Accelerated Genomic Evolution and Divergence of Escherichia coli Under Phage Infection Stress: Emphasizing the Role of IS Elements in Changing Genetic Structure
Abstract
1. Introduction
2. Materials and Methods
2.1. Enrichment of Mixed Phages Infecting E. coli and Isolation of PRM E. coli Strains
2.2. Genotyping of Phage-Resistant Isolates Using IRS-PCR
2.3. Analysis of Biochemical Profiles of Selected E. coli PRM Strains
2.4. Whole-Genome Sequencing of the Selected PRM Strains
2.5. PCR Detection of Genetic Changes in Gaps Between Scaffolds, Followed by Sequencing
2.6. Evolved and Coevolved Samples and Resequencing
3. Results
3.1. IRS-PCR Exhibited Extensive Genetic Variations in E. coli PRM Strains
3.2. Biolog Assays Revealed Phenotypic Diversity of Six E. coli PRM Strains
3.3. Numerous Scattered Mutations Occurred Within Coding Genes in Six PRM Strains Revealed Using Comparative Genomics
3.4. Concentrated SPM Sites and Large InDels Occurred in the Genomes of Six PRM Strains
3.5. One Big Deletion and Frequent Insertions of IS Elements Were Identified in PRM Strains Using Gap-Filling PCR
3.6. Genomic Resequencing Reveal Divergent Evolutionary of Coevolved E. coli Populations
3.7. MS-Associated Genes in Coevolved Cells and Their Predicted Functions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weitz, J.S.; Poisot, T.; Meyer, J.R.; Flores, C.O.; Valverde, S.; Sullivan, M.B.; Hochberg, M.E. Phage–Bacteria Infection Networks. Trends Microbiol. 2013, 21, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Brüssow, H.; Hendrix, R.W. Phage Genomics: Small Is Beautiful. Cell 2002, 108, 13–16. [Google Scholar] [CrossRef]
- Suttle, C.A. Viruses in the Sea. Nature 2005, 437, 356–361. [Google Scholar] [CrossRef]
- Thurber, R.V. Current Insights into Phage Biodiversity and Biogeography. Curr. Opin. Microbiol. 2009, 12, 582–587. [Google Scholar] [CrossRef]
- Azam, A.H.; Tanji, Y. Bacteriophage-Host Arm Race: An Update on the Mechanism of Phage Resistance in Bacteria and Revenge of the Phage with the Perspective for Phage Therapy. Appl. Microbiol. Biotechnol. 2019, 103, 2121–2131. [Google Scholar] [CrossRef] [PubMed]
- Safari, F.; Sharifi, M.; Farajnia, S.; Akbari, B.; Ahmadi, M.K.B.; Negahdaripour, M.; Ghasemi, Y. The Interaction of Phages and Bacteria: The Co-Evolutionary Arms Race. Crit. Rev. Biotechnol. 2020, 40, 119–137. [Google Scholar] [CrossRef]
- Hampton, H.G.; Watson, B.N.J.; Fineran, P.C. The Arms Race between Bacteria and Their Phage Foes. Nature 2020, 577, 327–336. [Google Scholar] [CrossRef]
- Fuhrman, J.A. Marine Viruses and Their Biogeochemical and Ecological Effects. Nature 1999, 399, 541–548. [Google Scholar] [CrossRef]
- Castillo, D.; Christiansen, R.H.; Dalsgaard, I.; Madsen, L.; Middelboe, M. Bacteriophage Resistance Mechanisms in the Fish Pathogen Flavobacterium Psychrophilum: Linking Genomic Mutations to Changes in Bacterial Virulence Factors. Appl. Environ. Microbiol. 2015, 81, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- Lis, L.; Connerton, I.F. The Minor Flagellin of Campylobacter Jejuni (FlaB) Confers Defensive Properties against Bacteriophage Infection. Front. Microbiol. 2016, 7, 1908. [Google Scholar] [CrossRef]
