Next Article in Journal
Canine Bone Marrow Mesenchymal Stem Cell Conditioned Media Affect Bacterial Growth, Biofilm-Associated Staphylococcus aureus and AHL-Dependent Quorum Sensing
Previous Article in Journal
The Stable Fly (Stomoxys calcitrans) as a Possible Vector Transmitting Pathogens in Austrian Pig Farms
Open AccessArticle

Protection of Citrus Fruits from Postharvest Infection with Penicillium digitatum and Degradation of Patulin by Biocontrol Yeast Clavispora lusitaniae 146

1
Planta Piloto de Procesos Industriales Microbiológicos (PROIMI) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Belgrano y Pje. Caseros, 4000 Tucumán, Argentina
2
Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, D-37077 Göttingen, Germany
3
Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000 Tucumán, Argentina
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Microorganisms 2020, 8(10), 1477; https://doi.org/10.3390/microorganisms8101477
Received: 14 September 2020 / Revised: 22 September 2020 / Accepted: 23 September 2020 / Published: 25 September 2020
(This article belongs to the Section Food Microbiology)
Fungal rots are one of the main causes of large economic losses and deterioration in the quality and nutrient composition of fruits during the postharvest stage. The yeast Clavispora lusitaniae 146 has previously been shown to efficiently protect lemons from green mold caused by Penicillium digitatum. In this work, the effect of yeast concentration and exposure time on biocontrol efficiency was assessed; the protection of various citrus fruits against P. digitatum by C. lusitaniae 146 was evaluated; the ability of strain 146 to degrade mycotoxin patulin was tested; and the effect of the treatment on the sensory properties of fruits was determined. An efficient protection of lemons was achieved after minimum exposure to a relatively low yeast cell concentration. Apart from lemons, the yeast prevented green mold in grapefruits, mandarins, oranges, and tangerines, implying that it can be used as a broad-range biocontrol agent in citrus. The ability to degrade patulin indicated that strain 146 may be suitable for the control of further Penicillium species. Yeast treatment did not alter the sensory perception of the aroma of fruits. These results corroborate the potential of C. lusitaniae 146 for the control of postharvest diseases of citrus fruits and indicate its suitability for industrial-scale fruit processing. View Full-Text
Keywords: patulin; postharvest disease; Penicillium; Clavispora lusitaniae; sensorial analysis; biocontrol spectrum; citrus patulin; postharvest disease; Penicillium; Clavispora lusitaniae; sensorial analysis; biocontrol spectrum; citrus
Show Figures

Figure 1

MDPI and ACS Style

Díaz, M.A.; Pereyra, M.M.; Santander, F.F.S.; Perez, M.F.; Córdoba, J.M.; Alhussein, M.; Karlovsky, P.; Dib, J.R. Protection of Citrus Fruits from Postharvest Infection with Penicillium digitatum and Degradation of Patulin by Biocontrol Yeast Clavispora lusitaniae 146. Microorganisms 2020, 8, 1477.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop