Next Article in Journal
Colonization of Germ-Free Piglets with Commensal Lactobacillus amylovorus, Lactobacillus mucosae, and Probiotic E. coli Nissle 1917 and Their Interference with Salmonella Typhimurium
Previous Article in Journal
The Role of Gut Microbiota in Intestinal Inflammation with Respect to Diet and Extrinsic Stressors
Open AccessArticle

Characterization of Non-O157 Escherichia coli from Cattle Faecal Samples in the North-West Province of South Africa

1
Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa
2
Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
3
Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada
4
Alberta Agriculture and Forestry, Edmonton, AB T6H 4P2, Canada
5
Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
*
Authors to whom correspondence should be addressed.
Microorganisms 2019, 7(8), 272; https://doi.org/10.3390/microorganisms7080272
Received: 16 July 2019 / Revised: 16 August 2019 / Accepted: 17 August 2019 / Published: 20 August 2019
(This article belongs to the Special Issue Antimicrobial Resistance in Livestock)
Escherichia coli are commensal bacteria in the gastrointestinal tract of mammals, but some strains have acquired Shiga-toxins and can cause enterohemorrhagic diarrhoea and kidney failure in humans. Shiga-toxigenic E. coli (STEC) strains such as E. coli O157:H7 and some non-O157 strains also contain other virulence traits, some of which contribute to their ability to form biofilms. This study characterized non-O157 E. coli from South African cattle faecal samples for their virulence potential, antimicrobial resistance (AMR), biofilm-forming ability, and genetic relatedness using culture-based methods, pulsed-field gel electrophoresis (PFGE), and whole genome sequencing (WGS). Of 80 isolates screened, 77.5% (62/80) possessed Shiga-toxins genes. Of 18 antimicrobials tested, phenotypic resistance was detected against seven antimicrobials. Resistance ranged from 1.3% (1/80) for ampicillin-sulbactam to 20% (16/80) for tetracycline. Antimicrobial resistance genes were infrequently detected except for tetA, which was found in 31.3% (25/80) and tetB detected in 11.3% (9/80) of isolates. Eight biofilm-forming associated genes were detected in STEC isolates (n = 62) and two non-STEC strains. Prevalence of biofilm genes ranged from 31.3% (20/64) for ehaAβ passenger to 100% for curli structural subunit (csgA) and curli regulators (csgA and crl). Of the 64 STEC and multi-drug resistant isolates, 70.3% (45/64) and 37.5% (24/64) formed strong biofilms on polystyrene at 22 and 37 °C, respectively. Of 59 isolates screened by PFGE, 37 showed unique patterns and the remaining isolates were grouped into five clusters with a ≥90% relatedness. In silico serotyping following WGS on a subset of 24 non-O157 STEC isolates predicted 20 serotypes comprising three novel serotypes, indicating their diversity as potential pathogens. These findings show that North West South African cattle harbour genetically diverse, virulent, antimicrobial-resistant and biofilm-forming non-O157 E. coli. Biofilm-forming ability may increase the likelihood of persistence of these pathogens in the environment and facilitate their dissemination, increasing the risk of cross contamination or establishment of infections in hosts. View Full-Text
Keywords: non-O157 Escherichia coli; cattle; antibiotic resistance; biofilm; virulence genes; PFGE; WGS non-O157 Escherichia coli; cattle; antibiotic resistance; biofilm; virulence genes; PFGE; WGS
Show Figures

Figure 1

MDPI and ACS Style

Bumunang, E.W.; McAllister, T.A.; Zaheer, R.; Ortega Polo, R.; Stanford, K.; King, R.; Niu, Y.D.; Ateba, C.N. Characterization of Non-O157 Escherichia coli from Cattle Faecal Samples in the North-West Province of South Africa. Microorganisms 2019, 7, 272.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop