Differences in the Biliary Microbiome Between Biliary Tract Cancer and Benign Biliary Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Sample Collection
2.2. Bile Bacterial DNA Extraction and 16S rRNA Gene PCR
2.3. 16s rRNA Sequencing and Analysis
3. Results
3.1. Patient Characteristics
3.2. Taxonomy and Diversity
3.3. Linear Discriminant Analysis Effect Size (LEfSe) and Phylogenetic Tree Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AoV ca | Ampulla of Vater carcinoma |
| BBD | Benign biliary disease |
| BTC | Biliary tract cancer |
| CBD | Common bile duct |
| EHCC | Extrahepatic cholangiocarcinoma |
| ERCP | Endoscopic retrograde cholangiopancreatography |
| GB ca | Gall bladder carcinoma |
| IHCC | Intrahepatic cholangiocarcinoma |
| LEfSe | Linear discriminant analysis Effect Size |
| LPS | Lipopolysaccharides |
| Perihilar CCC | Perihilar cholangiocarcinoma |
| QC | Quality control |
| TLR4 | Toll-like receptor 4 |
References
- Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I. The human microbiome project. Nature 2007, 449, 804–810. [Google Scholar] [CrossRef]
- Clemente, J.C.; Ursell, L.K.; Parfrey, L.W.; Knight, R. The impact of the gut microbiota on human health: An integrative view. Cell 2012, 148, 1258–1270. [Google Scholar] [CrossRef]
- Honda, K.; Littman, D.R. The microbiome in infectious disease and inflammation. Annu. Rev. Immunol. 2012, 30, 759–795. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Quinn, R.A.; Debelius, J.; Xu, Z.Z.; Morton, J.; Garg, N.; Jansson, J.K.; Dorrestein, P.C.; Knight, R. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 2016, 535, 94–103. [Google Scholar] [CrossRef]
- Molinero, N.; Ruiz, L.; Milani, C.; Gutiérrez-Díaz, I.; Sánchez, B.; Mangifesta, M.; Segura, J.; Cambero, I.; Campelo, A.B.; García-Bernardo, C.M. The human gallbladder microbiome is related to the physiological state and the biliary metabolic profile. Microbiome 2019, 7, 100. [Google Scholar] [CrossRef]
- Ye, C.; Dong, C.; Lin, Y.; Shi, H.; Zhou, W. Interplay between the Human Microbiome and Biliary Tract Cancer: Implications for Pathogenesis and Therapy. Microorganisms 2023, 11, 2598. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhang, S.; Jin, C.; Lin, Z.; Deng, T.; Xie, X.; Deng, L.; Li, X.; Ma, J.; Ding, X. A predictive model based on the gut microbiota improves the diagnostic effect in patients with cholangiocarcinoma. Front. Cell. Infect. Microbiol. 2021, 11, 751795. [Google Scholar] [CrossRef]
- Pérez-Bustamante, I.S.; Cruz-Flores, R.; López-Carvallo, J.A.; Sánchez-Serrano, S. Effect of the 16S rRNA Gene Hypervariable Region on the Microbiome Taxonomic Profile and Diversity in the Endangered Fish Totoaba macdonaldi. Microorganisms 2024, 12, 2119. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yuan, T.; Chen, J.; Yang, J.; Pu, J.; Lin, W.; Dong, K.; Zhang, L.; Yuan, J.; Zheng, H.; et al. A species-level identification pipeline for human gut microbiota based on the V3-V4 regions of 16S rRNA. Front. Microbiol. 2025, 16, 1553124. [Google Scholar] [CrossRef]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.-Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, R.H. Evolution and measurement of species diversity. Taxon 1972, 21, 213–251. [Google Scholar] [CrossRef]
- Lozupone, C.; Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 2005, 71, 8228–8235. [Google Scholar] [CrossRef] [PubMed]
- Mosca, A.; Leclerc, M.; Hugot, J.P. Gut microbiota diversity and human diseases: Should we reintroduce key predators in our ecosystem? Front. Microbiol. 2016, 7, 455. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.; Park, J.-S. Beyond the Bile: Exploring the Microbiome and Metabolites in Cholangiocarcinoma. Life 2024, 14, 698. [Google Scholar] [CrossRef]
- Schwimmer, J.B.; Johnson, J.S.; Angeles, J.E.; Behling, C.; Belt, P.H.; Borecki, I.; Bross, C.; Durelle, J.; Goyal, N.P.; Hamilton, G. Microbiome signatures associated with steatohepatitis and moderate to severe fibrosis in children with nonalcoholic fatty liver disease. Gastroenterology 2019, 157, 1109–1122. [Google Scholar] [CrossRef]
- Abdelsalam, N.A.; Hegazy, S.M.; Aziz, R.K. The curious case of Prevotella copri. Gut Microbes 2023, 15, 2249152. [Google Scholar] [CrossRef]
- Lo Presti, A.; Del Chierico, F.; Altomare, A.; Zorzi, F.; Monteleone, G.; Putignani, L.; Angeletti, S.; Cicala, M.; Guarino, M.P.L.; Ciccozzi, M. Phylogenetic analysis of Prevotella copri from fecal and mucosal microbiota of IBS and IBD patients. Ther. Adv. Gastroenterol. 2023, 16, 17562848221136328. [Google Scholar] [CrossRef]
