Identification of Uncultured Bacterial Species from Firmicutes, Bacteroidetes and CANDIDATUS Saccharibacteria as Candidate Cellulose Utilizers from the Rumen of Beef Cows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and In Vitro Rumen Culture Experiments
2.2. Microbial DNA Extraction and PCR Amplification of the 16S rRNA Gene
2.3. Computational Analysis of PCR-Generated 16S rRNA Amplicon Sequences
2.4. Accession Numbers for Next Generation Sequencing Data
2.5. Short Chain Fatty Acids (SCFA) Analysis
3. Results
3.1. Bacterial Community Structure of Rumen Samples Prior to Selection with Cellulose
3.2. Effect of Cellulose Selection on the Composition of Rumen Bacterial Populations
3.3. SCFA Profile Analysis from Cellulose-Utilizing Consortia
4. Discussion
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- McSweeney, C.; Mackie, R. Micro-Organisms and Ruminant Digestion: State of Knowledge, Trends and Future Prospects; Background Study Paper No. 61; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012. [Google Scholar]
- Macfarlane, G.T.; Macfarlane, S. Factors affecting fermentation reactions in the large bowel. Proc. Nutr. Soc. 1993, 52, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, R.R. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: A comparative view of their digestive system. Oecologia 1989, 78, 443–457. [Google Scholar] [CrossRef] [PubMed]
- Hackmann, T.J.; Spain, J.N. Invited Review: Ruminant ecology and evolution: Perspectives useful to ruminant livestock research and production. J. Dairy Sci. 2010, 93, 1320–1334. [Google Scholar] [CrossRef] [PubMed]
- Thornton, P.K. Livestock production: Recent trends, future prospects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2853–2867. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.R.; Goldschmidt, F.; Lilja, E.E.; Ackermann, M. Metabolic specialization and the assembly of microbial communities. ISME J. 2012, 6, 1985–1991. [Google Scholar] [CrossRef] [PubMed]
- Henderson, G.; Cox, F.; Ganesh, S.; Jonker, A.; Young, W.; Collaborators, G.R.C.; Janssen, P.H. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 2015, 5, 14567. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.B.; Muck, R.E.; Weimer, P.J. Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen. FEMS Microbiol. Ecol. 2009, 67, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Creevey, C.J.; Kelly, W.J.; Henderson, G.; Leahy, S.C. Determining the culturability of the rumen bacterial microbiome. Microb. Biotechnol. 2014, 7, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Brulc, J.M.; Antonopoulos, D.A.; Miller, M.E.; Wilson, M.K.; Yannarell, A.C.; Dinsdale, E.A.; Edwards, R.E.; Frank, E.D.; Emerson, J.B.; Wacklin, P.; et al. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc. Natl. Acad. Sci. USA 2009, 106, 1948–1953. [Google Scholar] [CrossRef] [PubMed]
- Hess, M.; Sczyrba, A.; Egan, R.; Kim, T.W.; Chokhawala, H.; Schroth, G.; Luo, S.; Clark, D.S.; Chen, F.; Zhang, T.; et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 2011, 331, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hatem, A.; Catalyurek, U.V.; Morrison, M.; Yu, Z. Metagenomic insights into the carbohydrate-active enzymes carried by the microorganisms adhering to solid digesta in the rumen of cows. PLoS ONE 2013, 8, e78507. [Google Scholar] [CrossRef] [PubMed]
- Flint, H.J.; Bayer, E.A.; Rincon, M.T.; Lamed, R.; White, B.A. Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nat. Rev. Microbiol. 2008, 6, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Tian, Y.; Li, J.; Su, X.; Wang, X.; Zhao, S.; Liu, L.; Luo, Y.; Liu, D.; Zheng, H.; et al. Metatranscriptomic analyses of plant cell wall polysaccharide degradation by microorganisms in cow rumen. Appl. Environ. Microbiol. 2015, 81, 1375–1386. [Google Scholar] [CrossRef] [PubMed]
- Wallace, J.R. Gut microbiology—Broad genetic diversity, yet specific metabolic niches. Animal 2008, 2, 661–668. [Google Scholar]
- Yu, Z.; Morrison, M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 2004, 36, 808–812. [Google Scholar] [PubMed]
- Edwards, U.; Rogall, T.; Bloecker, H.; Emde, M.; Boettger, E.C. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 1989, 17, 7843–7854. [Google Scholar] [CrossRef] [PubMed]
- Lane, D.; Pace, B.; Olsen, G.J.; Stahl, D.A.; Sogin, M.L.; Pace, N.R. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 1985, 82, 6955–6959. [Google Scholar] [CrossRef] [PubMed]
- St-Pierre, B.; Wright, A.-D.G. Investigation of bacterial and methanogen community composition and diversity in full-scale anaerobic manure digesters. BAOJ Microbiol. 2015, 1, 1–11. [Google Scholar] [CrossRef]
- Kim, M.; Morrison, M.; Yu, Z. Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol. Ecol. 2011, 76, 49–63. [Google Scholar] [CrossRef] [PubMed]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed]
- Parte, A. LPSN—List of prokaryotic names with standing in nomenclature. Nucleic Acids Res. 2014, 42, D613–D616. [Google Scholar] [CrossRef] [PubMed]
- Euzeby, J.P. List of Prokaryotic Names with Standing in Nomenclature. Available online: http://www.bacterio.net (accessed on 28 August 2017).
