate and adaptive immune responses at mucosal surfaces. Immunol. Rev. 2005, 206, 83–99. [Google Scholar] [CrossRef]
- Stelwagen, K.; Carpenter, E.A.; Haigh, B.; Hodgkinson, A.J.; Wheeler, T.T. Immune components of bovine colostrum and milk1. J. Anim. Sci. 2009, 87, 3–9. [Google Scholar] [CrossRef]
- Ezzat Alnakip, M.; Quintela-Baluja, M.; Böhme, K.; Fernández-No, I.; Caamaño-Antelo, S.; Calo-Mata, P.; Barros-Velázquez, J. The Immunology of Mammary Gland of Dairy Ruminants between Healthy and Inflammatory Conditions. J. Vet. Med. 2014, 2014, 659801. [Google Scholar] [CrossRef]
- Murgiano, L.; Timperio, A.M.; Zolla, L.; Bongiorni, S.; Valentini, A.; Pariset, L. Comparison of Milk Fat Globule Membrane (MFGM) Proteins of Chianina and Holstein Cattle Breed Milk Samples Through Proteomics Methods. Nutrients 2009, 1, 302–315. [Google Scholar] [CrossRef]
- Butler, J.; Rainard, P.; Lippolis, J.D.; Salmon, H.; Kacskovics, I. The Mammary Gland in Mucosal and Regional Immunity. Mucosal Immunol. 2015, 2269–2306. [Google Scholar] [CrossRef]
- Katsafadou, A.I.; Tsangaris, G.T.; Anagnostopoulos, A.K.; Billinis, C.; Barbagianni, M.S.; Vasileiou, N.G.; Spanos, S.A.; Mavrogianni, V.S.; Fthenakis, G.C. Proteomics data of ovine mastitis associated with Mannheimia haemolytica. Data Brief 2019, 25, 104259. [Google Scholar] [CrossRef] [PubMed]
- Bian, Y.; Lv, Y.; Li, Q.-Z. Identification of Diagnostic Protein Markers of Subclinical Mastitis in Bovine Whey Using Comparative Proteomics. Bull. Vet. Inst. Pulawy 2014, 58, 385–392. [Google Scholar] [CrossRef]
- Larsen, L.B.; Rasmussen, M.D.; Bjerring, M.; Nielsen, J.H. Proteases and protein degradation in milk from cows infected with Streptococcus uberis. Int. Dairy J. 2004, 14, 899–907. [Google Scholar] [CrossRef]
- Zhao, X.; Lacasse, P. Mammary tissue damage during bovine mastitis: Causes and control1. J. Anim. Sci. 2008, 86, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Scanu, A.M.; Edelstein, C. HDL: Bridging past and present with a look at the future. FASEB J. 2008, 22, 4044–4054. [Google Scholar] [CrossRef] [PubMed]
- Boehmer, J.L.; DeGrasse, J.A.; McFarland, M.A.; Tall, E.; Shefcheck, K.J.; Ward, J.L.; Bannerman, D.D. The proteomic advantage: Label-free quantification of proteins expressed in bovine milk during experimentally induced coliform mastitis. Vet. Immunol. Immunopathol. 2010, 138, 252–266. [Google Scholar] [CrossRef] [PubMed]
- Danielsen, M.; Codrea, M.C.; Ingvartsen, K.L.; Friggens, N.C.; Bendixen, E.; Røntved, C.M. Quantitative milk proteomics—Host responses to lipopolysaccharide-mediated inflammation of bovine mammary gland. Proteomics 2010, 10, 2240–2249. [Google Scholar] [CrossRef] [PubMed]
- Bendixen, E.; Danielsen, M.; Hollung, K.; Gianazza, E.; Miller, I. Farm Animal Proteomics—A Review. J. Proteomics 2011, 74, 282–293. [Google Scholar] [CrossRef]
- Chiaradia, E.; Valiani, A.; Tartaglia, M.; Scoppetta, F.; Renzone, G.; Arena, S.; Avellini, L.; Benda, S.; Gaiti, A.; Scaloni, A. Ovine subclinical mastitis: Proteomic analysis of whey and milk fat globules unveils putative diagnostic biomarkers in milk. J. Proteomics 2013, 83, 144–159. [Google Scholar] [CrossRef]
- Chang, W.W.P.; Hobson, C.; Bomberger, D.C.; Schneider, L.V. Rapid separation of protein isoforms by capillary zone electrophoresis with new dynamic coatings. Electrophoresis 2005, 26, 2179–2186. [Google Scholar] [CrossRef]
Function | Protein Name | Accession Number | Gel Spot No. | p-Value | Fold Change Relative to Controls | Mr (kDa) | Unique Peptides | Sequence Coverage (%) |