- Gonzalez, F.; Helm, R.F.; Broadway, K.M.; Scharf, B.E. More than Rotating Flagella: Lipopolysaccharide as a Secondary Receptor for Flagellotropic Phage 7-7-1. J. Bacteriol. 2018, 200, e00363-18. [Google Scholar] [CrossRef]
- MacDonald, M.E.; Ambrose, C.M.; Duyao, M.P.; Myers, R.H.; Lin, C.; Srinidhi, L.; Barnes, G.; Taylor, S.A.; James, M.; Groot, N.; et al. A Novel Gene Containing a Trinucleotide Repeat That Is Expanded and Unstable on Huntington’s Disease Chromosomes. Cell 1993, 72, 971–983. [Google Scholar] [CrossRef]
- Erwin, A.L.; Bonthuis, P.J.; Geelhood, J.L.; Nelson, K.L.; McCrea, K.W.; Gilsdorf, J.R.; Smith, A.L. Heterogeneity in Tandem Octanucleotides within Haemophilus Influenzae Lipopolysaccharide Biosynthetic Gene losA Affects Serum Resistance. Infect. Immun. 2006, 74, 3408–3414. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.; Song, H.; Hwang, J.; Kim, K.; Nierman, W.C.; Kim, H.S. The Tandem Repeats Enabling Reversible Switching between the Two Phases of β-Lactamase Substrate Spectrum. PLoS Genet. 2014, 10, e1004640. [Google Scholar] [CrossRef]
- Ross, J.I.; Eady, E.A.; Cove, J.H.; Cunliffe, W.J. 16S rRNA Mutation Associated with Tetracycline Resistance in a Gram-Positive Bacterium. Antimicrob. Agents Chemother. 1998, 42, 1702–1705. [Google Scholar] [CrossRef]
- Haanperä, M.; Huovinen, P.; Jalava, J. Detection and Quantification of Macrolide Resistance Mutations at Positions 2058 and 2059 of the 23S rRNA Gene by Pyrosequencing. Antimicrob. Agents Chemother. 2005, 49, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.D.; Moran, N.A. Deleterious Mutations Destabilize Ribosomal RNA in Endosymbiotic Bacteria. Proc. Natl. Acad. Sci. USA 1998, 95, 4458–4462. [Google Scholar] [CrossRef] [PubMed]
- MacLean, R.C.; Torres-Barceló, C.; Moxon, R. Evaluating Evolutionary Models of Stress-Induced Mutagenesis in Bacteria. Nat. Rev. Genet. 2013, 14, 221–227. [Google Scholar] [CrossRef]
- Gómez, P.; Buckling, A. Coevolution with Phages Does Not Influence the Evolution of Bacterial Mutation Rates in Soil. ISME J. 2013, 7, 2242–2244. [Google Scholar] [CrossRef]
- Kashiwagi, A.; Yomo, T. Ongoing Phenotypic and Genomic Changes in Experimental Coevolution of RNA Bacteriophage Qβ and Escherichia Coli. PLoS Genet. 2011, 7, e1002188. [Google Scholar] [CrossRef]
- Scanlan, P.D.; Hall, A.R.; Blackshields, G.; Friman, V.-P.; Davis, M.R.; Goldberg, J.B.; Buckling, A. Coevolution with Bacteriophages Drives Genome-Wide Host Evolution and Constrains the Acquisition of Abiotic-Beneficial Mutations. Mol. Biol. Evol. 2025, 32, 1425–1435. [Google Scholar] [CrossRef]
- Pal, C.; Maciá, M.D.; Oliver, A.; Schachar, I.; Buckling, A. Coevolution with Viruses Drives the Evolution of Bacterial Mutation Rates. Nature 2007, 450, 1079–1081. [Google Scholar] [CrossRef]
- Paterson, S.; Vogwill, T.; Buckling, A.; Benmayor, R.; Spiers, A.J.; Thomson, N.R.; Quail, M.; Smith, F.; Walker, D.; Libberton, B.; et al. Antagonistic Coevolution Accelerates Molecular Evolution. Nature 2010, 464, 275–278. [Google Scholar] [CrossRef]
