Autoimmune Skin Diseases in the Era of COVID-19: Pathophysiological Insights and Clinical Implications
Abstract
1. Introduction
2. Hidradenitis Suppurativa
3. Psoriasis
4. Atopic Dermatitis
5. Alopecia Areata
6. Autoimmune Bullous Diseases
7. Cutaneous and Systemic Lupus Erythematosus
8. Systemic Sclerosis
9. Dermatomyositis
10. Lichen Planus
11. COVID-19 and Vaccines
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yazdanpanah, N.; Rezaei, N. Autoimmune complications of COVID-19. J. Med. Virol. 2022, 94, 54–62. [Google Scholar] [CrossRef]
- Chang, R.; Chen, T.Y.-T.; Wang, S.-I.; Hung, Y.-M.; Chen, H.-Y.; Wei, C.-C.J. Risk of autoimmune diseases in patients with COVID-19: A retrospective cohort study. eClinicalMedicine 2023, 56, 101783. [Google Scholar] [CrossRef]
- Ballard, K.; Shuman, V.L. Hidradenitis Suppurativa; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Liu, Y.; Sawalha, A.H.; Lu, Q. COVID-19 and autoimmune diseases. Curr. Opin. Rheumatol. 2021, 33, 155–162. [Google Scholar] [CrossRef]
- Sabat, R.; Alavi, A.; Wolk, K.; Wortsman, X.; McGrath, B.; Garg, A.; Szepietowski, J.C. Hidradenitis suppurativa. Lancet 2025, 405, 420–438. [Google Scholar] [CrossRef] [PubMed]
- Schlapbach, C.; Hänni, T.; Yawalkar, N.; Hunger, R.E. Expression of the IL-23/Th17 pathway in lesions of hidradenitis suppurativa. J. Am. Acad. Dermatol. 2011, 65, 790–798. [Google Scholar] [CrossRef]
- Kelly, G.; Hughes, R.; McGarry, T.; Van Den Born, M.; Adamzik, K.; Fitzgerald, R.; Lawlor, C.; Tobin, A.; Sweeney, C.; Kirby, B. Dysregulated cytokine expression in lesional and nonlesional skin in hidradenitis suppurativa. Br. J. Dermatol. 2015, 173, 1431–1439. [Google Scholar] [CrossRef] [PubMed]
- Witte-Händel, E.; Wolk, K.; Tsaousi, A.; Irmer, M.L.; Mößner, R.; Shomroni, O.; Lingner, T.; Witte, K.; Kunkel, D.; Salinas, G.; et al. The IL-1 Pathway Is Hyperactive in Hidradenitis Suppurativa and Contributes to Skin Infiltration and Destruction. J. Investig. Dermatol. 2019, 139, 1294–1305. [Google Scholar] [CrossRef]
- Liakou, A.I.; Tsantes, A.G.; Bompou, E.-K.; Kalamata, M.; Agiasofitou, E.; Vladeni, S.; Dragoutsou, A.; Tsante, K.A.; Ioannou, P.; Chatzidimitriou, E.; et al. Risk Factors for Flares and New Lesions of Hidradenitis Suppurativa Following COVID-19 Disease: A Retrospective Cohort Study of 310 Patients in Greece. Microorganisms 2025, 13, 542. [Google Scholar] [CrossRef]
- Gracia-Ramos, A.E.; Martin-Nares, E.; Hernández-Molina, G. New onset of autoimmune diseases following COVID-19 diagnosis. Cells 2021, 10, 3592. [Google Scholar] [CrossRef]
- Chi, Y.; Ge, Y.; Wu, B.; Zhang, W.; Wu, T.; Wen, T.; Liu, J.; Guo, X.; Huang, C.; Jiao, Y.; et al. Serum cytokine and chemokine profile in relation to the severity of coronavirus disease 2019 in China. J. Infect. Dis. 2020, 222, 746–754. [Google Scholar] [CrossRef]
- Smatti, M.K.; Cyprian, F.S.; Nasrallah, G.K.; Al Thani, A.A.; Almishal, R.O.; Yassine, H.M. Viruses and autoimmunity: A review on the potential interaction and molecular mechanisms. Viruses 2019, 11, 762. [Google Scholar] [CrossRef] [PubMed]
- Scholl, L.; Abu Rached, N.; Stockfleth, E.; Cramer, P.; Ocker, L.; Stranzenbach, R.; Garcovich, S.; Hessam, S.; Bechara, F.G. Hidradenitis suppurativa in the SARS-CoV-2 pandemic: Investigation of trigger factors in a single center. J. Clin. Med. 2024, 13, 4074. [Google Scholar] [CrossRef]
- Torpey, M.; Nosrati, A.; Campton, K.; Cohen, S. 270 Impact of COVID-19 infection on hidradenitis suppurativa activity. J. Investig. Dermatol. 2022, 142, S46. [Google Scholar] [CrossRef]
- Hu, B.; Huang, S.; Yin, L. The cytokine storm and COVID-19. J. Med. Virol. 2021, 93, 250–256. [Google Scholar] [CrossRef]
