MIC Distributions and CLSI-Categorized Resistance in Pseudomonas aeruginosa from Companion Animals in Poland: Evidence of Strong Meropenem–Ceftazidime Co-Non-Susceptibility
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population Characteristics
2.2. Specimen Collection
2.3. Bacterial Culture and Antimicrobial Susceptibility Testing
2.4. Statistical Data Analysis
3. Results
Exploratory Risk Factor Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moradali, M.F.; Ghods, S.; Rehm, B.H.A. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front. Cell. Infect. Microbiol. 2017, 7, 39. [Google Scholar] [CrossRef]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.-J.; Cheng, Z. Antibiotic Resistance in Pseudomonas aeruginosa: Mechanisms and Alternative Therapeutic Strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef]
- EFSA Panel on Animal Health and Welfare (AHAW). Assessment of Listing and Categorisation of Animal Diseases within the Framework of the Animal Health Law (Regulation (EU) No 2016/429): Antimicrobial-Resistant Pseudomonas aeruginosa in Dogs and Cats. EFSA J. 2022, 20, e07310. [Google Scholar] [CrossRef]
- Secker, B.; Shaw, S.; Atterbury, R.J. Pseudomonas spp. in Canine Otitis Externa. Microorganisms 2023, 11, 2650. [Google Scholar] [CrossRef]
- Pye, C. Pseudomonas Otitis Externa in Dogs. Can. Vet. J. 2018, 59, 1231–1234. [Google Scholar]
- Yin, R.; Cheng, J.; Wang, J.; Li, P.; Lin, J. Treatment of Pseudomonas aeruginosa Infectious Biofilms: Challenges and Strategies. Front. Microbiol. 2022, 13, 955286. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Pakravan, N.; Pritchard, J.C.; Hartmann, F.A.; Young, K.M. Mucoid Pseudomonas aeruginosa Infection in a Cat with Severe Chronic Rhinosinusitis. Vet. Clin. Pathol. 2019, 48, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Lappin, M.R.; Blondeau, J.; Boothe, D.; Breitschwerdt, E.B.; Guardabassi, L.; Lloyd, D.H.; Papich, M.G.; Rankin, S.C.; Sykes, J.E.; Turnidge, J.; et al. Antimicrobial Use Guidelines for Treatment of Respiratory Tract Disease in Dogs and Cats: Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases. J. Vet. Intern. Med. 2017, 31, 279–294. [Google Scholar] [CrossRef] [PubMed]
- Weese, J.S.; Blondeau, J.; Boothe, D.; Guardabassi, L.G.; Gumley, N.; Papich, M.; Jessen, L.R.; Lappin, M.; Rankin, S.; Westropp, J.L.; et al. International Society for Companion Animal Infectious Diseases (ISCAID) Guidelines for the Diagnosis and Management of Bacterial Urinary Tract Infections in Dogs and Cats. Vet. J. 2019, 247, 8–25. [Google Scholar] [CrossRef]
- Pereira, A.C.; de Sousa, T.; Silva, C.; Igrejas, G.; Poeta, P. Impact of Antimicrobial Resistance of Pseudomonas aeruginosa in Urine of Small Companion Animals in Global Context: Comprehensive Analysis. Vet. Sci. 2025, 12, 157. [Google Scholar] [CrossRef]
- Scarpellini, R.; Giunti, M.; Bulgarelli, C.; Esposito, E.; Mondo, E.; Tumietto, F.; Piva, S. Investigating Bacterial Bloodstream Infections in Dogs and Cats: A 4-Year Surveillance in an Italian Veterinary University Hospital. Vet. Sci. 2025, 12, 445. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Huang, J.; Xu, Z. Antibiotic Influx and Efflux in Pseudomonas aeruginosa: Regulation and Therapeutic Implications. Microb. Biotechnol. 2024, 17, e14487. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.R.; Sellera, F.P.; Moura, Q.; Carvalho, M.P.N.; Rosato, P.N.; Cerdeira, L.; Lincopan, N. Zooanthroponotic Transmission of Drug-Resistant Pseudomonas aeruginosa, Brazil. Emerg. Infect. Dis. 2018, 24, 1160–1162. [Google Scholar] [CrossRef]
