Harvest Stage Dictates the Nutritive Value of Sorghum Stalk Silage by Shaping Its Fermentation Profile and Microbial Composition
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Material Preparation and Experiment Design
2.2. In Vitro Rumen Fermentation and Experiment Design
2.3. Nutrient Composition Analysis
2.4. Silage and In Vitro Fermentation Parameters Analysis
2.5. Bacterial Amplicon Sequencing and Data Processing
2.6. Calculations and Statistical Analysis
3. Results
3.1. Silage Quality of Sorghum Straw at Different Harvest Period
3.2. Silage Sensory, V-Score and Aerobic Stability Evaluation of Sorghum Stalk Silage
3.3. In Vitro Fermentation Parameters of Sorghum Stalk Silage at Different Harvest Stages
3.4. Sorghum Straw Silage Microbial Profiles at Different Harvest Times Before and After Ensiling
3.5. Bacterial Community Composition and Diversity of Sorghum Silage Across Harvest Stages and Ensiling
3.6. Correlations Between Key Bacteria and Fermentation Parameters After Ensiling
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henchion, M.; Moloney, A.P.; Hyland, J.; Zimmermann, J.; McCarthy, S. Review: Trends for Meat, Milk and Egg Consumption for the next Decades and the Role Played by Livestock Systems in the Global Production of Proteins. Animal 2021, 15, 100287. [Google Scholar] [CrossRef] [PubMed]
- Boudalia, S.; Smeti, S.; Dawit, M.; Senbeta, E.K.; Gueroui, Y.; Dotas, V.; Bousbia, A.; Symeon, G.K. Alternative Approaches to Feeding Small Ruminants and Their Potential Benefits. Animals 2024, 14, 904. [Google Scholar] [CrossRef] [PubMed]
- Magklaras, G.; Skoufos, I.; Bonos, E.; Tsinas, A.; Zacharis, C.; Giavasis, I.; Petrotos, K.; Fotou, K.; Nikolaou, K.; Vasilopoulou, K.; et al. Innovative Use of Olive, Winery and Cheese Waste by-Products as Novel Ingredients in Weaned Pigs Nutrition. Vet. Sci. 2023, 10, 397. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S. Review: Feed Demand Landscape and Implications of Food-Not Feed Strategy for Food Security and Climate Change. Animal 2018, 12, 1744–1754. [Google Scholar] [CrossRef]
- Halmemies-Beauchet-Filleau, A.; Rinne, M.; Lamminen, M.; Mapato, C.; Ampapon, T.; Wanapat, M.; Vanhatalo, A. Review: Alternative and Novel Feeds for Ruminants: Nutritive Value, Product Quality and Environmental Aspects. Animal 2018, 12, s295–s309. [Google Scholar] [CrossRef]
- Khoddami, A.; Messina, V.; Vadabalija Venkata, K.; Farahnaky, A.; Blanchard, C.L.; Roberts, T.H. Sorghum in Foods: Functionality and Potential in Innovative Products. Crit. Rev. Food Sci. Nutr. 2023, 63, 1170–1186. [Google Scholar] [CrossRef]
- Joy, S.P.; Kumar, A.A.; Gorthy, S.; Jaganathan, J.; Kunappareddy, A.; Gaddameedi, A.; Krishnan, C. Variations in Structure and Saccharification Efficiency of Biomass of Different Sorghum Varieties Subjected to Aqueous Ammonia and Glycerol Pretreatments. Ind. Crop. Prod. 2021, 159, 113072. [Google Scholar] [CrossRef]