- Jones, M.E.; Kucharik, A.H.; Pourali, S.P.; Rajkumar, J.R.; Gutierrez, Y.; Yim, R.M.; Armstrong, A.W. The Use of biologics during the COVID-19. Pandemic Dermatol. Clin. 2021, 39, 545–553. [Google Scholar] [CrossRef]
- Kimball, A.B.; Okun, M.M.; Williams, D.A.; Gottlieb, A.B.; Papp, K.A.; Zouboulis, C.C.; Armstrong, A.W.; Kerdel, F.; Gold, M.H.; Forman, S.B.; et al. Two phase 3 trials of adalimumab for hidradenitis suppurativa. N. Engl. J. Med. 2016, 375, 422–434. [Google Scholar] [CrossRef]
- De, D.R.; Rick, J.W.; Shih, T.; Hsiao, J.L.; Hamzavi, I.; Shi, V.Y. COVID-19 infection in hidradenitis suppurativa patients: A retrospective study. Ski. Appendage Disord. 2023, 9, 203–206. [Google Scholar] [CrossRef]
- Liakou, A.I.; Kontochristopoulos, G.; Marnelakis, I.; Tsantes, A.G.; Papadakis, M.; Alevizou, A.; Rotsiamis, N.; Rigopoulos, D. Thyroid disease and active smoking may be associated with more severe hidradenitis suppurativa: Data from a prospective cross sectional single-center study. Dermatology 2021, 237, 125–130. [Google Scholar] [CrossRef]
- Zouboulis, C.C.; Benhadou, F.; Byrd, A.S.; Chandran, N.S.; Giamarellos-Bourboulis, E.J.; Fabbrocini, G.; Frew, J.W.; Fujita, H.; González-López, M.A.; Guillem, P.; et al. What causes hidradenitis suppurativa?—15 years after. Exp. Dermatol. 2020, 29, 1154–1170. [Google Scholar] [CrossRef] [PubMed]
- Martora, F.; Picone, V.; Fabbrocini, G.; Marasca, C. Hidradenitis suppurativa flares following COVID-19 vaccination: A case series. JAAD Case Rep. 2022, 23, 42–45. [Google Scholar] [CrossRef]
- Alexander, H.; Patel, N.P. Response to Martora et al’s “Hidradenitis suppurativa flares following COVID-19 vaccination: A case series”. JAAD Case Rep. 2022, 25, 13–14. [Google Scholar] [CrossRef] [PubMed]
- Pakhchanian, H.; Raiker, R.; DeYoung, C.; Yang, S. Evaluating the safety and efficacy of COVID-19 vaccination in patients with hidradenitis suppurativa. Clin. Exp. Dermatol. 2022, 47, 1186–1188. [Google Scholar] [CrossRef] [PubMed]
- Krueger, J.G.; Frew, J.; Jemec, G.B.E.; Kimball, A.B.; Kirby, B.; Bechara, F.G.; Navrazhina, K.; Prens, E.; Reich, K.; Cullen, E.; et al. Hidradenitis suppurativa: New insights into disease mechanisms and an evolving treatment landscape. Br. J. Dermatol. 2023, 190, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Bostan, E.; Jarbou, A.; Karaduman, A.; Gulseren, D.; Akdogan, N.; Yalici-Armagan, B. Impact of COVID-19 pandemic on hidradenitis suppurativa patients: A cross-sectional study from tertiary referral hospital. Dermatol. Pr. Concept. 2022, 12, e2022192. [Google Scholar] [CrossRef] [PubMed]
- Naik, H.B.; Alhusayen, R.; Frew, J.; Guilbault, S.; Hills, N.K.; Ingram, J.R.; Kudlinski, M.V.; Lowes, M.A.; Marzano, A.V.; Paul, M.; et al. Biologic therapy is not associated with increased COVID-19 severity in patients with hidradenitis suppurativa: Initial findings from the Global Hidradenitis Suppurativa COVID-19 Registry. J. Am. Acad. Dermatol. 2021, 86, 249–252. [Google Scholar] [CrossRef]
- Lowes, M.A.; Suárez-Fariñas, M.; Krueger, J.G. Immunology of psoriasis. Annu. Rev. Immunol. 2014, 32, 227–255. [Google Scholar] [CrossRef]
- Man, A.-M.; Orăsan, M.S.; Hoteiuc, O.-A.; Olănescu-Vaida-Voevod, M.-C.; Mocan, T. Inflammation and psoriasis: A comprehensive review. Int. J. Mol. Sci. 2023, 24, 16095. [Google Scholar] [CrossRef]
- Zou, Y.; Xu, J.; Chen, A.-J.; Huang, K.; Zhu, S.-M.; Li, J.-J.; He, J.; Li, J.-Z.; Xiong, J.-X.; Fan, Y.-K.; et al. Prevalence, outcomes and associated factors of SARS-CoV-2 infection in psoriasis patients of Southwest China: A cross-sectional survey. Sci. Rep. 2024, 14, 6331. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Munguía-Calzada, P.; Drake-Monfort, M.; Armesto, S.; Cura, L.R.; López-Sundh, A.E.; González-López, M.A. Psoriasis flare after influenza vaccination in COVID-19 era: A report of four cases from a single center. Dermatol. Ther. 2020, 34, e14684. [Google Scholar] [CrossRef]