- Secker, B.; Shaw, S.; Hobley, L.; Atterbury, R.J. Genomic and Phenotypic Characterisation of Pseudomonas aeruginosa Isolates from Canine Otitis Externa Reveals High-Risk Sequence Types Identical to Those Found in Human Nosocomial Infections. Front. Microbiol. 2025, 16, 1526843. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 34th ed.; CLSI Supplement M100; CLSI: Wayne, PA, USA, 2024. [Google Scholar]
- Köhler, T.; Kok, M.; Michea-Hamzehpour, M.; Plesiat, P.; Gotoh, N.; Nishino, T.; Kocjancic Curty, L.; Pechere, J.-C. Multidrug Efflux in Intrinsic Resistance to Trimethoprim and Sulfamethoxazole in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 1996, 40, 2288–2290. [Google Scholar] [CrossRef]
- Dean, C.R.; Visalli, M.A.; Projan, S.J.; Sum, P.E.; Bradford, P.A. Efflux-Mediated Resistance to Tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1. Antimicrob. Agents Chemother. 2003, 47, 972–978. [Google Scholar] [CrossRef] [PubMed]
- Betrosian, A.P.; Douzinas, E.E. Ampicillin-Sulbactam: An Update on the Use of Parenteral and Oral Forms in Bacterial Infections. Expert Opin. Drug Metab. Toxicol. 2009, 5, 1099–1112. [Google Scholar] [CrossRef]
- Elfadadny, A.; Uchiyama, J.; Goto, K.; Imanishi, I.; Ragab, R.F.; Nageeb, W.M.; Iyori, K.; Toyoda, Y.; Tsukui, T.; Ide, K.; et al. Antimicrobial Resistance and Genotyping of Pseudomonas aeruginosa Isolated from Canine Otitis Externa. Front. Vet. Sci. 2023, 10, 1074127. [Google Scholar] [CrossRef]
- de Sousa, T.; Garcês, A.; Silva, A.; Lopes, R.; Alegria, N.; Hébraud, M.; Igrejas, G.; Poeta, P. The Impact of the Virulence of Pseudomonas aeruginosa Isolated from Dogs. Vet. Sci. 2023, 10, 343. [Google Scholar] [CrossRef]
- Rosales, R.S.; Ramírez, A.S.; Moya-Gil, E.; de la Fuente, S.N.; Suárez-Pérez, A.; Poveda, J.B. Microbiological Survey and Evaluation of Antimicrobial Susceptibility and MDR Phenotypes in Canine Otitis Externa Submissions. Animals 2024, 14, 742. [Google Scholar] [CrossRef]
- Meepoo, W.; Jaroensong, T.; Pruksakorn, C.; Rattanasrisomporn, J. Investigation of Bacterial Isolations and Antimicrobial Susceptibility of Chronic Rhinitis in Cats. Animals 2022, 12, 1572. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency (EMA); Antimicrobial Advice ad hoc Expert Group (AMEG). Answer to the Request from the European Commission for Updating the Scientific Advice on the Impact on Public Health and Animal Health of the Use of Antibiotics in Animals—Categorisation of Antimicrobials; EMA/CVMP/CHMP/682198/2017; European Medicines Agency: London, UK, 2019. [Google Scholar]
- European Commission. Commission Implementing Regulation (EU) 2022/1255 of 19 July 2022 Designating Antimicrobials or Groups of Antimicrobials Reserved for Treatment of Certain Infections in Humans, in Accordance with Regulation (EU) 2019/6 (Text with EEA Relevance). Off. J. Eur. Union 2022, 50, 58–60. [Google Scholar]
- World Health Organization. WHO List of Medically Important Antimicrobials—A Risk Management Tool for Mitigating Antimicrobial Resistance Due to Non-Human Use; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- European Commission. Commission Implementing Regulation (EU) 2024/1973 of 18 July 2024 Establishing a List of Antimicrobials Which Shall Not Be Used in Accordance with Articles 112 and 113 of Regulation (EU) 2019/6 of the European Parliament and of the Council or Which Shall Only Be Used in Accordance with Those Articles Subject to Certain Conditions (Text with EEA Relevance). Off. J. Eur. Union 2024, L, 2024/1973, 1–9. ELI. Available online: http://data.europa.eu/eli/reg_impl/2024/1973/oj (accessed on 2 February 2026).