- Etuk, E.B.; Ifeduba, A.V.; Okata, U.E.; Chiaka, I.; Charles, O.I.; Okeudo, N.J.; Esonu, B.O.; Udedibie, A.B.I.; Moreki, J.C. Nutrient Composition and Feeding Value of Sorghum for Livestock and Poultry: A Review. Anim. Sci. Adv. 2012, 2, 510–524. [Google Scholar]
- Malisetty, V.; Yerradoddi, R.R.; Devanaboina, N.; Mallam, M.; Mitta, P. Effect of Feeding Sorghum Straw Based Complete Rations with Different Roughage to Concentrate Ratio on Dry Matter Intake, Nutrient Utilization, and Nitrogen Balance in Nellore Ram Lambs. Trop. Anim. Health Prod. 2014, 46, 759–764. [Google Scholar] [CrossRef]
- Bakari, H.; Djomdi; Ruben, Z.F.; Roger, D.D.; Cedric, D.; Guillaume, P.; Pascal, D.; Philippe, M.; Gwendoline, C. Sorghum (Sorghum bicolor L. Moench) and Its Main Parts (by-Products) as Promising Sustainable Sources of Value-Added Ingredients. Waste Biomass Valori. 2023, 14, 1023–1044. [Google Scholar] [CrossRef]
- Okoye, C.O.; Wang, Y.; Gao, L.; Wu, Y.; Li, X.; Sun, J.; Jiang, J. The Performance of Lactic Acid Bacteria in Silage Production: A Review of Modern Biotechnology for Silage Improvement. Microbiol. Res. 2023, 266, 127212. [Google Scholar] [CrossRef] [PubMed]
- Ambye-Jensen, M.; Johansen, K.S.; Didion, T.; Kádár, Z.; Meyer, A.S. Ensiling and Hydrothermal Pretreatment of Grass: Consequences for Enzymatic Biomass Conversion and Total Monosaccharide Yields. Biotechnol. Biofuels 2014, 7, 95. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, S.; Liao, J.; Khan, N.A.; Tang, S.; Zhou, C.; Tan, Z.; Elnagar, A.; Rehan, I.F.; Zigo, F.; et al. Enhancing Fermentation Quality and Fiber Decomposition of Phragmites Australis Silage by Introducing Bacillus Subtilis and Lactic Acid Bacteria Consortia. Front. Vet. Sci. 2025, 12, 1557614. [Google Scholar] [CrossRef] [PubMed]
- McCary, C.L.; Vyas, D.; Faciola, A.P.; Ferraretto, L.F. Graduate Student Literature Review: Current Perspectives on Whole-Plant Sorghum Silage Production and Utilization by Lactating Dairy Cows. J. Dairy Sci. 2020, 103, 5783–5790. [Google Scholar] [CrossRef]
- Yang, Y.; Ferreira, G.; Corl, B.A.; Campbell, B.T. Production Performance, Nutrient Digestibility, and Milk Fatty Acid Profile of Lactating Dairy Cows Fed Corn Silage- or Sorghum Silage-Based Diets with and without Xylanase Supplementation. J. Dairy Sci. 2019, 102, 2266–2274. [Google Scholar] [CrossRef]
- Lv, X.; Chen, L.; Zhou, C.; Zhang, G.; Xie, J.; Kang, J.; Tan, Z.; Tang, S.; Kong, Z.; Liu, Z.; et al. Application of Different Proportions of Sweet Sorghum Silage as a Substitute for Corn Silage in Dairy Cows. Food Sci. Nutr. 2023, 11, 3575–3587. [Google Scholar] [CrossRef]
- Wang, S.; Guo, F.; Wang, Y.; Dong, M.; Wang, J.; Xiao, G. Effects of Substituting Sweet Sorghum for Corn Silage in the Diet on the Growth Performance, Meat Quality, and Rumen Microorganisms of Boer Goats in China. Animals 2025, 15, 1492. [Google Scholar] [CrossRef]