- Rendon, A.; Schäkel, K. Psoriasis pathogenesis and treatment. Int. J. Mol. Sci. 2019, 20, 1475. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Wang, S.; Chen, L.; Shen, Z. Biologics for psoriasis during the COVID-19 pandemic. Front. Med. 2021, 8, 759568. [Google Scholar] [CrossRef] [PubMed]
- Campanati, A.; Diotallevi, F.; Martina, E.; Radi, G.; Offidani, A. Treatment of moderate to severe psoriasis during the COVID-19 pandemic: Lessons learned and opportunities. J. Clin. Med. 2022, 11, 2422. [Google Scholar] [CrossRef]
- Shah, H.; Busquets, A.C. Psoriasis flares in patients with COVID-19 infection or vaccination: A case series. Cureus 2022, 14, e25987. [Google Scholar] [CrossRef]
- Miladi, R.; Janbakhsh, A.; Babazadeh, A.; Aryanian, Z.; Ebrahimpour, S.; Barary, M.; Mohseni Afshar, Z. Pustular psoriasis flare-up in a patient with COVID-19. J. Cosmet. Dermatol. 2021, 20, 3364–3368. [Google Scholar]
- Ibba, L.; Gargiulo, L.; Pavia, G.; Narcisi, A.; Costanzo, A.; Valenti, M. A severe psoriasis flare after COVID-19 treated with risankizumab: Complete skin clearance after 16 weeks. Dermatol. Rep. 2023, 16, 9722. [Google Scholar] [CrossRef]
- Agarwal, A.; Tripathy, T.; Kar, B.R. Guttate flare in a patient with chronic plaque psoriasis following COVID-19 infection: A case report. J. Cosmet. Dermatol. 2021, 20, 3064. [Google Scholar] [CrossRef]
- Janodia, R.P.; Kupetsky, E.A. Guttate psoriasis following COVID-19 infection. Cutis 2022, 109, 101–102. [Google Scholar] [CrossRef]
- Nogueira, M.; Vender, R.; Torres, T. Psoriasis, biologic therapy, and the pandemic of the 21st century. Drugs Context 2020, 9, 1–4. [Google Scholar] [CrossRef]
- Loh, C.H.; Tam, S.Y.C.; Oh, C.C. Teledermatology in the COVID-19 pandemic: A systematic review. JAAD Int. 2021, 5, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Filippi, F.; Loi, C.; Evangelista, V.; Bardazzi, F. COVID-19 era: A chance to learn something new about monitoring psoriatic patients in biological therapy. Dermatol. Ther. 2020, 33, e13805. [Google Scholar] [CrossRef]
- Henning, M.A.S.; Didriksen, M.; Ibler, K.S.; Ostrowski, S.R.; Erikstrup, C.; Nielsen, K.; Sækmose, S.G.; Hansen, T.F.; Ullum, H.; Thørner, L.W.; et al. The differentiating effect of COVID-19-associated stress on the morbidity of blood donors with symptoms of hidradenitis suppurativa, hyperhidrosis, or psoriasis. Qual. Life Res. 2023, 32, 2925–2937. [Google Scholar] [CrossRef]
- Messas, T.; Lim, R.K.; Burns, L.; Yumeen, S.; Kroumpouzos, G. A critical review of COVID-19 course and vaccination in dermatology patients on immunomodulatory/biologic therapy: Recommendations should not differ between non-pregnant and pregnant individuals. Front. Med. 2023, 10, 1121025. [Google Scholar] [CrossRef]
- Liakou, A.I.; Tsantes, A.G.; Routsi, E.; Agiasofitou, E.; Kalamata, M.; Bompou, E.-K.; Tsante, K.A.; Vladeni, S.; Chatzidimitriou, E.; Kotsafti, O.; et al. Could Vaccination against COVID-19 Trigger Immune-Mediated Inflammatory Diseases? J. Clin. Med. 2024, 13, 4617. [Google Scholar] [CrossRef]
- Freeman, T.L.; Swartz, T.H. targeting the NLRP3 inflammasome in severe COVID-19. Front. Immunol. 2020, 11, 1518. [Google Scholar] [CrossRef] [PubMed]
- Haddad, I.; Kozman, K.; Kibbi, A.-G. Navigating patients with atopic dermatitis or chronic spontaneous urticaria during the COVID-19 pandemic. Front. Allergy 2022, 3, 809646. [Google Scholar] [CrossRef]
- Buske-Kirschbaum, A.; Geiben, A.; Höllig, H.; MorschhauSer, E.; Hellhammer, D. Altered responsiveness of the hypothalamus-pituitary-adrenal axis and the sympathetic adrenomedullary system to stress in patients with atopic dermatitis. J. Clin. Endocrinol. Metab. 2002, 87, 4245–4251. [Google Scholar] [CrossRef]
