Emergence of Enterobacter cloacae Complex Co-Producing IMP-10 and CTX-M, and Klebsiella pneumoniae Producing VIM-1 in Clinical Isolates in Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Identification
2.2. Multilocus Sequence Typing (MLST)
2.3. Resistance Gene Typing and Plasmid Replicon Typing
3. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tzouvelekis, L.S.; Markogiannakis, A.; Psichogiou, M.; Tassios, P.T.; Daikos, G.L. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: An Evolving Crisis of Global Dimensions. Clin. Microbiol. Rev. 2012, 25, 682–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishida, S.; Ono, Y. Comparative analysis of the pathogenicity between multidrug-resistant Acinetobacter baumannii clinical isolates: Isolation of highly pathogenic multidrug-resistant A. baumannii and experimental therapeutics with fourth-generation cephalosporin cefozopran. Infect. Drug Resist. 2018, 11, 1715–1722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases. Carbapenem-resistant Enterobacteriaceae Infection, Japan. Infect Agents Surveill. Rep. 2014, 35, 281–282. [Google Scholar]
- Nakano, R.; Nakano, A.; Hikosaka, K.; Kawakami, S.; Matsunaga, N.; Asahara, M.; Ishigaki, S.; Furukawa, T.; Suzuki, M.; Shibayama, K.; et al. First Report of Metallo-β-Lactamase NDM-5-Producing Escherichia coli in Japan. Antimicrob. Agents Chemother. 2014, 58, 7611–7612. [Google Scholar] [CrossRef] [Green Version]
- Nishida, S.; Ishigaki, S.; Asahara, M.; Furukawa, T.; Ono, Y. Emergence of multiple carbapenemase-producing Gram-negative species, colistin-resistant KPC-2-producing Klebsiella pneumoniae ST11, IMP-7-producing Pseudomonas aeruginosa ST357, and OXA-23-producing Acinetobacter baumannii ST1050, in a single patient. Int. J. Antimicrob. Agents 2018, 52, 512–514. [Google Scholar] [CrossRef]
- Nishida, S.; Asahara, M.; Nemoto, K.; Ishigaki, S.; Furukawa, T.; Sano, K.; Ono, Y. Emergence of Escherichia coli producing OXA-48-like carbapenemase in a patient with percutaneous transhepatic biliary drainage. Infect. Prev. Pr. 2019, 1, 100008. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement; CLSI document M100-S24; Nat’l Comm Clinical LAB Standards: Wayne, PA, USA, 2014. [Google Scholar]
- van der Zwaluw, K.; de Haan, A.; Pluister, G.N.; Bootsma, H.J.; de Neeling, A.J.; Schouls, L.M. The Carbapenem Inactivation Method (CIM), a Simple and Low-Cost Alternative for the Carba NP Test to Assess Phenotypic Carbapenemase Activity in Gram-Negative Rods. PLoS ONE 2015, 10, e0123690. [Google Scholar] [CrossRef] [Green Version]
- Arakawa, Y.; Shibata, N.; Shibayama, K.; Kurokawa, H.; Yagi, T.; Fujiwara, H.; Goto, M. Convenient Test for Screening Metallo-β-Lactamase-Producing Gram-Negative Bacteria by Using Thiol Compounds. J. Clin. Microbiol. 2000, 38, 40–43. [Google Scholar] [CrossRef]
- Brisse, S.; Fevre, C.; Passet, V.; Issenhuth-Jeanjean, S.; Tournebize, R.; Diancourt, L.; Grimont, P. Virulent Clones of Klebsiella pneumoniae: Identification and Evolutionary Scenario Based on Genomic and Phenotypic Characterization. PLoS ONE 2009, 4, e4982. [Google Scholar] [CrossRef] [Green Version]