- Menke, H.H.; Steingass, H. Estimation of Energetic Feed Value Obtained from Chemical Analysis and In Vitro Gas Production Using Rumen Fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; AOAC: Arlington, VA, USA, 2006. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Mertens, D.R.; Allen, M.; Carmany, J.; Clegg, J.; Davidowicz, A.; Drouches, M.; Frank, K.; Gambin, D.; Garkie, M.; Gildemeister, B.; et al. Gravimetric Determination of Amylase-Treated Neutral Detergent Fiber in Feeds with Refluxing in Beakers or Crucibles: Collaborative Study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar] [CrossRef]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated Simultaneous Determination of Ammonia and Total Amino Acids in Ruminal Fluid and in Vitro Media1. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tao, X.; Liu, Q.; Zhang, Y.J.; Xu, J.; Zhang, W.; Wang, J.; Zhang, D.; Li, B.; Wang, L.; et al. Succession Changes of Fermentation Parameters, Nutrient Components and Bacterial Community of Sorghum Stalk Silage. Front. Microbiol. 2022, 13, 982489. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Guo, G.; Yuan, X.; Zhang, J.; Li, J.; Shao, T. Effects of Applying Molasses, Lactic Acid Bacteria and Propionic Acid on Fermentation Quality, Aerobic Stability and in Vitro Gas Production of Total Mixed Ration Silage Prepared with Oat-Common Vetch Intercrop on the Tibetan Plateau. J. Sci. Food Agr. 2016, 96, 1678–1685. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, T.C.; Smith, M.L.; Barnard, A.M.; Kung, L. The Effect of a Chemical Additive on the Fermentation and Aerobic Stability of High-Moisture Corn. J. Dairy Sci. 2015, 98, 8904–8912. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Morrison, M. Improved Extraction of PCR-Quality Community DNA from Digesta and Fecal Samples. BioTechniques 2004, 36, 808–812. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Detmann, E.; Valadares Filho, S.C. On the Estimation of Non-Fibrous Carbohydrates in Feeds and Diets. Arq. Bras. Med. Vet. Zootec. 2010, 62, 980–984. [Google Scholar] [CrossRef]
- Sanson, D.W.; Kercher, C.J. Validation of Equations Used to Estimate Relative Feed Value of Alfalfa Hay1. Prof. Anim. Sci. 1996, 12, 162–166. [Google Scholar] [CrossRef]
- Wei, S.N.; Jeong, E.C.; Li, Y.F.; Kim, H.J.; Ahmadi, F.; Kim, J.G. Evaluation of Forage Production, Feed Value, and Ensilability of Proso Millet (Panicum miliaceum L.). J. Anim. Sci. Technol. 2022, 64, 38–51. [Google Scholar] [CrossRef] [PubMed]
- Ørskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef]
- Liu, X.; Li, D.; Ge, Q.; Yang, B.; Li, S. Effects of Harvest Period and Mixed Ratio on the Characteristic and Quality of Mixed Silage of Alfalfa and Maize. Anim. Feed Sci. Technol. 2023, 306, 115796. [Google Scholar] [CrossRef]