- Leung, D.Y.; Boguniewicz, M.; Howell, M.D.; Nomura, I.; Hamid, Q.A. New insights into atopic dermatitis. J. Clin. Investig. 2004, 113, 651–657. [Google Scholar] [PubMed]
- Gittler, J.K.; Shemer, A.; Suárez-Fariñas, M.; Fuentes-Duculan, J.; Gulewicz, K.J.; Wang, C.Q.; Mitsui, H.; Cardinale, I.; Strong, C.d.G.; Krueger, J.G.; et al. Progressive activation of TH2/TH22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J. Allergy Clin. Immunol. 2012, 130, 1344–1354. [Google Scholar] [CrossRef] [PubMed]
- Wijs, L.E.M.; Joustra, M.M.; Olydam, J.I.; Nijsten, T.; Hijnen, D.J. COVID-19 in patients with cutaneous immune-mediated diseases in The Netherlands: Real-world observational data. J. Eur. Acad. Dermatol. Venereol. 2021, 35, pe173. [Google Scholar] [CrossRef]
- Miodońska, M.; Bogacz, A.; Mróz, M.; Mućka, S.; Bożek, A. The effect of SARS-CoV-2 virus infection on the course of atopic dermatitis in patients. Medicina 2021, 57, 521. [Google Scholar] [CrossRef]
- Ungar, B.; Glickman, J.W.; Golant, A.K.; Dubin, C.; Marushchak, O.; Gontzes, A.; Mikhaylov, D.; Singer, G.K.; Baum, D.; Wei, N.; et al. COVID-19 symptoms are attenuated in moderate-to-severe atopic dermatitis patients treated with dupilumab. J. Allergy Clin. Immunol. Pr. 2021, 10, 134–142. [Google Scholar] [CrossRef]
- Schmitt, J.; Ehm, F.; Vivirito, A.; Wende, D.; Batram, M.; Loser, F.; Menzer, S.; Ludwig, M.; Roessler, M.; Seifert, M.; et al. Large cohort study shows increased risk of developing atopic dermatitis after COVID-19 disease. Allergy 2023, 79, 232–234. [Google Scholar] [CrossRef]
- Pourani, M.; Ganji, R.; Dashti, T.; Dadkhahfar, S.; Gheisari, M.; Abdollahimajd, F.; Dadras, M.S. Impact of COVID-19 pandemic on patients with atopic dermatitis. Actas Dermo-Sifiliograficas 2022, 113, 286–293. [Google Scholar] [CrossRef]
- Xie, Y.; Lv, S.; Luo, S.; Chen, Y.; Du, M.; Xu, Y.; Yang, D. The correlation between corona virus disease 2019 and alopecia areata: A literature review. Front. Immunol. 2024, 15, 1347311. [Google Scholar] [CrossRef]
- Richardson, C.T.; Hayden, M.S.; Gilmore, E.S.; Poligone, B. Evaluation of the relationship between alopecia areata and viral antigen exposure. Am. J. Clin. Dermatol. 2017, 19, 119–126. [Google Scholar] [CrossRef]
- Rossi, A.; Cantisani, C.; Carlesimo, M.; Scarnò, M.; Scali, E.; Mari, E.; Garelli, V.; Maxia, C.; Calvieri, S. Serum concentrations and IL-2, IL-6, IL-12 and TNF-α in patients with alopecia areata. Int. J. Immunopathol. Pharmacol. 2012, 25, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.H.; Ju, H.J.; Han, J.H.; Lee, J.H.; Lee, W.-S.; Bae, J.M.; Lee, S. Autoimmune and autoinflammatory connective tissue disorders following COVID-19. JAMA Netw. Open 2023, 6, e2336120. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, F.; Trink, A.; Giuliani, G.; Pinto, D. Italian survey for the evaluation of the effects of coronavirus disease 2019 (COVID-19) pandemic on alopecia areata recurrence. Dermatol. Ther. 2021, 11, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.H.; Gwillim, E.; Patel, K.R.; Hua, T.; Rastogi, S.; Ibler, E.; Silverberg, J.I. Epidemiology of alopecia areata, ophiasis, totalis, and universalis: A systematic review and meta-analysis. J. Am. Acad. Dermatol. 2020, 82, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-S.; Lee, G.-J.; Jeong, C.-Y.; Yeom, S.-W.; Nam, K.-H.; Yun, S.-K.; Park, J. Risk of alopecia areata after COVID-19. JAMA Dermatol. 2024, 160, 232–235. [Google Scholar] [CrossRef]
- Chrousos, G.P. The hypothalamic–pituitary–adrenal axis and immune-mediated inflammation. N. Engl. J. Med. 1995, 332, 1351–1363. [Google Scholar] [PubMed]
- Lucchese, A.; Fusco, A.; Donnarumma, G.; Borgia, R.; Baroni, A.; Petruzzi, M. COVID 19 and bullous pemphigoid: A hypothesis for a causal link. J. Biol. Regul. Homeost. Agents 2022, 36, 19–25. [Google Scholar]