- Demerec, M.; Fano, U. Bacteriophage-Resistant Mutants in Escherichia coli. Genetics 1945, 30, 119–136. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Yun, L.; Li, Y.; Tian, Y.; Liu, Q.; Huang, W.; Hu, C. Complete Genomic Sequence of the Vibrio Alginolyticus Bacteriophage Vp670 and Characterization of the Lysis-Related Genes, cwlQ and holA. BMC Genom. 2018, 19, 741. [Google Scholar] [CrossRef] [PubMed]
- Carlson, K. Working with bacteriophages: Common techniques and methodological approaches. In Bacteriophage: Biology and Applications; Kutter, E., Sulakvelidze, A., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 437–494. [Google Scholar]
- Mazurek, G.H.; Reddy, V.; Marston, B.J.; Haas, W.H.; Crawford, J.T. DNA Fingerprinting by Infrequent-Restriction-Site Amplification. J. Clin. Microbiol. 1996, 34, 2386–2390. [Google Scholar] [CrossRef]
- Ren, C.; Hu, C.; Luo, P.; Chen, C.; Jiang, X.; Wang, Q. Genotyping of Vibrio alginolyticus Isolates from Daya Bay by Infrequent-Restriction-Site PCR and Pulsed-Field Gel Electrophoresis. Mol. Cell. Probes 2008, 22, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Byun, J.-H.; Yoo, J.-H.; Park, C.; Lee, D.-G.; Park, S.-H.; Choi, S.-M.; Choi, J.-H.; Kim, S.-H.; Kwon, J.-C. Molecular Epidemiologic Analysis of Community-Onset Extended Spectrum Beta-Lactamase (ESBL) Producing Escherichia Coli Using Infrequent-Restriction-Site Polymerase Chain Reaction (IRS-PCR) with Comparison by Pulsed-Field Gel Electrophoresis (PFGE). Infect. Chemother. 2012, 44, 5–10. [Google Scholar] [CrossRef]
- Zerbino, D.R.; Birney, E. Velvet: Algorithms for de Novo Short Read Assembly Using de Bruijn Graphs. Genome Res. 2008, 18, 821–829. [Google Scholar] [CrossRef]
- Zerbino, D.R.; McEwen, G.K.; Margulies, E.H.; Birney, E. Pebble and Rock Band: Heuristic Resolution of Repeats and Scaffolding in the Velvet Short-Read de Novo Assembler. PLoS ONE 2009, 4, e8407. [Google Scholar] [CrossRef]
- Boetzer, M.; Henkel, C.V.; Jansen, H.J.; Butler, D.; Pirovano, W. Scaffolding Pre-Assembled Contigs Using SSPACE. Bioinformatics 2011, 27, 578–579. [Google Scholar] [CrossRef]
- Boetzer, M.; Pirovano, W. Toward Almost Closed Genomes with GapFiller. Genome Biol. 2012, 13, R56. [Google Scholar] [CrossRef]
- Darling, A.C.E.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple Alignment of Conserved Genomic Sequence with Rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef]
- Gene Ontology Consortium. The Gene Ontology (GO) Database and Informatics Resource. Nucleic Acids Res. 2004, 32, D258–D261. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Garaizar, J.; López-Molina, N.; Laconcha, I.; Baggesen, D.L.; Rementeria, A.; Vivanco, A.; Audicana, A.; Perales, I. Suitability of PCR Fingerprinting, Infrequent-Restriction-Site PCR, and Pulsed-Field Gel Electrophoresis, Combined with Computerized Gel Analysis, in Library Typing of Salmonella Enterica Serovar Enteritidis. Appl. Environ. Microbiol. 2000, 66, 5273–5281. [Google Scholar] [CrossRef]
- Scanlan, P.D. Bacteria–Bacteriophage Coevolution in the Human Gut: Implications for Microbial Diversity and Functionality. Trends Microbiol. 2017, 25, 614–623. [Google Scholar] [CrossRef]