- Albertsen, M.; Hugenholtz, P.; Skarshewski, A.; Nielsen, K.L.; Tyson, G.W.; Nielsen, P.H. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat. Biotechnol. 2013, 31, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Hugenholtz, P.; Tyson, G.W.; Webb, R.I.; Wagner, A.M.; Blackall, L.L. Investigation of candidate division TM7, a recently recognized major lineage of the domain Bacteria with no known pure-culture representatives. Appl. Environ. Microbiol. 2001, 67, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J. Nutrional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Flint, H.J.; Scott, K.P.; Duncan, S.H.; Louis, P.; Forano, E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 2012, 3, 289–306. [Google Scholar] [CrossRef] [PubMed]
- Koike, S.; Handa, Y.; Goto, H.; Sakai, K.; Miyagawa, E.; Matsui, H.; Ito, S.; Kobayashi, Y. Molecular monitoring and isolation of previously uncultured bacterial strains from the sheep rumen. Appl. Environ. Microbiol. 2010, 76, 1887–1894. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhou, M.; Adamowicz, E.; Basarab, J.A.; Guan, L.L. Characterization of bovine ruminal epithelial bacterial communities using 16S rRNA sequencing, PCR-DGGE, and qRT-PCR analysis. Vet. Microbiol. 2012, 155, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Bayer, E.A.; Lamed, R.; White, B.A.; Flint, H.J. From cellulosomes to cellulosomics. Chem. Rec. 2008, 8, 364–377. [Google Scholar] [CrossRef] [PubMed]
- Gardner, R.M.; Doerner, K.C.; White, B.A. Purification and characterization of an exo-beta-1,4-glucanase from Ruminococcus flavefaciens FD-1. J. Bacteriol. 1987, 169, 4581–4588. [Google Scholar] [CrossRef] [PubMed]
- Doerner, K.C.; White, B.A. Assessment of the endo-1,4-beta-glucanase components of Ruminococcus flavefaciens FD-1. Appl. Environ. Microbiol. 1990, 56, 1844–1850. [Google Scholar] [PubMed]
- Wang, W.Y.; Thomson, J.A. Nucleotide sequence of the celA gene encoding a cellodextrinase of Ruminococcus flavefaciens FD-1. Mol. Gen. Genet. 1990, 222, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Reid, S.J.; Thomson, J.A. Transcriptional regulation of an endoglucanase and a cellodextrinase gene in Ruminococcus flavefaciens FD-1. J. Gen. Microbiol. 1993, 139 Pt 6, 1219–1226. [Google Scholar] [CrossRef] [PubMed]
- Vercoe, P.E.; Finks, J.L.; White, B.A. DNA sequence and transcriptional characterization of a beta-glucanase gene (celB) from Ruminococcus flavefaciens FD-1. Can. J. Microbiol. 1995, 41, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Vercoe, P.E.; Spight, D.H.; White, B.A. Nucleotide sequence and transcriptional analysis of the celD beta-glucanase gene from Ruminococcus flavefaciens FD-1. Can. J. Microbiol. 1995, 41, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Latham, M.J.; Brooker, B.E.; Pettipher, G.L.; Harris, P.J. Ruminococcus flavefaciens cell coat and adhesion to cotton cellulose and to cell walls in leaves of perennial ryegrass (Lolium perenne). Appl. Environ. Microbiol. 1978, 35, 156–165. [Google Scholar] [PubMed]
- Shi, Y.; Weimer, P.J. Response surface analysis of the effects of pH and dilution rate on Ruminococcus flavefaciens FD-1 in cellulose-fed continuous culture. Appl. Environ. Microbiol. 1992, 58, 2583–2591. [Google Scholar] [PubMed]