- Pastukhova, E.; Ghazawi, F.M. New-onset of pemphigus following COVID-19 infection: A case report. SAGE Open Med. Case Rep. 2024, 12, 2050313X241231423. [Google Scholar] [CrossRef]
- Ghalamkarpour, F.; Pourani, M.R. Aggressive course of pemphigus vulgaris followingCOVID-19 infection. Dermatol. Ther. 2020, 33, e14398. [Google Scholar] [CrossRef]
- Curman, P.; Kridin, K.; Zirpel, H.; Hernandez, G.; Akyuz, M.; Thaci, D.; Schmidt, E.; Ludwig, R.J. COVID-19 infection is associated with an elevated risk for autoimmune blistering diseases while COVID-19 vaccination decreases the risk: A large-scale population-based cohort study of 112 million individuals. J. Am. Acad. Dermatol. 2024, 92, 452–463. [Google Scholar] [CrossRef]
- Kridin, K.; Schonmann, Y.; Weinstein, O.; Schmidt, E.; Ludwig, R.J.; Cohen, A.D. The risk of COVID-19 in patients with bullous pemphigoid and pemphigus: A population-based cohort study. J. Am. Acad. Dermatol. 2021, 85, 79–87. [Google Scholar] [CrossRef]
- Elmas, Ö.F.; Demirbaş, A.; Türsen, Ü.; Atasoy, M.; Lotti, T. Pemphigus and COVID-19: Critical overview of management with a focus on treatment choice. Dermatol. Ther. 2020, 33, e14265. [Google Scholar] [CrossRef]
- Barbhaiya, M.; Costenbader, K.H. Environmental exposures and the development of systemic lupus erythematosus. Curr. Opin. Rheumatol. 2016, 28, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Gazzaruso, C.; Stella, N.C.; Mariani, G.; Nai, C.; Coppola, A.; Naldani, D.; Gallotti, P. High prevalence of antinuclear antibodies and lupus anticoagulant in patients hospitalized for SARS-CoV2 pneumonia. Clin. Rheumatol. 2020, 39, 2095–2097. [Google Scholar] [CrossRef] [PubMed]
- Fujii, H.; Tsuji, T.; Yuba, T.; Tanaka, S.; Suga, Y.; Matsuyama, A.; Hiraoka, N. High levels of anti-SSA/Ro antibodies in COVID-19 patients with severe respiratory failure: A case-based review: High levels of anti-SSA/Ro antibodies in COVID-19. Clin. Rheumatol. 2020, 39, 3171–3175. [Google Scholar] [CrossRef]
- Drenovska, K.; Shahid, M.; Mateeva, V.; Vassileva, S. Case Report: Rowell Syndrome–Like Flare of Cutaneous Lupus Erythematosus Following COVID-19. Infection. Front. Med. 2022, 9, 815743. [Google Scholar] [CrossRef] [PubMed]
- Abuhammad, A.; AbuKhalaf, S.M.; AbuKhalaf, M.M.; Janem, A.M.; Attawna, S.I.Y. Lupus panniculitis as the initial presentation of systemic lupus erythematosus triggered by COVID-19 infection: Case report and literature review. Oxf. Med. Case Rep. 2023, 2023, 436–438. [Google Scholar] [CrossRef] [PubMed]
- Matucci-Cerinic, M.; Bruni, C.; Allanore, Y.; Clementi, M.; Dagna, L.; Damjanov, N.S.; de Paulis, A.; Denton, C.P.; Distler, O.; Fox, D.; et al. Systemic sclerosis and the COVID-19 pandemic: World Scleroderma Foundation preliminary advice for patient management. Ann. Rheum. Dis. 2020, 79, 724–726. [Google Scholar] [CrossRef] [PubMed]
- Condé, K.; Atakla, H.G.; Garba, M.S.; Garba, I. COVID-19 infection during autoimmune disease: Study of 2 cases in Republic of Guinea. Pan Afr. Med. J. 2020, 35 (Suppl. 2), 96. [Google Scholar] [CrossRef]
- Peach, E.; Rutter, M.; Lanyon, P.; Grainge, M.J.; Hubbard, R.; Aston, J.; Bythell, M.; Stevens, S.; Pearce, F. Risk of death among people with rare autoimmune diseases compared with the general population in England during the 2020 COVID-19 pandemic. Rheumatology 2020, 60, 1902–1909. [Google Scholar] [CrossRef]
- Carroll, M.; Nagarajah, V.; Campbell, S. Systemic sclerosis following COVID-19 infection with recurrent corticosteroid-induced scleroderma renal crisis. BMJ Case Rep. 2023, 16, e253735. [Google Scholar] [CrossRef]