- Maynard, N.D.; Birch, E.W.; Sanghvi, J.C.; Chen, L.; Gutschow, M.V.; Covert, M.W. A Forward-Genetic Screen and Dynamic Analysis of Lambda Phage Host-Dependencies Reveals an Extensive Interaction Network and a New Anti-Viral Strategy. PLoS Genet. 2010, 6, e1001017. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Garrett, T.A.; Raetz, C.R.H. In Vitro Assembly of the Outer Core of the Lipopolysaccharide from Escherichia Coli K-12 and Salmonella Typhimurium. Biochemistry 2014, 53, 1250–1262. [Google Scholar] [CrossRef] [PubMed]
- Blattner, F.R.; Plunkett, G.; Bloch, C.A.; Perna, N.T.; Burland, V.; Riley, M.; Collado-Vides, J.; Glasner, J.D.; Rode, C.K.; Mayhew, G.F.; et al. The Complete Genome Sequence of Escherichia Coli K-12. Science 1997, 277, 1453–1462. [Google Scholar] [CrossRef] [PubMed]
- Arricau-Bouvery, N.; Hauck, Y.; Bejaoui, A.; Frangoulidis, D.; Bodier, C.C.; Souriau, A.; Meyer, H.; Neubauer, H.; Rodolakis, A.; Vergnaud, G. Molecular Characterization of Coxiella Burnetii Isolates by Infrequent Restriction Site-PCR and MLVA Typing. BMC Microbiol. 2006, 6, 38. [Google Scholar] [CrossRef]
- Shin, N.-Y.; Yoo, J.-H.; Park, C.; Lee, D.-G.; Choi, S.-M.; Kwon, J.-C.; Kim, S.-H.; Park, S.-H.; Choi, J.-H. Application of Infrequent-Restriction-Site Polymerase Reaction (IRS-PCR) to the Molecular Epidemiologic Analysis of Methicillin Resistant Staphylococcus Aureus (MRSA). Infect. Chemother. 2011, 43, 396–405. [Google Scholar] [CrossRef]
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin. Microbiol. Rev. 2018, 31, e00088-17. [Google Scholar] [CrossRef]
- Kusumoto, M.; Okitsu, T.; Nishiya, Y.; Suzuki, R.; Yamai, S.; Kawamura, Y. Spontaneous Reactivation of Shiga Toxins in Escherichia Coli O157:H7 Cells Caused by Transposon Excision. J. Biosci. Bioeng. 2001, 92, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Siguier, P.; Gourbeyre, E.; Chandler, M. Bacterial Insertion Sequences: Their Genomic Impact and Diversity. FEMS Microbiol. Rev. 2014, 38, 865–891. [Google Scholar] [CrossRef]
- Humayun, M.Z.; Zhang, Z.; Butcher, A.M.; Moshayedi, A.; Saier, M.H., Jr. Hopping into a Hot Seat: Role of DNA Structural Features on IS5-Mediated Gene Activation and Inactivation under Stress. PLoS ONE 2017, 12, e0180156. [Google Scholar] [CrossRef]
- Schnetz, K.; Rak, B. IS5: A Mobile Enhancer of Transcription in Escherichia Coli. Proc. Natl. Acad. Sci. USA 1992, 89, 1244–1248. [Google Scholar] [CrossRef]
- Saier, M.H.; Kukita, C.; Zhang, Z. Transposon-Mediated Directed Mutation in Bacteria and Eukaryotes. Front. Biosci. (Landmark Ed.) 2017, 22, 1458–1468. [Google Scholar] [CrossRef] [PubMed]
- Liebau, J.; Pettersson, P.; Szpryngiel, S.; Mäler, L. Membrane Interaction of the Glycosyltransferase WaaG. Biophys. J. 2015, 109, 552–563. [Google Scholar] [CrossRef]
- Nakao, R.; Ramstedt, M.; Wai, S.N.; Uhlin, B.E. Enhanced Biofilm Formation by Escherichia Coli LPS Mutants Defective in Hep Biosynthesis. PLoS ONE 2012, 7, e51241. [Google Scholar] [CrossRef]
- Yavuz, E.; Maffioli, C.; Ilg, K.; Aebi, M.; Priem, B. Glycomimicry: Display of Fucosylation on the Lipo-Oligosaccharide of Recombinant Escherichia Coli K12. Glycoconj. J. 2011, 28, 39–47. [Google Scholar] [CrossRef]