- Weimer, P.J. Effects of dilution rate and pH on the ruminal cellulolytic bacterium Fibrobacter succinogenes S85 in cellulose-fed continuous culture. Arch. Microbiol. 1993, 160, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Suen, G.; Weimer, P.J.; Stevenson, D.M.; Aylward, F.O.; Boyum, J.; Deneke, J.; Drinkwater, C.; Ivanova, N.N.; Mikhailova, N.; Chertkov, O.; et al. The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist. PLoS ONE 2011, 6, e18814. [Google Scholar] [CrossRef] [PubMed]
- Xing, D.; Ren, N.; Li, Q.; Lin, M.; Wang, A.; Zhao, L. Ethanoligenens harbinense gen. nov., sp. nov., isolated from molasses wastewater. Int. J. Syst. Evol. Microbiol. 2006, 56, 755–760. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.-J.; Lin, J.-J.; Ho, C.-Y.; Chin, W.-C.; Huang, C.-C. Establishment of rumen-mimic bacterial consortia: A functional union for bio-hydrogen production from cellulosic bioresource. Int. J. Hydrog. Energy 2010, 35, 13399–13406. [Google Scholar] [CrossRef]
- Li, K.; Zhu, H.; Zhang, Y.; Zhang, H. Characterization of the microbial communities in rumen fluid inoculated reactors for the biogas digestion of wheat straw. Sustainability 2017, 9, 243. [Google Scholar] [CrossRef]
- Jami, E.; Israel, A.; Kotser, A.; Mizrahi, I. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J. 2013, 7, 1069–1079. [Google Scholar] [CrossRef] [PubMed]
- Huws, S.A.; Edwards, J.E.; Creevey, C.J.; Rees Stevens, P.; Lin, W.; Girdwood, S.E.; Pachebat, J.A.; Kingston-Smith, A.H. Temporal dynamics of the metabolically active rumen bacteria colonizing fresh perennial ryegrass. FEMS Microbiol. Ecol. 2016, 92, fiv137. [Google Scholar] [CrossRef] [PubMed]
- Fouts, D.E.; Szpakowski, S.; Purushe, J.; Torralba, M.; Waterman, R.C.; MacNeil, M.D.; Alexander, L.J.; Nelson, K.E. Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen. PLoS ONE 2012, 7, e48289. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, D.M.; Weimer, P.J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol. 2007, 75, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Purushe, J.; Fouts, D.E.; Morrison, M.; White, B.A.; Mackie, R.I.; Coutinho, P.M.; Henrissat, B.; Nelson, K.E. Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: Insights into their environmental niche. Microb. Ecol. 2010, 60, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Vercoe, P.E.; Gregg, K. DNA sequence and transcription of an endoglucanase gene from Prevotella (Bacteroides) ruminicola AR20. Mol. Gen. Genet. 1992, 233, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Wulff-Strobel, C.R.; Wilson, D.B. Cloning, sequencing, and characterization of a membrane-associated Prevotella ruminicola B(1)4 beta-glucosidase with cellodextrinase and cyanoglycosidase activities. J. Bacteriol. 1995, 177, 5884–5890. [Google Scholar] [CrossRef] [PubMed]
- Krause, D.O.; Denman, S.E.; Mackie, R.I.; Morrison, M.; Rae, A.L.; Attwood, G.T.; McSweeney, C.S. Opportunities to improve fiber degradation in the rumen: Microbiology, ecology, and genomics. FEMS Microbiol. Rev. 2003, 27, 663–693. [Google Scholar] [CrossRef]