- Orlandi, M.; Lepri, G.; Bruni, C.; Wang, Y.; Bartoloni, A.; Zammarchi, L.; Cometi, L.; Guiducci, S.; Matucci-Cerinic, M.; Bellando-Randone, S. The systemic sclerosis patient in the COVID-19 era: The challenging crossroad between immunosuppression, differential diagnosis and long-term psychological distress. Clin. Rheumatol. 2020, 39, 2043–2047. [Google Scholar] [CrossRef]
- Shimizu, H.; Matsumoto, H.; Sasajima, T.; Suzuki, T.; Okubo, Y.; Fujita, Y.; Temmoku, J.; Yoshida, S.; Asano, T.; Ohira, H.; et al. New-onset dermatomyositis following COVID-19: A case report. Front. Immunol. 2022, 13, 1002329. [Google Scholar] [CrossRef]
- Albakri, A.; Subki, A.H.; Albeity, A.; Halabi, H. Dermatomyositis flare after a COVID-19 infection successfully treated with rituximab: A case report and literature review. J. Inflamm. Res. 2022, 15, 6047–6053. [Google Scholar] [CrossRef]
- Al-Beltagi, M.; Saeed, N.K.; Bediwy, A.S. COVID-19 disease and autoimmune disorders: A mutual pathway. World J. Methodol. 2022, 12, 200–223. [Google Scholar] [CrossRef]
- Cao, Y.M.; Zhou, J.M.; Cao, T.M.; Zhang, G.; Pan, H. Management of dermatomyositis patients amidst the COVID-19 pandemic: Two case reports. Medicine 2022, 101, e30634. [Google Scholar] [CrossRef]
- Gorouhi, F.; Davari, P.; Fazel, N. Cutaneous and mucosal lichen planus: A comprehensive review of clinical subtypes, risk factors, diagnosis, and prognosis. Sci. World J. 2014, 2014, 742826. [Google Scholar] [CrossRef]
- Ujiie, H.; Rosmarin, D.; Schön, M.P.; Ständer, S.; Boch, K.; Metz, M.; Maurer, M.; Thaci, D.; Schmidt, E.; Cole, C.; et al. Unmet medical needs in chronic, non-communicable inflammatory skin diseases. Front. Med. 2022, 9, 875492. [Google Scholar] [CrossRef]
- Hussein, H.M.; Rahal, E.A. The role of viral infections in the development of autoimmune diseases. Crit. Rev. Microbiol. 2019, 45, 394–412. [Google Scholar] [CrossRef]
- Shiohara, T.; Moriya, N.; Tsuchiya, K.; Nagashima, M.; Narimatsu, H. Lichenoid tissue reaction induced by local transfer of ia-reactive t-cell clones. J. Investig. Dermatol. 1986, 87, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Sugerman, P.; Satterwhite, K.; Bigby, M. Autocytotoxic T-cell clones in lichen planus. Br. J. Dermatol. 2000, 142, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Shiohara, T.; Moriya, N.; Nagashima, M. Induction and Control of Lichenoid Tissue Reactions. In Springer Seminars in Immunopathology; Springer: Berlin/Heidelberg, Germany, 1992; Volume 13. [Google Scholar]
- Requena, L.; Kutzner, H.; Escalonilla, P.; Ortiz, S.; Schaller, J.; Rohwedder, A. Cutaneous reactions at sites of herpes zoster scars: An expanded spectrum. Br. J. Dermatol. 1998, 138, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Mizukawa, Y.; Horie, C.; Yamazaki, Y.; Shiohara, T. Detection of varicella-zoster virus antigens in lesional skin of zosteriform lichen planus but not in that of linear lichen planus. Dermatology 2012, 225, 22–26. [Google Scholar] [CrossRef]
- Diaz-Guimaraens, B.; Dominguez-Santas, M.; Suarez-Valle, A.; Fernandez-Nieto, D.; Jimenez-Cauhe, J.; Ballester, A. Annular lichen planus associated with coronavirus SARSCoV-2 disease (COVID-19). Int. J. Dermatol. 2021, 60, 246–247. [Google Scholar] [CrossRef]
- Paolino, G.; Rongioletti, F. Palmoplantar lichenoid drug eruption following the administration of Pfizer-BioNTech COVID-19 vaccine. JAAD Case Rep. 2022, 21, 182–184. [Google Scholar] [CrossRef] [PubMed]
- Zengarini, C.; Piraccini, B.M.; La Placa, M. Lichen Ruber planus occurring after SARS-CoV-2 vaccination. Dermatol. Ther. 2022, 35, e15389. [Google Scholar]
- Fidan, V.; Koyuncu, H.; Akin, O. Oral lesions in COVID 19 positive patients. Am. J. Otolaryngol. 2021, 42, 102905. [Google Scholar] [CrossRef] [PubMed]
- Saleh, W.; Shawky, E.; Halim, G.A.; Ata, F. Oral lichen planus after COVID-19, a case report. Ann. Med. Surg. 2021, 72, 103051. [Google Scholar] [CrossRef]