- Miyoshi-Akiyama, T.; Hayakawa, K.; Ohmagari, N.; Shimojima, M.; Kirikae, T. Multilocus Sequence Typing (MLST) for Characterization of Enterobacter cloacae. PLoS ONE 2013, 8, e66358. [Google Scholar] [CrossRef] [Green Version]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Bertini, A.; Villa, L.; Falbo, V.; Hopkins, K.L.; Threlfall, E.J. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 2005, 63, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.-J.; Hsueh, P.-R.; Ko, W.-C.; Luh, K.-T.; Tsai, S.-H.; Wu, H.-M.; Wu, J.-J. Metallo-β-Lactamases in Clinical Pseudomonas Isolates in Taiwan and Identification of VIM-3, a Novel Variant of the VIM-2 Enzyme. Antimicrob. Agents Chemother. 2001, 45, 2224–2228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoki, K.; Harada, S.; Yahara, K.; Ishii, Y.; Motooka, D.; Nakamura, S.; Akeda, Y.; Iida, T.; Tomono, K.; Iwata, S.; et al. Molecular Characterization of IMP-1-Producing Enterobacter cloacae Complex Isolates in Tokyo. Antimicrob. Agents Chemother. 2018, 62, e02091-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yano, H.; Ogawa, M.; Endo, S.; Kakuta, R.; Kanamori, H.; Inomata, S.; Ishibashi, N.; Aoyagi, T.; Hatta, M.; Gu, Y.; et al. High Frequency of IMP-6 among Clinical Isolates of Metallo-β-Lactamase-Producing Escherichia coli in Japan. Antimicrob. Agents Chemother. 2012, 56, 4554–4555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ode, T.; Saito, R.; Kumita, W.; Sato, K.; Okugawa, S.; Moriya, K.; Koike, K.; Okamura, N. Analysis of plasmid-mediated multidrug resistance in Escherichia coli and Klebsiella oxytoca isolates from clinical specimens in Japan. Int. J. Antimicrob. Agents 2009, 34, 347–350. [Google Scholar] [CrossRef]
- Ahn, C.; Syed, A.; Hu, F.; O’Hara, J.A.; Rivera, J.I.; Doi, Y. Microbiological features of KPC-producing Enterobacter isolates identified in a U.S. hospital system. Diagn. Microbiol. Infect. Dis. 2014, 80, 154–158. [Google Scholar] [CrossRef] [Green Version]
- Chudejova, K.; Rotova, V.; Skalova, A.; Medvecky, M.; Adámková, V.; Papagiannitsis, C.C.; Hrabak, J. Emergence of sequence type 252 Enterobacter cloacae producing GES-5 carbapenemase in a Czech hospital. Diagn. Microbiol. Infect. Dis. 2018, 90, 148–150. [Google Scholar] [CrossRef]
- Hayakawa, K.; Miyoshi-Akiyama, T.; Kirikae, T.; Nagamatsu, M.; Shimada, K.; Mezaki, K.; Sugiki, Y.; Kuroda, E.; Kubota, S.; Takeshita, N.; et al. Molecular and Epidemiological Characterization of IMP-Type Metallo-β-Lactamase-Producing Enterobacter cloacae in a Large Tertiary Care Hospital in Japan. Antimicrob. Agents Chemother. 2014, 58, 3441–3450. [Google Scholar] [CrossRef] [Green Version]
- Iyobe, S.; Kusadokoro, H.; Takahashi, A.; Yomoda, S.; Okubo, T.; Nakamura, A.; O’Hara, K. Detection of a Variant Metallo-β-Lactamase, IMP-10, from Two Unrelated Strains of Pseudomonas aeruginosa and an Alcaligenes xylosoxidans Strain. Antimicrob. Agents Chemother. 2002, 46, 2014–2016. [Google Scholar] [CrossRef] [Green Version]
- LaCuran, A.E.; Pegg, K.M.; Liu, E.M.; Bethel, C.R.; Ai, N.; Welsh, W.J.; Bonomo, R.A.; Oelschlaeger, P. Elucidating the Role of Residue 67 in IMP-Type Metallo-β-Lactamase Evolution. Antimicrob. Agents Chemother. 2015, 59, 7299–7307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.; Zhao, W.-H. Identification of plasmid- and integron-borne blaIMP-1 and blaIMP-10 in clinical isolates of Serratia marcescens. J. Med. Microbiol. 2009, 58, 217–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeda, S.; Nakai, T.; Ikeda, F.; Hatano, K. Overproduction of a Metallo-β-Lactamase by a Strong Promoter Causes High-Level Imipenem Resistance in a Clinical Isolate of Pseudomonas aeruginosa. Chemotherapy 2008, 54, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.