- Traurig, M.; Misra, R. Identification of Bacteriophage K20 Binding Regions of OmpF and Lipopolysaccharide in Escherichia coli K-12. FEMS Microbiol. Lett. 1999, 181, 101–108. [Google Scholar] [CrossRef]
- Fahrner, K.A.; Berg, H.C. Mutations That Stimulate flhDC Expression in Escherichia Coli K-12. J. Bacteriol. 2015, 197, 3087–3096. [Google Scholar] [CrossRef] [PubMed]
- Oechslin, F. Resistance Development to Bacteriophages Occurring during Bacteriophage Therapy. Viruses 2018, 10, 351. [Google Scholar] [CrossRef]
- Darmon, E.; Leach, D.R.F. Bacterial Genome Instability. Microbiol. Mol. Biol. Rev. 2014, 78, 1–39. [Google Scholar] [CrossRef]
- Doolittle, W.F.; Sapienza, C. Selfish Genes, the Phenotype Paradigm and Genome Evolution. Nature 1980, 284, 601–603. [Google Scholar] [CrossRef] [PubMed]
- Ritz, D.; Lim, J.; Reynolds, C.M.; Poole, L.B.; Beckwith, J. Conversion of a Peroxiredoxin into a Disulfide Reductase by a Triplet Repeat Expansion. Science 2001, 294, 158–160. [Google Scholar] [CrossRef] [PubMed]
- Gemayel, R.; Vinces, M.D.; Legendre, M.; Verstrepen, K.J. Variable Tandem Repeats Accelerate Evolution of Coding and Regulatory Sequences. Annu. Rev. Genet. 2010, 44, 445–477. [Google Scholar] [CrossRef]
- Forterre, P. The Last Universal Common Ancestor of Ribosome-Encoding Organisms: Portrait of LUCA. J. Mol. Evol. 2024, 92, 550–583. [Google Scholar] [CrossRef]
- Woese, C.R. Bacterial Evolution. Microbiol. Rev. 1987, 51, 221–271. [Google Scholar] [CrossRef]
- Woese, C.R.; Kandler, O.; Wheelis, M.L. Towards a Natural System of Organisms: Proposal for the Domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 1990, 87, 4576–4579. [Google Scholar] [CrossRef]
- Cahill, J.; Young, R. Phage Lysis: Multiple Genes for Multiple Barriers. In Advances in Virus Research; Academic Press: Cambridge, MA, USA, 2019; Volume 103, pp. 33–70. [Google Scholar] [CrossRef]
- del Castillo, I.; Gómez, J.M.; Moreno, F. mprA, an Escherichia coli Gene That Reduces Growth-Phase-Dependent Synthesis of Microcins B17 and C7 and Blocks Osmoinduction of proU When Cloned on a High-Copy-Number Plasmid. J. Bacteriol. 1990, 172, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Lomovskaya, O.; Lewis, K.; Matin, A. EmrR Is a Negative Regulator of the Escherichia coli Multidrug Resistance Pump EmrAB. J. Bacteriol. 1995, 177, 2328–2334. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wolff, E.; Kim, M.; Diep, A.; Miller, J.H. Identification of Mutator Genes and Mutational Pathways in Escherichia coli Using a Multicopy Cloning Approach. Mol. Microbiol. 2004, 53, 283–295. [Google Scholar] [CrossRef]
- Shabbir, M.A.B.; Hao, H.; Shabbir, M.Z.; Wu, Q.; Sattar, A.; Yuan, Z. Bacteria vs. Bacteriophages: Parallel Evolution of Immune Arsenals. Front. Microbiol. 2016, 7, 1292. [Google Scholar] [CrossRef]
- Rakhuba, D.V.; Kolomiets, E.I.; Szwajcer Dey, E.; Novik, G.I. Bacteriophage Receptors, Mechanisms of Phage Adsorption and Penetration into Host Cell. Pol. J. Microbiol. 2010, 59, 145–155. [Google Scholar] [CrossRef]
- Warwick-Dugdale, J.; Buchholz, H.H.; Allen, M.J.; Temperton, B. Host-Hijacking and Planktonic Piracy: How Phages Command the Microbial High Seas. Virol. J. 2019, 16, 15. [Google Scholar] [CrossRef]