- Jose, V.L.; Appoothy, T.; More, R.P.; Arun, A.S. Metagenomic insights into the rumen microbial fibrolytic enzymes in Indian crossbred cattle fed finger millet straw. AMB Express 2017, 7, 13. [Google Scholar] [CrossRef] [PubMed]
- Griswold, K.E.; Mackie, R.I. Degradation of protein and utilization of the hydrolytic products by a predominant ruminal bacterium, Prevotella ruminicola B1(4). J. Dairy Sci. 1997, 80, 167–175. [Google Scholar] [CrossRef]
Taxonomic Affiliation | All OTUs | Shared OTUs | ||||
---|---|---|---|---|---|---|
Cow A | Cow B | Cow C | Cow A | Cow B | Cow C | |
Bacteroidetes | 48.0 | 47.3 | 60.5 | 18.0 | 22.4 | 25.9 |
Prevotellaceae | 27.4 | 19.2 | 40.5 | 11.3 | 10.6 | 18.3 |
Porphyromonadaceae | 0.5 | 7.4 | 0.5 | 0.3 | 3.7 | 0.2 |
unc. Bacteroidales | 14.2 | 14.2 | 14.7 | 3.6 | 5.2 | 5.7 |
other Bacteroidetes | 5.9 | 6.5 | 4.8 | 2.7 | 3.0 | 1.6 |
Firmicutes | 32.6 | 21.7 | 31.4 | 11.3 | 10.0 | 11.5 |
Ruminococcaceae | 10.3 | 5.9 | 12.4 | 3.6 | 2.8 | 4.3 |
Lachnospiraceae | 10.5 | 8.3 | 9.2 | 4.4 | 3.5 | 3.7 |
unc. Clostridiales | 10.0 | 5.2 | 8.4 | 2.9 | 2.5 | 3.1 |
other Firmicutes | 1.8 | 2.3 | 1.4 | 0.4 | 1.2 | 0.4 |
Fibrobacteres | 2.6 | 8.2 | 2.4 | 2.5 | 7.8 | 1.9 |
Plantomycetes | 0.4 | 3.9 | 0.09 | 0 | 0 | 0 |
Cand. Saccha. | 0.2 | 1.0 | 0.1 | 0.08 | 0.6 | 0.09 |
Proteobacteria | 1.1 | 0.03 | 0.4 | 0.7 | 1.7 | 0.1 |
other phyla | 5.1 | 7.1 | 1.8 | 3.4 | 1.0 | 1.1 |
unc. Bacteria | 9.9 | 10.8 | 3.2 | 5.7 | 6.4 | 1.4 |
Total | 100 | 100 | 100 | 41.6 | 50.0 | 41.9 |
OTU | A | B | C | Taxonomic Affiliation b | Closest Valid Taxon (id% c) |
---|---|---|---|---|---|
SD_Bt-00007 | 4.8 | 5.0 | 0.9 | unc. Bacteria | Clostridium hveragerdense (80.8) |
SD_Bt-00012 | 1.6 | 5.6 | 1.4 | Fibrobacter | F. succinogenes (98.8) |
SD_Bt-00022 | 0 | 2.1 | 0.1 | Prevotella | P. ruminicola (92.2) |
SD_Bt-00024 | 0.2 | 2.9 | 0.1 | unc. Porphyromonadaceae | Paludibacter jiangxiensis (83.6) |
SD_Bt-00027 | 0 | 1.5 | 0 | unc. Planctomycetaceae | Rhodopirellula baltica (80.6) |
SD_Bt-00030 | 0.9 | 1.4 | 1.4 | Prevotella | P. ruminicola (91.3) |
SD_Bt-00033 | 0.2 | 1.3 | 0.1 | unc. Bacteria | Victivallis vadensis (82.8) |
SD_Bt-00039 | 0.1 | 1.5 | 0 | unc. Planctomycetaceae | Rhodopirellula lusitana (83.6) |
SD_Bt-00040 | 0.6 | 1.0 | 0 | unc. Bacteroidales | Butyricimonas faecihominis (82.4) |
SD_Bt-00051 | 1.2 | 1.3 | 0.8 | unc. Bacteroidetes | Odoribacter splanchnicus (82.5) |
SD_Bt-00057 | 2.2 | 0.2 | 0.6 | SR1 | Leifsonia shinshuensis (78.1) |
SD_Bt-00062 | 0.1 | 0.8 | 2.5 | unc. Bacteroidales | Butyricimonas virosa (83.1) |
SD_Bt-00074 | 0.5 | 0.3 | 1.9 | Prevotella | P. ruminicola (93.2) |
SD_Bt-00084 | 1.3 | 0.3 | 0.5 | Prevotella | P. ruminicola (90.4) |
SD_Bt-00087 | 1.4 | 1.0 | 0.7 | Pseudobutyrivibrio | Ps. ruminis (99.0) |
SD_Bt-00108 | 0.1 | 1.1 | 0 | Succinivibrio | S. dextrinosolvens (99.2) |
SD_Bt-00112 | 0.4 | 1.0 | 0 | unc. Bacteroidales | P. conceptionensis (83.4) |
SD_Bt-00118 | 0.8 | 0 | 1.3 | Prevotella | P. ruminicola (91.7) |
SD_Bt-00119 | 0.4 | 0.1 | 1.1 | Prevotella | P. ruminicola (91.0) |
SD_Bt-00142 | 0.5 | 1.2 | 0 | Fibrobacter | F. succinogenes (95.6) |
SD_Bt-00160 | 0.5 | 0.2 | 1.0 | unc. Bacteroidales | P. ruminicola (88.5) |