-H.; Chen, G.; Ito, R.; Hu, Z.-Q. Relevance of resistance levels to carbapenems and integron-borne blaIMP-1, blaIMP-7, blaIMP-10 and blaVIM-2 in clinical isolates of Pseudomonas aeruginosa. J. Med Microbiol. 2009, 58, 1080–1085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassis-Chikhani, N.; Decré, D.; Gautier, V.; Burghoffer, B.; Saliba, F.; Mathieu, D.; Samuel, D.; Castaing, D.; Petit, J.-C.; Dussaix, E.; et al. First outbreak of multidrug-resistant Klebsiella pneumoniae carrying blaVIM-1 and blaSHV-5 in a French university hospital. J. Antimicrob. Chemother. 2005, 57, 142–145. [Google Scholar] [CrossRef] [Green Version]
- Vatopoulos, A. High rates of metallo-β-lactamase-producing Klebsiella pneumoniae in Greece—A review of the current evidence. Euro Surveill. 2008, 13, 8023. [Google Scholar] [CrossRef]
- Matsumura, Y.; Peirano, G.; DeVinney, R.; Bradford, P.A.; Motyl, M.R.; Adams, M.D.; Chen, L.; Kreiswirth, B.; Pitout, J.D.D. Genomic epidemiology of global VIM-producing Enterobacteriaceae. J. Antimicrob. Chemother. 2017, 72, 2249–2258. [Google Scholar] [CrossRef] [Green Version]
- Politi, L.; Gartzonika, K.; Spanakis, N.; Zarkotou, O.; Poulou, A.; Skoura, L.; Vrioni, G.; Tsakris, A. Emergence of NDM-1-producing Klebsiella pneumoniae in Greece: Evidence of a widespread clonal outbreak. J. Antimicrob. Chemother. 2019, 74, 2197–2202. [Google Scholar] [CrossRef] [Green Version]
- Hong, D.J.; Bae, I.K.; Jang, I.-H.; Jeong, S.H.; Kang, H.K.; Lee, K.-W. Epidemiology and Characteristics of Metallo-β-Lactamase-Producing Pseudomonas aeruginosa. Infect. Chemother. 2015, 47, 81–97. [Google Scholar] [CrossRef]
- Nishio, H.; Komatsu, M.; Shibata, N.; Shimakawa, K.; Sueyoshi, N.; Ura, T.; Satoh, K.; Toyokawa, M.; Nakamura, T.; Wada, Y.; et al. Metallo-β-Lactamase-Producing Gram-Negative Bacilli: Laboratory-Based Surveillance in Cooperation with 13 Clinical Laboratories in the Kinki Region of Japan. J. Clin. Microbiol. 2004, 42, 5256–5263. [Google Scholar] [CrossRef] [Green Version]
- Nishida, S.; Ono, Y. Genomic analysis of a pan-resistant Klebsiella pneumoniae sequence type 11 identified in Japan in 2016. Int. J. Antimicrob. Agents. 2020, 55, 105854. [Google Scholar] [CrossRef] [PubMed]
Patient | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Sex | F | M | F | M |
Age (years) | 60 | 34 | 84 | 70 |
Date of isolation | 7/5/2018 | 25/7/2018 | 4/9/2018 | 16/12/2018 |
Sample | Pharyngeal mucus | Faeces | Urine | Faeces |
Species | E. cloacae | K. pneumoniae | E. cloacae | K. oxytoca |
Strain number | TK1601 | TK1602 | TK1603 | TK1604 |
MLST | ST252 | ST70 | ST78 | ST88 |
Plasmid Inc | FIB, HI2 | FIB, HI1 | FIB, HI2, L/M | FIB, HI2 |
Carbapenemase | IMP-1 | VIM-1 | IMP-10 | IMP-1 |
ESBL | – | – | CTX-M-1 | – |
Antimicrobial agent | MIC (mg/L)a | |||
Penicillins | ||||
Ampicillin | >16 | >16 | >16 | >16 |
Piperacillin | >64 | >64 | >64 | 64 |
Sulbactam/ampicillin | >16 | >16 | >16 | >16 |
Amoxicillin/clavulanic acid | >16 | >16 | >16 | >16 |
Tazobactam/piperacillin | >64 | >64 | >64 | 8 |
Cephalosporins | ||||
Cefazolin | >16 | >16 | >16 | >16 |
Cefotiam | >16 | >16 | >16 | >16 |
Cefotaxim | >2 | >2 | >2 | >2 |
Ceftazidime | >16 | >16 | >16 | >16 |
Ceftriaxone | >2 | >2 | >2 | >2 |
Cefepime | >16 | 16 | >16 | 16 |
Cefozopran | >16 | >16 | >16 | 8 |
Cefmetazole | >32 | >32 | >32 | >32 |
Cefaclor | >16 | >16 | >16 | >16 |
Cefdinir | >2 | >2 | >2 | >2 |