---|---|---|---|---|---|---|---|---|
Host-Defense Proteins | Serotransferrin | Q29443|TRFE_BOVIN | 1 | 0.007 | 3.3 | 77.6 | 3 | 50 |
Polymeric immunoglobulin receptor | P81265|PIGR_BOVIN | 1 | 0.007 | 3.3 | 82.4 | 12 | 16 | |
2 | 0.003 | 5.3 | 82.4 | 13 | 15 | |||
Fibrinogen gamma-B chain | F1MGU7|F1MGU7_BOVIN | 3 | 0.012 | 3.5 | 50.2 | 22 | 56 | |
Complement C3 | G3X7A5|G3X7A5_BOVIN | 4 | 0.0001 | 7.5 | 187.1 | 29 | 17.5 | |
5 | 0.025 | 6.2 | 187.1 | 43 | 23.7 | |||
Beta-1,4-galactosyltransferase 1 | P08037|B4GT1_BOVIN | 4 | 0.0001 | 7.5 | 44.8 | 5 | 13.7 | |
MHC class I antigen | H6V5G4|H6V5G4_BOVIN | 4 | 0.0001 | 7.5 | 38.8 | 6 | 26.3 | |
Apolipoprotein E | A7YWR0|A7YWR0_BOVIN | 4 | 0.0001 | 7.5 | 35.9 | 4 | 17.7 | |
Cathepsin B | P07688|CATB_BOVIN | 4 | 0.0001 | 7.5 | 36.6 | 13 | 34.4 | |
Beta-2-microglobulin | P01888|B2MG_BOVIN | 13 | 0.001 | 20.3 | 13.6 | 5 | 25.4 | |
Major Milk Proteins | Serum albumin | P02769|ALBU_BOVIN | 3 | 0.012 | 3.5 | 69.2 | 5 | 8.5 |
4 | 0.0001 | 7.5 | 69.2 | 27 | 51.6 | |||
5 | 0.025 | 6.2 | 69.2 | 15 | 29.8 | |||
6 | 0.002 | 11.3 | 69.2 | 11 | 20.8 | |||
11 | 0.003 | 13.7 | 69.2 | 7 | 13.7 | |||
Alpha-S1-casein | P02662|CASA1_BOVIN | 7 | 0.005 | 17.1 | 24.5 | 4 | 32.7 | |
8 | 0.002 | 24.7 | 24.5 | 7 | 35 | |||
9 | 0.002 | 13.7 | 24.5 | 21 | 48.1 | |||
Alpha-S2-casein | P02663|CASA2_BOVIN | 6 | 0.002 | 11.3 | 26.0 | 3 | 16.2 | |
Beta-casein | P02666|CASB_BOVIN | 11 | 0.003 | 13.7 | 25.1 | 5 | 21.4 | |
12 | 0.009 | 40.4 | 25.1 | 7 | 25 | |||
13 | 0.001 | 20.3 | 25.1 | 6 | 21.9 | |||
Kappa-casein | P02668|CASK_BOVIN | 4 | 0.0001 | 7.5 | 21.2 | 5 | 30 | |
6 | 0.002 | 11.3 | 21.2 | 4 | 25.8 | |||
Structural and Metabolic proteins | Collagen alpha-1 (I) chain | P02453|CO1A1_BOVIN | 3 | 0.012 | 3.5 | 138.9 | 4 | 3.1 |
Actin, cytoplasmic 1 | P60712|ACTB_BOVIN | 4 | 0.0001 | 7.5 | 41.7 | 23 | 60 | |
5 | 0.025 | 6.2 | 41.7 | 11 | 33.3 | |||
6 | 0.002 | 11.3 | 41.7 | 29 | 72.8 | |||
7 | 0.005 | 17.1 | 41.7 | 3 | 8.5 | |||
Actin, cytoplasmic 1 | P60712|ACTB_BOVIN | 10 | 0.002 | 21.9 | 41.7 | 13 | 41.6 | |
11 | 0.003 | 13.7 | 41.7 | 6 | 24.3 | |||
13 | 0.001 | 20.3 | 41.7 | 6 | 17.9 | |||
Dystroglycan | F1N7D7|F1N7D7_BOVIN | 4 | 0.0001 | 7.5 | 97.3 | 5 | 7.26 | |
N-acetylglucosamine-1-phosphotransferase subunit gamma | Q58CS8|GNPTG_BOVIN | 4 | 0.0001 | 7.5 | 33.7 | 5 | 19.3 | |
Hemoglobin subunit alpha | P01966|HBA_BOVIN | 10 | 0.002 | 21.9 | 15.1 | 4 | 31.7 | |
Thymosin beta-4 | P62326|TYB4_BOVIN | 10 | 0.002 | 21.9 | 5 | 3 | 54.5 | |
Histone H2B | F1MUD2|F1MUD2_BOVIN | 10 | 0.002 | 21.9 | 13.9 | 3 | 38.1 | |
Histone H1.2 | P02253|H12_BOVIN | 10 | 0.002 | 21.9 | 21.3 | 3 | 11.7 | |
Unknown | Putative uncharacterized protein | A5D7Q2|A5D7Q2_BOVIN | 4 | 0.0001 | 7.5 | 51.6 | 4 | 9.65 |
Spot Number | Protein Name | Protein Accession Numbers | Unique Peptide Count | Sequence Coverage |
---|---|---|---|---|
A | 50S ribosomal protein L19 | RL19_STAA1 | 2 | 17.20% |
A | Orotate phosphoribosyltransferase | PYRE_STAAC,PYRE_STAAS | 2 | 10.80% |
A | Immunoglobulin G-binding protein A | SPA_STAA8 | 8 | 23.10% |
B | ATP-dependent Clp protease ATP-binding subunit ClpL | CLPL_STAAR | 5 | 16.00% |
B | DNA topoisomerase 4 subunit B | PARE_STAEQ | 5 | 13.30% |
B | Hyaluronate lyase | HYSA_STAA8 | 7 | 13.40% |
B | Putative hemin import ATP-binding protein HrtA | HRTA_STAAR | 5 | 24.40% |
B | Septation ring formation regulator EzrA | EZRA_STAEQ | 5 | 12.60% |
B | Protein draper | DRPR_DROME | 6 | 16.10% |