- Wang, M.; Yu, Z.; Wu, Z.; Hannaway, D.B. Effect of Lactobacillus Plantarum ‘KR107070’ and a Propionic Acid-Based Preservative on the Fermentation Characteristics, Nutritive Value and Aerobic Stability of Alfalfa-Corn Mixed Silage Ensiled with Four Ratios. Grassl. Sci. 2018, 64, 51–60. [Google Scholar] [CrossRef]
- Bal, M.A.; Coors, J.G.; Shaver, R.D. Impact of the Maturity of Corn for Use as Silage in the Diets of Dairy Cows on Intake, Digestion, and Milk Production. J. Dairy Sci. 1997, 80, 2497–2503. [Google Scholar] [CrossRef]
- Yang, C.T.; Ferris, C.P.; Yan, T. Effects of Dietary Crude Protein Concentration on Animal Performance and Nitrogen Utilisation Efficiency at Different Stages of Lactation in Holstein-Friesian Dairy Cows. Animal 2022, 16, 100562. [Google Scholar] [CrossRef]
- Arelovich, H.M.; Abney, C.S.; Vizcarra, J.A.; Galyean, M.L. Effects of Dietary Neutral Detergent Fiber on Intakes of Dry Matter and Net Energy by Dairy and Beef Cattle: Analysis of Published Data. Prof. Anim. Sci. 2008, 24, 375–383. [Google Scholar] [CrossRef]
- Moreira, F.B.; Prado, I.N.; Cecato, U.; Wada, F.Y.; Mizubuti, I.Y. Forage Evaluation, Chemical Composition, and in Vitro Digestibility of Continuously Grazed Star Grass. Anim. Feed Sci. Technol. 2004, 113, 239–249. [Google Scholar] [CrossRef]
- Kirchhof, S.; Eisner, I.; Gierus, M.; Südekum, K.-H. Variation in the Contents of Crude Protein Fractions of Different Forage Legumes during the Spring Growth. Grass Forage Sci. 2010, 65, 376–382. [Google Scholar] [CrossRef]
- Guo, L.; Lu, Y.; Li, P.; Chen, L.; Gou, W.; Zhang, C. Effects of Delayed Harvest and Additives on Fermentation Quality and Bacterial Community of Corn Stalk Silage. Front. Microbiol. 2021, 12, 687481. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.L.; Li, Y.F.; Yu, Y.S.; Kim, H.J.; Lee, W.J.; Kim, J.G. Effects of a Delayed Harvest and Additives on the Fermentation Quality of Corn Stalk Silage. Agriculture 2024, 14, 174. [Google Scholar] [CrossRef]
- Tlahig, S.; Neji, M.; Atoui, A.; Seddik, M.; Dbara, M.; Yahia, H.; Nagaz, K.; Najari, S.; Khorchani, T.; Loumerem, M. Genetic and Seasonal Variation in Forage Quality of Lucerne (Medicago sativa L.) for Resilience to Climate Change in Arid Environments. J. Agric. Food Res. 2024, 15, 100986. [Google Scholar] [CrossRef]
- Muck, R.E. Factors Influencing Silage Quality and Their Implications for Management1. J. Dairy Sci. 1988, 71, 2992–3002. [Google Scholar] [CrossRef]
- Kleinschmit, D.H.; Schmidt, R.J.; Kung, L. The Effects of Various Antifungal Additives on the Fermentation and Aerobic Stability of Corn Silage. J. Dairy Sci. 2005, 88, 2130–2139. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, L.; Li, W.; Xu, S.; Bao, J.; Deng, J.; Wu, Z.; Yu, Z. Fermentation Quality, in Vitro Digestibility, and Aerobic Stability of Total Mixed Ration Silage in Response to Varying Proportion Alfalfa Silage. Animals 2022, 12, 1039. [Google Scholar] [CrossRef]