- European Centre for Disease Prevention and Control (ECDC). Surveillance of Antimicrobial Resistance in Europe, 2024 Data; ECDC: Stockholm, Sweden, 2025. [Google Scholar]
- Ngo, H.L.; Huynh, T.Q.; Tran, N.B.V.; Nguyen, N.H.B.; Tong, T.H.; Trinh, T.T.L.; Nguyen, V.D.; Das, P.P.; Lim, T.K.; Lin, Q.; et al. Proteomic Analysis of Ceftazidime- and Meropenem-Exposed Pseudomonas aeruginosa ATCC 9027. Proteome Sci. 2023, 21, 15. [Google Scholar] [CrossRef]
- Bartmanski, B.J.; Bösch, A.; Schmitt, S.; Ireddy, N.R.; Ren, Q.; Findlay, J.; Egli, A.; Zimmermann-Kogadeeva, M.; Babouee Flury, B. Multi-Omics Profiling of Cross-Resistance between Ceftazidime-Avibactam and Meropenem Identifies Common and Strain-Specific Mechanisms in Pseudomonas aeruginosa Clinical Isolates. mBio 2025, 16, e03896-24. [Google Scholar] [CrossRef] [PubMed]
- Guardabassi, L.; Prescott, J.F. Antimicrobial Stewardship in Small Animal Veterinary Practice: From Theory to Practice. Vet. Clin. N. Am. Small Anim. Pract. 2015, 45, 361–376. [Google Scholar] [CrossRef]

| Antimicrobial | N | MI C Range (µg/mL) | MIC50 | MIC90 | Susceptible, n (%) | Intermediate, n (%) | Resistant, n (%) |
|---|---|---|---|---|---|---|---|
| Ciprofloxacin (CIP) | 111 | 0.064–8 | 0.5 | 8 | 76 (68.5) | 6 (5.4) | 29 (26.1) |
| Meropenem (MER) | 111 | 0.125–16 | 2 | 8 | 69 (62.2) | 23 (20.7) | 19 (17.1) |
| Ceftazidime (CAZ) | 111 | 0.25–32 | 4 | 32 | 78 (70.3) | 15 (13.5) | 18 (16.2) |
| Aztreonam (AZT) | 111 | 0.125–16 | 4 | 16 | 91 (82.0) | 20 (18.0) | 0 (0.0) a |
| Piperacillin (PIP) | 111 | 1–128 | 4 | 16 | 100 (90.1) | 3 (2.7) | 8 (7.2) |
| Piperacillin/tazobactam (PIT) | 111 | 1–128 | 4 | 16 | 100 (90.1) | 3 (2.7) | 8 (7.2) |
| Colistin (COL) | 111 | 0.25–16 | 2 | 2 | — b | 104 (93.7) | 7 (6.3) |
| Antimicrobial agents without CLSI categorical interpretation | |||||||
| Amikacin (AMK) | 111 | 0.5–64 | 4 | 8 | — c | — | — |
| Gentamicin (GEN) | 111 | 0.25–32 | 2 | 4 | — d | — | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Jańczak, D.; Górecki, P.; Wójtowicz, W.; Szaluś-Jordanow, O. MIC Distributions and CLSI-Categorized Resistance in Pseudomonas aeruginosa from Companion Animals in Poland: Evidence of Strong Meropenem–Ceftazidime Co-Non-Susceptibility. Microorganisms 2026, 14, 374. https://doi.org/10.3390/microorganisms14020374
Jańczak D, Górecki P, Wójtowicz W, Szaluś-Jordanow O. MIC Distributions and CLSI-Categorized Resistance in Pseudomonas aeruginosa from Companion Animals in Poland: Evidence of Strong Meropenem–Ceftazidime Co-Non-Susceptibility. Microorganisms. 2026; 14(2):374. https://doi.org/10.3390/microorganisms14020374
Chicago/Turabian StyleJańczak, Dawid, Piotr Górecki, Weronika Wójtowicz, and Olga Szaluś-Jordanow. 2026. "MIC Distributions and CLSI-Categorized Resistance in Pseudomonas aeruginosa from Companion Animals in Poland: Evidence of Strong Meropenem–Ceftazidime Co-Non-Susceptibility" Microorganisms 14, no. 2: 374. https://doi.org/10.3390/microorganisms14020374
APA StyleJańczak, D., Górecki, P., Wójtowicz, W., & Szaluś-Jordanow, O. (2026). MIC Distributions and CLSI-Categorized Resistance in Pseudomonas aeruginosa from Companion Animals in Poland: Evidence of Strong Meropenem–Ceftazidime Co-Non-Susceptibility. Microorganisms, 14(2), 374. https://doi.org/10.3390/microorganisms14020374