- Burgos-Blasco, P.; Fernandez-Nieto, D.; Selda-Enriquez, G.; Melian-Olivera, A.; De Perosanz-Lobo, D.; Dominguez-Santas, M.; Alonso-Castro, L. COVID-19: A possible trigger for oral lichen planus? Int. J. Dermatol. 2021, 60, 882–883. [Google Scholar] [CrossRef] [PubMed]
- Gimeno Castillo, J.; de la Torre Gomar, F.J.; Saenz Aguirre, A. Lichen Planus after SARS-CoV-2 infection treated with Lopinavir/Ritonavir. Med. Clín. 2021, 156, 468–469. [Google Scholar] [CrossRef]
- Sood, A.; Raghavan, S.; Batra, P.; Sharma, K.; Talwar, A. Rise and exacerbation of oral lichen planus in the background of SARS-CoV-2 infection. Med. Hypotheses 2021, 156, 110681. [Google Scholar] [CrossRef]
- Gisondi, P.; Bellinato, F.; Girolomoni, G. Skin adverse reactions to SARS-CoV-2 vaccination: A relevant responsibility issue for dermatologists. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 165–166. [Google Scholar] [CrossRef]
- Xue, X.; Mi, Z.; Wang, Z.; Pang, Z.; Liu, H.; Zhang, F. High Expression of ACE2 on keratinocytes reveals skin as a potential target for SARS-CoV-19. J. Investig. 2021, 141, 206–209.e1. [Google Scholar]
- Motahari, P.; Azar, F.P.; Rasi, A. Role of vitamin d and vitamin d receptor in oral lichen planus: A systematic review. Ethiop. J. Heal. Sci. 2020, 30, 615–622. [Google Scholar] [CrossRef]
- Saeed, S.; Hasan, S.; Ahmed, S.; Kiran, R.; Panigrahi, R.; Thachil, J.M. Oral lichen planus and associated comorbidities: An approach to holistic health. J. Fam. Med. Prim. Care 2019, 8, 3504–3517. [Google Scholar] [CrossRef]
- Niebel, D.; Novak, N.; Wilhelmi, J.; Ziob, J.; Wilsmann-Theis, D.; Bieber, T.; Wenzel, J.; Braegelmann, C. Cutaneous adverse reactions to COVID-19 vaccines: Insights from an immuno-dermatological perspective. Vaccines 2021, 9, 944. [Google Scholar] [CrossRef]
- Teijaro, J.R.; Farber, D.L. COVID-19 vaccines: Modes of immune activation and future challenges. Nat. Rev. Immunol. 2021, 21, 195–197. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, R.; Agrawal, B. Adenoviral Vector-Based Vaccines and Gene Therapies: Current Status and Future Prospects. In Adenoviruses; IntechOpen: London, UK, 2019. [Google Scholar]
- Coondoo, A. The role of cytokines in the pathomechanism of cutaneous disorders. Indian J. Dermatol. 2012, 57, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Sprow, G.; Afarideh, M.; Dan, J.; Feng, R.; Keyes, E.; Grinnell, M.; Concha, J.; Werth, V.P. Autoimmune skin disease exacerbations following COVID-19 vaccination. Front. Immunol. 2022, 13, 899526. [Google Scholar] [CrossRef] [PubMed]
- Liakou, A.I.; Tsantes, A.G.; Kalamata, M.; Tsamtsouri, L.; Agiasofitou, E.; Vladeni, S.; Dragoutsou, A.; Bompou, E.; Tsante, K.A.; Chatzidimitriou, E.; et al. Flares and new related lesions of Hidradenitis Suppurativa following COVID-19 vaccination: A retrospective cohort study of 250 patients in Greece. J. Eur. Acad. Dermatol. Venereol. 2024, 38, e648–e650. [Google Scholar] [CrossRef] [PubMed]
- Jęśkowiak-Kossakowska, I.; Nowotarska, P.; Grosman-Dziewiszek, P.; Szeląg, A.; Wiatrak, B. Impact of comorbidities and skin diseases on post-vaccination reactions: A study on COVID-19 vaccinations in poland. J. Clin. Med. 2024, 13, 6173. [Google Scholar] [CrossRef]
- Jeyanathan, M.; Afkhami, S.; Smaill, F.; Miller, M.S.; Lichty, B.D.; Xing, Z. Immunological considerations for COVID-19 vaccine strategies. Nat. Rev. Immunol. 2020, 20, 615–632. [Google Scholar] [CrossRef]
Disease | Impact of COVID-19 Infection | Proposed Mechanisms | Notes |
---|---|---|---|
Psoriasis | New onset and exacerbation reported | IL-17, IL-23, TNF-a axis dysregulation; stress-induced immune dysregulation, ACE2 mediated inflammation | Exacerbations more common with prior history; may be influenced by treatments |