Cefpodoxime | >4 | >4 | >4 | >4 |
Cefcapene | >2 | >2 | >2 | >2 |
Flomoxef | >32 | >32 | >32 | 32 |
Sulbactam/cephoperazon | >32 | >32 | >32 | >32 |
Carbapenems | ||||
Doripenem | 4 | 8 | >8 | >8 |
Imipenem | 4 | 4 | >8 | 4 |
Meropenem | 4 | 4 | >8 | 8 |
Monobactam | ||||
Aztreonam | 4 | 8 | >16 | 4 |
Fluoroquinolones | ||||
Ciprofloxacin | 0.25 | 0.25 | >2 | 1 |
Levofloxacin | 0.5 | 0.5 | >4 | 2 |
Sitafloxacin | 1 | 1 | >2 | 1 |
Aminoglycosides | ||||
Gentamicin | 2 | 8 | 8 | 2 |
Tobramycin | 8 | >8 | 8 | 4 |
Amikacin | 4 | 8 | 4 | 4 |
Tetracycline Minocycline | >8 | 2 | >8 | 8 |
Polymyxin | ||||
Colistin | NT | 2 | NT | 2 |
Other | ||||
Fosfomycin | 16 | >16 | >16 | 16 |
Trimethoprim/sulfamethoxazole | 2 | >2 | >2 | 2 |
Strain Number | TK1604 | K27 |
---|---|---|
Year of isolation | 2018 | 2006 |
MLST | ST88 | NT |
Carbapenemase | IMP-1 | IMP-1 |
ESBL | – | – |
Cephalosporins | ||
Cefazolin | >16 | >128 |
Cefotaxim | >2 | 32 |
Ceftazidime | >16 | >64 |
Cefoperazone | NT | >128 |
Sulbactam/cefoperazone | >32 | NT |
Carbapenems | ||
Imipenem | 4 | 2 |
Meropenem | 8 | 4 |
Monobactam | ||
Aztreonam | 4 | 1 |
Fluoroquinolones | ||
Ciprofloxacin | 1 | 1 |
Levofloxacin | 2 | 2 |
Aminoglycosides | ||
Gentamicin | 2 | 1 |
Amikacin | 4 | 2 |
Organism | Carbapenemase | MLST | Year of Isolation | Clinical History Location | Other Properties | Reference |
---|---|---|---|---|---|---|
A. baumannii | OXA-51-like | 2009/2010 | NA | MDR, outbreak | [2] | |
E. coli | NDM-5 | ST540 | 2013 | Bangladesh | NDM-5 in Japan | [4] |
K. pneumoniae | NDM-1 | ST76 | 2014 | Indonesia | NDM-1 in Japan | [4] |
K. pneumoniae | KPC-2 | ST11 | 2016 | Indonesia | PDR | [5,32] |
P. aeruginosa | IMP-7 | ST357 | 2016 | Indonesia | XDR | [5] |
A. baumannii | OXA-23, OXA-66 | ST1050 | 2016 | Indonesia | XDR | [5] |
E. coli | OXA-48-like | 2018 | India | MDR | [6] | |
K. pneumoniae | VIM-1 | ST70 | 2018 | Greece | VIM-1 in Japan | This study |
K. oxytoca | IMP-1 | ST88 | 2018 | NA | Epidemic in Japan | This study |
E. cloacae | IMP-1 | ST252 | 2018 | NA | Epidemic in Japan | This study |
E. cloacae | IMP-10 | ST78 | 2018 | NA | IMP-10 in Japan | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishida, S.; Matsunaga, N.; Kamimura, Y.; Ishigaki, S.; Furukawa, T.; Ono, Y. Emergence of Enterobacter cloacae Complex Co-Producing IMP-10 and CTX-M, and Klebsiella pneumoniae Producing VIM-1 in Clinical Isolates in Japan. Microorganisms 2020, 8, 1816. https://doi.org/10.3390/microorganisms8111816
Nishida S, Matsunaga N, Kamimura Y, Ishigaki S, Furukawa T, Ono Y. Emergence of Enterobacter cloacae Complex Co-Producing IMP-10 and CTX-M, and Klebsiella pneumoniae Producing VIM-1 in Clinical Isolates in Japan. Microorganisms. 2020; 8(11):1816. https://doi.org/10.3390/microorganisms8111816
Chicago/Turabian StyleNishida, Satoshi, Naohisa Matsunaga, Yuta Kamimura, Shinobu Ishigaki, Taiji Furukawa, and Yasuo Ono. 2020. "Emergence of Enterobacter cloacae Complex Co-Producing IMP-10 and CTX-M, and Klebsiella pneumoniae Producing VIM-1 in Clinical Isolates in Japan" Microorganisms 8, no. 11: 1816. https://doi.org/10.3390/microorganisms8111816
APA StyleNishida, S., Matsunaga, N., Kamimura, Y., Ishigaki, S., Furukawa, T., & Ono, Y. (2020). Emergence of Enterobacter cloacae Complex Co-Producing IMP-10 and CTX-M, and Klebsiella pneumoniae Producing VIM-1 in Clinical Isolates in Japan. Microorganisms, 8(11), 1816. https://doi.org/10.3390/microorganisms8111816