C | DNA-directed RNA polymerase subunit beta (Fragment) | RPOC_STAAU | 5 | 12.10% |
C | 60 kDa chaperonin | CH60_STAAU | 5 | 20.40% |
D | Immunoglobulin G-binding protein A | SPA_STAA8 | 10 | 26.60% |
D | Staphopain B | SSPB_STAAS | 2 | 10.90% |
D | Transcription termination/antitermination protein NusG | NUSG_STAA8 | 2 | 14.30% |
D | Lactose phosphotransferase system repressor | LACR_STAA8, LACR_STAAR | 2 | 18.30% |
D | Acetylglutamate kinase | ARGB_STAAR | 2 | 22.70% |
Categories | Biological Processes | Count 1 | p-Value 2 |
---|---|---|---|
Cellular form | GO:0044085~cellular component biogenesis | 5 | 0.009 |
GO:0065003~macromolecular complex assembly | 4 | 0.017 | |
GO:0016043~cellular component organization | 8 | 0.002 | |
GO:0022607~cellular component assembly | 5 | 0.005 | |
GO:0009653~anatomical structure morphogenesis | 5 | 0.008 | |
GO:0043933~macromolecular complex subunit organization | 4 | 0.02 | |
GO:0051270~regulation of cell motion | 3 | 0.008 | |
GO:0048856~anatomical structure development | 6 | 0.021 | |
GO:0048646~anatomical structure formation involved in morphogenesis | 3 | 0.033 | |
GO:0051651~maintenance of location in cell | 2 | 0.028 | |
GO:0051235~maintenance of location | 3 | 0.001 | |
Regulation of cellular process | GO:0032879~regulation of localization | 4 | 0.008 |
GO:0051179~localization | 9 | 0.011 | |
GO:0048523~negative regulation of cellular process | 5 | 0.021 | |
GO:0048519~negative regulation of biological process | 5 | 0.03 | |
GO:0065008~regulation of biological quality | 5 | 0.029 | |
GO:0051049~regulation of transport | 3 | 0.037 | |
GO:0001649~osteoblast differentiation | 2 | 0.038 | |
Cell Death | GO:0042981~regulation of apoptosis | 4 | 0.017 |
GO:0043065~positive regulation of apoptosis | 3 | 0.022 | |
GO:0043068~positive regulation of programmed cell death | 3 | 0.022 | |
GO:0010942~positive regulation of cell death | 3 | 0.022 | |
GO:0043067~regulation of programmed cell death | 4 | 0.018 | |
GO:0010941~regulation of cell death | 4 | 0.018 | |
Response to stimulus | GO:0009605~response to external stimulus | 4 | 0.019 |
GO:0050896~response to stimulus | 8 | 0.005 | |
GO:0006950~response to stress | 6 | 0.006 | |
GO:0009611~response to wounding | 3 | 0.043 | |
Angiogenesis | GO:0001944~vasculature development | 3 | 0.022 |
GO:0001568~blood vessel development | 3 | 0.021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelmegid, S.; Kelton, D.; Caswell, J.; Kirby, G. Proteomic 2D-DIGE Analysis of Milk Whey from Dairy Cows with Staphylococcus aureus Mastitis Reveals Overexpression of Host Defense Proteins. Microorganisms 2020, 8, 1883. https://doi.org/10.3390/microorganisms8121883
Abdelmegid S, Kelton D, Caswell J, Kirby G. Proteomic 2D-DIGE Analysis of Milk Whey from Dairy Cows with Staphylococcus aureus Mastitis Reveals Overexpression of Host Defense Proteins. Microorganisms. 2020; 8(12):1883. https://doi.org/10.3390/microorganisms8121883
Chicago/Turabian StyleAbdelmegid, Shaimaa, David Kelton, Jeff Caswell, and Gordon Kirby. 2020. "Proteomic 2D-DIGE Analysis of Milk Whey from Dairy Cows with Staphylococcus aureus Mastitis Reveals Overexpression of Host Defense Proteins" Microorganisms 8, no. 12: 1883. https://doi.org/10.3390/microorganisms8121883
APA StyleAbdelmegid, S., Kelton, D., Caswell, J., & Kirby, G. (2020). Proteomic 2D-DIGE Analysis of Milk Whey from Dairy Cows with Staphylococcus aureus Mastitis Reveals Overexpression of Host Defense Proteins. Microorganisms, 8(12), 1883. https://doi.org/10.3390/microorganisms8121883