- Cheng, M.; Zhao, Y.; Cui, Y.; Zhong, C.; Zha, Y.; Li, S.; Cao, G.; Li, M.; Zhang, L.; Ning, K. Microbial dysbiosis and metabolic disorders promote rheumatoid arthritis across successive stages: A multi-omics cohort study. bioRxiv 2022. [Google Scholar] [CrossRef]
- Pei, T.; Zhu, D.; Yang, S.; Hu, R.; Wang, F.; Zhang, J.; Yan, S.; Ju, L.; He, Z.; Han, Z. Bacteroides plebeius improves muscle wasting in chronic kidney disease by modulating the gut-renal muscle axis. J. Cell. Mol. Med. 2022, 26, 6066–6078. [Google Scholar] [CrossRef]
- Vallianou, N.G.; Kounatidis, D.; Tsilingiris, D.; Panagopoulos, F.; Christodoulatos, G.S.; Evangelopoulos, A.; Karampela, I.; Dalamaga, M. The role of next-generation probiotics in obesity and obesity-associated disorders: Current knowledge and future perspectives. Int. J. Mol. Sci. 2023, 24, 6755. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yan, S.; Sheng, S.; Qin, Q.; Chen, J.; Li, W.; Li, T.; Gao, X.; Wang, L.; Ang, L. Comparison of gut microbiota in male MAFLD patients with varying liver stiffness. Front. Cell. Infect. Microbiol. 2022, 12, 873048. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.-X.; Zhao, C.-Y.; Meng, X.-Y.; Yu, X.-Y.; Ma, L.-C.; Chen, T.-X.; Chang, C.; Chen, X.-Y.; Zhang, Y.; Hou, B. Bacteroides uniformis Ameliorates Carbohydrate and Lipid Metabolism Disorders in Diabetic Mice by Regulating Bile Acid Metabolism via the Gut–Liver Axis. Pharmaceuticals 2024, 17, 1015. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, J.; He, Z.; Li, H. Bacteroides and NAFLD: Pathophysiology and therapy. Front. Microbiol. 2024, 15, 1288856. [Google Scholar] [CrossRef]
- Dan, W.-Y.; Yang, Y.-S.; Peng, L.-H.; Sun, G.; Wang, Z.-K. Gastrointestinal microbiome and cholelithiasis: Current status and perspectives. World J. Gastroenterol. 2023, 29, 1589. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.-S.; Liu, Y.-Y.; Zhang, S.-K.; Zhou, J.-Y.; Li, J.-H.; Li, X.-m.; Zhang, M.-H.; Pan, X.-Y.; Chai, Y.-B.; Fang, W.-X.; et al. Lipidomic profiling of human bile distinguishes cholangiocarcinoma from benign bile duct diseases with high specificity and sensitivity: A prospective descriptive study. Br. J. Cancer 2025, 133, 1565–1582, Correction in Br. J. Cancer 2025, 133, 1589. https://doi.org/10.1038/s41416-025-03237-5. [Google Scholar] [CrossRef] [PubMed]




| Characteristics | Total (n = 59) | BTCs (n = 35) | BBDs (n = 24) | p-Value |
|---|---|---|---|---|
| Age, yr | 69 (42–89) | 72 (54–89) | 64 (39–89) | 0.002 |
| Sex, Male (%) | 24 (40.7) | 12 (34.3) | 12 (50) | 0.311 |
| Hypertension | 26 (44) | 16 (45.7) | 10 (41.7) | 0.776 |
| Diabetes | 14 (23.7) | 10 (28.6) | 4 (16.7) | 0.337 |
| Hepatitis HBV/HCV | 2 (3.4)/0 (0) | 0 (0)/0 (0) | 2 (8.3)/0 (0) | 0.187 |
| Menopause | 18 (51.4) | 10 (43.5) | 8 (66.7) | 0.263 |
| Smoking none/current/ex- | 34 (57.6)/18 (30.5)/7 (11.9) | 19 (54.3)/11 (31.4)/5 (14.3) | 15 (62.5)/7 (29.2)/2 (8.3) | 0.612 |
| Infection with the liver fluke | 4 (6.8) | 3 (8.6) | 1 (4.2) | 0.602 |
| Intake of Freshwater fish | 14 (23.7) | 9 (25.7) | 5 (20.8) | 0.658 |
| Disease entity | EHCC 17 AoV ca 7 Perihilar CCC 7 IHCC 1 GB ca. 3 | CBD stone 7 Chronic cholecystitis 13 adenomyomatosis 2 GB polyp 2 | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lee, H.J.; Park, S.H.; Han, S.Y.; Lee, J.H.; Kim, D.U.; Seo, H.I. Differences in the Biliary Microbiome Between Biliary Tract Cancer and Benign Biliary Disease. Microorganisms 2026, 14, 208. https://doi.org/10.3390/microorganisms14010208
Lee HJ, Park SH, Han SY, Lee JH, Kim DU, Seo HI. Differences in the Biliary Microbiome Between Biliary Tract Cancer and Benign Biliary Disease. Microorganisms. 2026; 14(1):208. https://doi.org/10.3390/microorganisms14010208
Chicago/Turabian StyleLee, Hye Ji, Sung Hee Park, Sung Yong Han, Jong Hyun Lee, Dong Uk Kim, and Hyung Il Seo. 2026. "Differences in the Biliary Microbiome Between Biliary Tract Cancer and Benign Biliary Disease" Microorganisms 14, no. 1: 208. https://doi.org/10.3390/microorganisms14010208
APA StyleLee, H. J., Park, S. H., Han, S. Y., Lee, J. H., Kim, D. U., & Seo, H. I. (2026). Differences in the Biliary Microbiome Between Biliary Tract Cancer and Benign Biliary Disease. Microorganisms, 14(1), 208. https://doi.org/10.3390/microorganisms14010208