- Stern, A.; Sorek, R. The Phage-Host Arms Race: Shaping the Evolution of Microbes. Bioessays 2011, 33, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Koskella, B.; Brockhurst, M.A. Bacteria–Phage Coevolution as a Driver of Ecological and Evolutionary Processes in Microbial Communities. FEMS Microbiol. Rev. 2014, 38, 916–931. [Google Scholar] [CrossRef]
- Lee, H.; Doak, T.G.; Popodi, E.; Foster, P.L.; Tang, H. Insertion Sequence-Caused Large-Scale Rearrangements in the Genome of Escherichia coli. Nucleic Acids Res. 2016, 44, 7109–7119. [Google Scholar] [CrossRef]
- Swings, T.; Van den Bergh, B.; Wuyts, S.; Oeyen, E.; Voordeckers, K.; Verstrepen, K.J.; Fauvart, M.; Verstraeten, N.; Michiels, J. Adaptive Tuning of Mutation Rates Allows Fast Response to Lethal Stress in Escherichia coli. eLife 2017, 6, e22939. [Google Scholar] [CrossRef] [PubMed]
- Engelhardt, D. Mutation Rate Variability as a Driving Force in Adaptive Evolution. Phys. Rev. E 2019, 99, 022424. [Google Scholar] [CrossRef] [PubMed]







| Mutation Sites | Variation; AA Change | Gene | Protein Product | Protein Name | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|---|---|---|
| 1050039 | A > C; S > R | insB-4 | NP_415508.1 | IS1 protein InsB | √ | √ | √ | √ | ||
| 1112244 | G > A; W > * | opgH | NP_415567.1 | osmoregulated periplasmic glucans (OPGs) biosynthesis protein | √ | √ | √ | |||
| 1633223 | A > N/C; K > T | ydfK | NP_416062.2 | Qin prophage; cold shock protein YdfK | √ | √ | ||||
| 1633583 | A > N | ydfK | NP_416062.2 | Qin prophage; cold shock protein YdfK | √ | |||||
| 2066465 | T > C; K > R | insH-6 | NP_416498.1 | CP4-44 prophage; IS5 transposase and trans-activator | √ | |||||
| 3801210 | G > T; H > N | waaJ | NP_418083.1 | UDP-glucose: (glucosyl) LPS alpha-1,2-glucosyltransferase | √ | |||||
| 3801516 | G > A; Q > * | waaJ | NP_418083.1 | UDP-glucose: (glucosyl) LPS alpha-1,2-glucosyltransferase | √ | |||||
| 4507837 | G > C; L > V | insI-3 | NP_418704.1 | KpLE2 phage-like element; IS30 transposase | √ | |||||
| 1633629 | T > C; Q > R | pinQ | NP_416063.1 | Qin prophage; putative site-specific recombinase pinQ | √ | |||||
| 1635957 | InDel | nohA | YP_009518788.1 | Qin prophage; putative prophage DNA-packaging protein NohA | √ | |||||
| 580437 | A > C; S > R | ylcI | YP_001165309.1 | DLP12 prophage; DUF3950 domain-containing protein YlcI | √ | |||||
| 4236664 | C > T; Q > * | yjbF | NP_418451.4 | lipoprotein YjbF | √ | |||||
| 19933 | G > A; H > Y | insB-1 | NP_414562.1 | IS1 protein InsB | √ |
| Position | Variation | Mutation Type | AA Change | Protein Name | Protein Function |
|---|---|---|---|---|---|
| 219949 | C > T | nonsynonymous SNV | C359T; R120H | Outer membrane lipoprotein (RcsF) | Polysaccharide synthesis |
| 243955 | GAATGAAAGT > - | frameshift deletion | 413_422del; G138fs | D-sedoheptulose 7-phosphate isomerase (GmhA) | LPS synthesis |
| 529232 | G > A | downstream | - | DNA-binding transcriptional regulator (YlbG) | Transcription regulation |
| 577150 | G > A | upstream | - | DLP12 prophage; phage holin protein | Membrane lysis |