- Sun, Z.; Li, Y.; Liu, G.; Gao, R.; Bao, J.; Wang, L.; Wu, Z.; Yu, Z. Associative Effects of Ensiling Mixtures of Sweet Sorghum and Korshinsk Pea Shrub on Fermentation Quality, Chemical Composition, and in Vitro Rumen Digestion Characteristics. Anim. Sci. J. 2022, 93, e13700. [Google Scholar] [CrossRef]
- Pereira, A.M.; de Lurdes Nunes Enes Dapkevicius, M.; Borba, A.E.S. Alternative Pathways for Hydrogen Sink Originated from the Ruminal Fermentation of Carbohydrates: Which Microorganisms Are Involved in Lowering Methane Emission? Anim. Microbiome 2022, 4, 5. [Google Scholar] [CrossRef]
- Hristov, A.N.; Jouany, J.P. Factors Affecting the Efficiency of Nitrogen Utilization in the Rumen. In Nitrogen and Phosphorus Nutrition of Cattle: Reducing the Environmental Impact of Cattle Operations; CABI Books: Wallingford, UK, 2005; pp. 117–166. ISBN 978-0-85199-013-2. [Google Scholar]
- Wang, C.; He, L.; Xing, Y.; Zhou, W.; Yang, F.; Chen, X.; Zhang, Q. Fermentation Quality and Microbial Community of Alfalfa and Stylo Silage Mixed with Moringa oleifera Leaves. Bioresour. Technol. 2019, 284, 240–247. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Q.; Sun, L.; Kumar, A. Editorial: Exploring the Role of Microorganisms in Silages: Species, Communities, Interactions, and Functional Characteristics. Front. Microbiol. 2023, 14, 1196267. [Google Scholar] [CrossRef] [PubMed]
- Long, S.; Li, X.; Yuan, X.; Su, R.; Pan, J.; Chang, Y.; Shi, M.; Cui, Z.; Huang, N.; Wang, J. The Effect of Early and Delayed Harvest on Dynamics of Fermentation Profile, Chemical Composition, and Bacterial Community of King Grass Silage. Front. Microbiol. 2022, 13, 864649. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, Y.; Chang, Z.; Yao, B.; Han, Z.; Wang, T.; Shang, N.; Wang, R. Innovative Lactic Acid Production Techniques Driving Advances in Silage Fermentation. Fermentation 2024, 10, 533. [Google Scholar] [CrossRef]
- Yang, Y.; Fan, Y.; Li, T.; Yang, Y.; Zeng, F.; Wang, H.; Suo, H.; Song, J.; Zhang, Y. Microbial Composition and Correlation between Microbiota and Quality-Related Physiochemical Characteristics in Chongqing Radish Paocai. Food Chem. 2022, 369, 130897. [Google Scholar] [CrossRef] [PubMed]
- Gharechahi, J.; Kharazian, Z.A.; Sarikhan, S.; Jouzani, G.S.; Aghdasi, M.; Hosseini Salekdeh, G. The Dynamics of the Bacterial Communities Developed in Maize Silage. Microb. Biotechnol. 2017, 10, 1663–1676. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Feng, H.; Guo, G.; Huo, W.; Li, Q.; Xu, Q.; Liu, Q.; Wang, C.; Chen, L. Effects of Laccase and Lactic Acid Bacteria on the Fermentation Quality, Nutrient Composition, Enzymatic Hydrolysis, and Bacterial Community of Alfalfa Silage. Front. Microbiol. 2022, 13, 1035942. [Google Scholar] [CrossRef]
Items | Milk Stage | Dough Stage | Ripe Stage | SEM | p-Value |
---|---|---|---|---|---|
DM | 18.96 b | 19.37 a | 24.21 a | 0.691 | <0.001 |
DML | 0.99 b | 0.85 b | 2.73 a | 0.260 | <0.001 |