SD_Bt-10002 | 0 | 1.0 | 0 | unc. Bacteroidales | Butyricimonas faecihominis (83.4) |
SD_Bt-10017 | 0 | 1.0 | 0.1 | Prevotella | P. ruminicola (88.4) |
SD_Bt-10023 | 0 | 1.4 | 0 | Kerstersia | Devosia riboflavina (84.0) |
Total | 17.8 | 33.2 | 14.5 |
OTUs | Taxonomic Affiliation b | Closest Valid Taxon (id% c) |
---|---|---|
SD_Bt-00001 | Ruminococcus | Ruminococcus flavefaciens (95.2) |
SD_Bt-00002 | Ethanoligenens | Clostridium cellulosi (93.6) |
SD_Bt-00003 | unc. Ruminococcaceae | Anaerotruncus colihominis (89.3) |
SD_Bt-00004 | unc. Ruminococcaceae | Clostridium cellulosi (92.5) |
SD_Bt-00005 | Prevotella | Prevotella bivia (90.2) |
SD_Bt-00008 | Saccharibacteria gen. inc. sed. | Cand. Saccharibacteria d (89.9) |
SD_Bt-00009 | unc. Lachnospiraceae | Butyrivibrio fibrisolvens (91.3) |
SD_Bt-00010 | Prevotella | Prevotella albensis (97.7) |
SD_Bt-00012 | Fibrobacter | Fibrobacter succinogenes (98.8) |
SD_Bt-00013 | unc. Ruminococcaceae | Anaerotruncus colihominis (89.3) |
SD_Bt-00014 | unc. Bacteria | Solobacterium moorei (88.0) |
SD_Bt-00015 | unc. Ruminococcaceae | Clostridium cellulosi (91.5) |
SD_Bt-00019 | unc. Ruminococcaceae | Clostridium cellulosi (91.2) |
SD_Bt-00022 | Prevotella | Prevotella ruminicola (92.2) |
SD_Bt-00024 | unc. Porphyromonadaceae | Paludibacter jiangxiensis (83.6) |
SD_Bt-00027 | unc. Planctomycetaceae | Rhodopirellula baltica (80.6) |
SD_Bt-00030 | Prevotella | Prevotella ruminicola (91.3) |
SD_Bt-00044 | Saccharibacteria gen. inc. sed. | Cand. Saccharibacteria d (90.6) |
SD_Bt-00048 | unc. Ruminococcaceae | Saccharofermentans acetigenes (87.8) |
SD_Bt-00058 | Ruminococcus | Ruminococcus flavefaciens (96.4) |
SD_Bt-00075 | unc. Proteobacteria | Devosia geojensis (84.4) |
D0 | Con a D7 | Cell b D7 | Con a D14 | Cell b D14 | |
---|---|---|---|---|---|
Acetate | 50.18 | 90.55 ± 11.06 | 95.48 ± 7.57 | 76.50 ± 9.92 | 90.73 ± 10.90 |
Propionate | 12.46 | 20.35 ± 2.72 | 23.01 ± 0.78 | 18.75 ± 2.47 | 22.13 ± 2.57 |
Butyrate | 8.18 | 11.22 ± 1.03 | 12.20 ±0.33 | 10.40 ± 0.75 | 12.45 ± 0.94 |
Iso-butyrate | 0.79 | 1.77 ± 0.22 | 1.51 ± 0.06 | 1.73 ± 0.15 | 1.55 ± 0.12 |
Valerate | 0.98 | 1.82 ± 0.20 | 1.86 ± 0.05 | 1.73 ± 0.11 | 2.19 ± 0.25 |
Iso-valerate | 1.13 | 3.12 * ± 0.33 | 2.47 * ± 0.09 | 3.10 ± 0.23 | 2.57 ± 0.19 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opdahl, L.J.; Gonda, M.G.; St-Pierre, B. Identification of Uncultured Bacterial Species from Firmicutes, Bacteroidetes and CANDIDATUS Saccharibacteria as Candidate Cellulose Utilizers from the Rumen of Beef Cows. Microorganisms 2018, 6, 17. https://doi.org/10.3390/microorganisms6010017
Opdahl LJ, Gonda MG, St-Pierre B. Identification of Uncultured Bacterial Species from Firmicutes, Bacteroidetes and CANDIDATUS Saccharibacteria as Candidate Cellulose Utilizers from the Rumen of Beef Cows. Microorganisms. 2018; 6(1):17. https://doi.org/10.3390/microorganisms6010017
Chicago/Turabian StyleOpdahl, Lee James, Michael G. Gonda, and Benoit St-Pierre. 2018. "Identification of Uncultured Bacterial Species from Firmicutes, Bacteroidetes and CANDIDATUS Saccharibacteria as Candidate Cellulose Utilizers from the Rumen of Beef Cows" Microorganisms 6, no. 1: 17. https://doi.org/10.3390/microorganisms6010017