Hidradenitis Suppurativa | Exacerbation common | IL-17, IL-23, TNF-a axis dysregulation, stress, cytokine storm | Disease flares may be related to COVID-induced cytokine storm |
Atopic Dermatitis | New onset and flare-ups | Th2 dominance; impaired skin barrier, psychological stress | Severe flares reported in previously well-controlled cases |
Alopecia Areata | New onset or exacerbation | Systemic inflammation, immune dysregulation, psychological stress | Onset often 1–2 months post-infection; relapse rate higher than controls |
Pemphigus and Bullous Pemphigoid | Flare-ups or new onset | Hyperinflammatory immune activation, autoantigen exposure | Immunosuppressants may increase infection risk/severity |
Cutaneous Lupus Erythematosus | Exacerbation or rare new onset | Viral-triggered immune activation | Limited to case reports |
Systemic Sclerosis | New onset; possible ILD worsening | Spike-protein-induced fibrosis; autoantibody activation | ILD may mask or worsen COVID-related respiratory symptoms |
Dermatomyositis | Disease onset and exacerbation | Autoimmune cascade activation | Flare-ups also after mild cases |
Lichen Planus | Sporadic new onset | CD8+ T-cell activation, Th17 involvement, molecular mimicry | Vitamin D deficiency, HTN, diabetes may be co-factors |
Vaccine Platform | Mechanism of Immune Activation | Dominant Cytokines/Immune Responses | Cutaneous Adverse Events | Autoimmune Flare Risk |
---|---|---|---|---|
mRNA Vaccines | Activation of TLRs 3, 7, 8 via mRNA Intrinsic adjuvanticity of lipid nanoparticles Type I IFN production | Th1 polarization: ↑ TNF-α, ↑ IFN-γ, ↑ IL-2 Robust CD8+ T-cell activation | Higher prevalence of psoriasis, lichen planus, lupus flares Localized erythema | Elevated due to Th1 skewing Strong immunogenicity linked to higher autoimmune risk |
Adenoviral Vector Vaccines | TLRs 2, 9 activation Macrophage activation in liver/spleen Stimulation of CD4+ Th1 and antibody production | Th1-dominant: ↑ TNF-α, ↑ IFN-γ, ↑ IL-2 Moderate CD8+ T-cell activation | Lower CAE incidence Dermatitis, mild urticaria | Reduced due to faster immune adaptation Milder flares compared to mRNA vaccines |
Inactivated Virus Vaccines | Weak innate activation via adjuvants Dependent on antigen formulation | Limited Th1 polarization Weak CD8+ T-cell activation | Minimal CAEs Mild transient rashes | Lower risk due to weaker immune activation Rare autoimmune flare cases |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liakou, A.I.; Routsi, E.; Plisioti, K.; Tziona, E.; Koumaki, D.; Kalamata, M.; Bompou, E.-K.; Sokou, R.; Ioannou, P.; Bonovas, S.; et al. Autoimmune Skin Diseases in the Era of COVID-19: Pathophysiological Insights and Clinical Implications. Microorganisms 2025, 13, 2129. https://doi.org/10.3390/microorganisms13092129
Liakou AI, Routsi E, Plisioti K, Tziona E, Koumaki D, Kalamata M, Bompou E-K, Sokou R, Ioannou P, Bonovas S, et al. Autoimmune Skin Diseases in the Era of COVID-19: Pathophysiological Insights and Clinical Implications. Microorganisms. 2025; 13(9):2129. https://doi.org/10.3390/microorganisms13092129
Chicago/Turabian StyleLiakou, Aikaterini I., Eleni Routsi, Kalliopi Plisioti, Eleni Tziona, Dimitra Koumaki, Magdalini Kalamata, Evangelia-Konstantina Bompou, Rozeta Sokou, Petros Ioannou, Stefanos Bonovas, and et al. 2025. "Autoimmune Skin Diseases in the Era of COVID-19: Pathophysiological Insights and Clinical Implications" Microorganisms 13, no. 9: 2129. https://doi.org/10.3390/microorganisms13092129
APA StyleLiakou, A. I., Routsi, E., Plisioti, K., Tziona, E., Koumaki, D., Kalamata, M., Bompou, E.-K., Sokou, R., Ioannou, P., Bonovas, S., Samonis, G., Tsantes, A. G., & Stratigos, A. (2025). Autoimmune Skin Diseases in the Era of COVID-19: Pathophysiological Insights and Clinical Implications. Microorganisms, 13(9), 2129. https://doi.org/10.3390/microorganisms13092129