CP | 10.47 a | 9.03 b | 7.81 c | 0.293 | <0.001 |
EE | 3.89 b | 3.63 c | 4.18 a | 0.071 | <0.001 |
NDF | 56.80 a | 51.30 b | 47.94 b | 1.164 | <0.001 |
ADF | 31.93 a | 29.55 a | 27.15 b | 2.886 | 0.024 |
Ash | 10.50 | 12.29 | 10.14 | 0.872 | 0.591 |
NFC | 18.34 b | 23.75 ab | 29.95 a | 1.670 | <0.001 |
GE (MJ/kg) | 20.46 a | 19.95 b | 19.58 c | 0.103 | <0.001 |
RFV | 105.51 c | 119.57 b | 131.60 a | 3.452 | <0.001 |
TDN | 65.49 b | 67.15 ab | 68.83 a | 0.527 | 0.023 |
pH | 3.90 c | 4.10 b | 4.26 a | 0.048 | <0.001 |
LA | 20.92 | 19.39 | 19.00 | 0.512 | 0.282 |
AA | 7.90 | 9.57 | 6.30 | 0.615 | 0.076 |
LA/AA | 2.90 | 2.08 | 3.17 | 0.221 | 0.104 |
NH3-N (g/kg) | 0.54 ab | 0.43 b | 0.59 a | 0.037 | 0.048 |
Items | Smell | Structure | Color | Total Score | Class |
---|---|---|---|---|---|
Milk stage | 13 | 3 | 1 | 17 | Excellent |
Dough stage | 13 | 4 | 2 | 19 | Excellent |
Ripe stage | 12 | 3 | 1 | 16 | Excellent |
Items | NH3-N/TN | AA + PA | Butyric Acid | Score | Class | |||
---|---|---|---|---|---|---|---|---|
Content % | Score | Content % | Score | Content % | Score | |||
Milk stage | 3.50 | 50 | 0 | 10 | 0 | 40 | 100 | Good |
Dough stage | 4.13 | 50 | 0 | 10 | 0 | 40 | 100 | Good |
Ripe stage | 3.71 | 50 | 0 | 10 | 0 | 40 | 100 | Good |
Items | Milk Stage | Dough Stage | Ripe Stage | SEM | p-Value |
---|---|---|---|---|---|
GP (mL/0.2 g DM) | 44.10 b | 46.37 ab | 48.16 a | 0.611 | 0.012 |
b (mL/0.2 g DM) | 41.41 | 41.54 | 46.40 | 1.084 | 0.093 |
c (mL/h) | 0.06 | 0.07 | 0.08 | 0.007 | 0.067 |
pH | 6.47 b | 6.61 a | 6.64 a | 0.023 | <0.001 |
NH3-N (mmol/L) | 1.43 a | 1.23 b | 1.28 b | 0.038 | <0.001 |
AA (mmol/L) | 64.60 a | 54.86 ab | 49.07 b | 2.462 | 0.026 |
PA (mmol/L) | 16.51 a | 14.83 ab | 13.07 b | 0.556 | 0.035 |
Butyric acid (mmol/L) | 5.30 | 4.70 | 5.04 | 0.171 | 0.371 |
Isobutyric acid (mmol/L) | 0.91 a | 0.66 b | 0.39 c | 0.070 | <0.001 |
Isovaleric acid (mmol/L) | 1.76 a | 1.16 b | 1.07 b | 0.091 | <0.001 |
AA/PA (%) | 3.91 | 3.74 | 3.78 | 0.106 | 0.794 |
Items | Control | Treatments | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
SSMF | SSDF | SSFF | SSMB | SSDB | SSFB | H | S | ||
Shannon index | 4.31 ab | 5.29 a | 5.13 a | 3.88 b | 4.08 b | 2.41 c | 0.21 | 0.055 | <0.01 |
Simpson index | 0.87 a | 0.89 a | 0.88 a | 0.83 a | 0.83 a | 0.59 b | 0.02 | <0.01 | <0.01 |
Faith PD | 12.73 bc | 27.83 a | 27.55 a | 11.89 c | 16.94 b | 12.62 bc | 1.4 | <0.01 | <0.01 |
Observed features | 160.60 b | 410.40 a | 396.80 a | 137.8 b | 206.75 b | 125.20 b | 23.91 | <0.01 | <0.01 |
Items | Treatments | Control | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
SSMB | SSDB | SSFB | SSMF | SSDF | SSFF | H | S | ||
Chloroplast | 2.69 b | 14.71 ab | 7.15 b | 15.70 ab | 41.62 a | 26.34 a | 9.23 | 0.102 | <0.01 |
Lactobacillus | 45.54 a | 21.24 b | 20.77 b | 0.11 c | 0.01 c | 0.01 c | 5.32 | <0.01 | <0.01 |