| 1112244 | G > A | stopgain | G1382A; W461X | Osmoregulated periplasmic glucans biosynthesis protein (OpgH) | Polysaccharide synthesis |
| 1534678 | A > T | nonsynonymous SNV | A655T; N219Y | Arylamine N-acetyltransferase (NhoA) | Acetyltransfer |
| 1965623 | Insertion of 68 bases | stopgain | 568_569ins68 bases; G190L191delinsELHDKVIGHYLNIKHYQX | Flagellar biosynthesis protein (FlhB) | Flagellar biosynthesis |
| 2810875 | ATGCAAAGCAA > - | frameshift deletion | 106_116del; M36fs | DNA-binding transcriptional repressor (MprA) | Multidrug resistance |
| 2811199 | - > GC | frameshift insertion | 430_431insGC; S144fs | DNA-binding transcriptional repressor (MprA) | Multidrug resistance |
| 3196314 | A > - | frameshift deletion | 995del; V332fs | Fused heptose 7-phosphate kinase/heptose 1-phosphate adenyltransferase (RfaE) | LPS heptosyl transfer |
| 3196510 | GC > - | frameshift deletion | 243_244del; A81fs | Fused heptose 7-phosphate kinase/heptose 1-phosphate adenyltransferase (RfaE) | LPS heptosyl transfer |
| 3781140 | A > G | upstream | - | tRNA(cytidine/uridine-2\’-O)-ribose methyltransferase | tRNA methyl transfer |
| 3781152 | A > G | upstream | - | tRNA(cytidine/uridine-2\’-O)-ribose methyltransferase | tRNA methyl transfer |
| 3794417 | A > C | synonymous SNV | A429C; S143S | ADP-L-glycero-D-mannoheptose 6-epimerase (RfaD) | Core LPS precursor synthesis |
| 3794924 | TCTGCATGAAAATACT > - | frameshift deletion | Whole gene | ADP-heptose-LPS heptosyltransferase 2 (WaaF) | LPS heptosyl transfer |
| 3795365 | - > C | frameshift insertion | 438insC; R146fs | ADP-heptose-LPS heptosyltransferase 2 (WaaF) | LPS heptosyl transfer |
| 3795787 | T > A | nonsynonymous SNV | T859A; Y287N | ADP-heptose-LPS heptosyltransferase 2 (waaF) | LPS heptosyl transfer |
| 4266863 | C > T | downstream | - | Alanine racemase 1 | Alanine synthesis |
| 4296060 | C > T | downstream | - | Glutamate/aspartate: H (+) symporter GltP | Amino acid transport |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wen, S.; Yuan, L.; Li, Y.; Yin, J.; Luo, P. Accelerated Genomic Evolution and Divergence of Escherichia coli Under Phage Infection Stress: Emphasizing the Role of IS Elements in Changing Genetic Structure. Microorganisms 2026, 14, 160. https://doi.org/10.3390/microorganisms14010160
Wen S, Yuan L, Li Y, Yin J, Luo P. Accelerated Genomic Evolution and Divergence of Escherichia coli Under Phage Infection Stress: Emphasizing the Role of IS Elements in Changing Genetic Structure. Microorganisms. 2026; 14(1):160. https://doi.org/10.3390/microorganisms14010160
Chicago/Turabian StyleWen, Shuyang, Lihong Yuan, Yingying Li, Jiayue Yin, and Peng Luo. 2026. "Accelerated Genomic Evolution and Divergence of Escherichia coli Under Phage Infection Stress: Emphasizing the Role of IS Elements in Changing Genetic Structure" Microorganisms 14, no. 1: 160. https://doi.org/10.3390/microorganisms14010160
APA StyleWen, S., Yuan, L., Li, Y., Yin, J., & Luo, P. (2026). Accelerated Genomic Evolution and Divergence of Escherichia coli Under Phage Infection Stress: Emphasizing the Role of IS Elements in Changing Genetic Structure. Microorganisms, 14(1), 160. https://doi.org/10.3390/microorganisms14010160