Leuconostoc | 0.61 c | 25.45 b | 60.28 a | 00.14 c | 0.01 c | 0.09 c | 5.18 | <0.01 | <0.01 |
Hafnia-Obesumbacterium | 0.52 b | 6.31 b | 3.22 b | 36.29 a | 0.08 b | 0.04 b | 2.75 | <0.01 | <0.01 |
Mitochondria | 1.08 b | 1.60 b | 0.89 b | 1.52 b | 12.88 a | 16.20 a | 2.47 | <0.01 | <0.01 |
Lactococcus | 23.62 a | 3.26 b | 0.03 b | 5.75 b | 0.01 b | 0.01 b | 4.65 | <0.01 | <0.01 |
Sphingomonas | 0.96 b | 0.77 b | 1.16 b | 1.49 b | 12.24 a | 10.81 a | 1.93 | <0.01 | <0.01 |
Pantoea | 0.34 b | 0.48 b | 0.10 b | 7.76 a | 6.91 a | 8.42 a | 2.98 | 0.953 | <0.01 |
Unclassified_EnterObacteriaceae | 3.40 ab | 8.09 a | 2.97 ab | 6.60 a | 0.34 b | 0.28 b | 3.16 | 0.201 | 0.029 |
Enterobacter | 2.70 a | 2.22 a | 3.51 a | 3.76 a | 0.14 a | 0.13 a | 2.19 | 0.267 | 0.178 |
Enterococcus | 1.33 b | 0.17 b | 0.03 b | 8.34 a | 0.04 b | 0.25 b | 1.09 | <0.01 | <0.01 |
Rhizobium | 0.35 b | 0.37 b | 0.26 b | 1.09 b | 3.69 a | 3.55 a | 1.29 | 0.212 | <0.01 |
Methylorubrum | 0.91 b | 0.41 b | 0.49 b | 0.47 b | 2.83 a | 2.10 a | 0.46 | <0.01 | <0.01 |
Hymenobacter | 0.00 b | 0.00 b | 0.01 b | 0.05 b | 3.44 a | 3.07 a | 0.42 | <0.01 | <0.01 |
Klebsiella | 3.68 a | 1.69 b | 0.64 b | 0.09 b | 0.04 b | 0.06 b | 0.98 | 0.068 | <0.01 |
Aureimonas | 0.94 b | 0.36 c | 0.43 c | 0.17 c | 1.63 a | 1.11 b | 0.28 | 0.016 | <0.01 |
Chryseobacterium | 0.01 b | 0.03 b | 0.02 b | 0.81 ab | 1.87 a | 1.77 ab | 0.88 | 0.057 | 0.023 |
Weissella | 2.83 a | 0.65 b | 0.02 b | 0.26 b | 0.01 b | 0.01 b | 0.40 | <0.01 | <0.01 |
Sphingobacterium | 0.01 b | 0.02 b | 0.02 b | 0.32 ab | 1.93 a | 1.15 ab | 0.82 | 0.374 | 0.077 |
Others | 7.03 b | 12.18 ab | 2.46 b | 8.09 b | 22.90 a | 21.75 a | 6.76 | 0.031 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Liu, R.; Wang, J.; Zhang, Y.; Zhang, S.; Bai, W.; Liu, Q.; Zhang, Y. Harvest Stage Dictates the Nutritive Value of Sorghum Stalk Silage by Shaping Its Fermentation Profile and Microbial Composition. Microorganisms 2025, 13, 2131. https://doi.org/10.3390/microorganisms13092131
Zhao X, Liu R, Wang J, Zhang Y, Zhang S, Bai W, Liu Q, Zhang Y. Harvest Stage Dictates the Nutritive Value of Sorghum Stalk Silage by Shaping Its Fermentation Profile and Microbial Composition. Microorganisms. 2025; 13(9):2131. https://doi.org/10.3390/microorganisms13092131
Chicago/Turabian StyleZhao, Xiaoqiang, Ruiyi Liu, Jing Wang, Yawei Zhang, Shuo Zhang, Wenbin Bai, Qingshan Liu, and Yuanqing Zhang. 2025. "Harvest Stage Dictates the Nutritive Value of Sorghum Stalk Silage by Shaping Its Fermentation Profile and Microbial Composition" Microorganisms 13, no. 9: 2131. https://doi.org/10.3390/microorganisms13092131
APA StyleZhao, X., Liu, R., Wang, J., Zhang, Y., Zhang, S., Bai, W., Liu, Q., & Zhang, Y. (2025). Harvest Stage Dictates the Nutritive Value of Sorghum Stalk Silage by Shaping Its Fermentation Profile and Microbial Composition. Microorganisms, 13(9), 2131. https://doi.org/10.3390/microorganisms13092131