Multicriteria Decision Analysis as a Tool for Assessing Vector-Borne Diseases Risk: The Case of Crimean–Congo Hemorrhagic Fever in Türkiye
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Review
- Clearly define and delimit the problem to understand what decision needs to be made such as determining the most probable location for the presence of a disease;
- Select factors influencing the event based on research or expert evaluation. These may include biological or ecological factors (e.g., presence of vectors), epidemiological indicators (e.g., previous incidence or prevalence rates), demographic data (e.g., population density), and social determinants (e.g., housing conditions, occupational or recreational exposure, and levels of marginalization) relevant to the disease under study;
- Weight each criterion relative to the others using methods such as the Analytic Hierarchy Model (AHP) method. This involves finding the importance of factors, like prevalence or incidence rates, human population density, or vector density, through a pairwise comparison matrix;
- Calculate the overall contribution of a factor by combining the factor’s values and their weights. For example, the overall suitability of a disease is determined by combining factors such as prevalence or incidence rates, human population density, and vector density;
- Deal with uncertainty using techniques like sensitivity analysis, probabilistic modelling, or incorporating error margins into assessments;
- Review and identify outcomes by assessing the results of decision-making processes and identifying the implications of chosen courses of action [10].
2.2. Expert Interviews and Variable Selection
2.3. Risk Mapping with MCDA Approach
- −
- Low: 0 cases;
- −
- Medium: 1–4 cases;
- −
- High: ≥5 cases.
2.4. Sensitivity Analysis
2.5. Spatial Association with CCHF Cases
3. Results
3.1. Literature Review Results
3.2. Interviews
3.3. Crimean–Congo Haemorrhagic Fever in Türkiye
3.4. MCDA for H. marginatum Suitability
4. Discussion
4.1. Principal Findings
4.2. Methodological Considerations and Model Limitations
4.3. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MCDA | Multi-criteria decision analysis |
AHP | Analytic hierarchy model |
MLS | MediLabSecure |
CCHF | Crimean–Congo hemorrhagic fever |
WLC | Weighted linear combination |
NDVI | Normalized difference vegetation index |
References
- Romanello, M.; Di Napoli, C.; Drummond, P.; Green, C.; Kennard, H.; Lampard, P.; Scamman, D.; Arnell, N.; Ayeb-Karlsson, S.; Ford, L.B.; et al. The 2022 report of the Lancet Countdown on health and climate change: Health at the mercy of fossil fuels. Lancet 2022, 400, 1619–1654. [Google Scholar] [CrossRef]
- Rupasinghe, R.; Chomel, B.B.; Martínez-López, B. Climate change and zoonoses: A review of the current status, knowledge gaps, and future trends. Acta Trop. 2022, 226, 106225. [Google Scholar] [CrossRef] [PubMed]
- Semenza, J.C.; Rocklöv, J.; Ebi, K.L. Climate change and cascading risks from infectious disease. Infect. Dis. Ther. 2022, 11, 1371–1390. [Google Scholar] [CrossRef] [PubMed]
- Elezbawy, B.; Fasseeh, A.N.; Németh, B.; Gamal, M.; Eldebeiky, M.; Refaat, R.; Taha, A.; Rabiea, S.; Abdallah, M.; Ramadan, S.; et al. A multicriteria decision analysis (Mcda) tool to purchase implantable medical devices in Egypt. BMC Med. Inform. Decis. Mak. 2022, 22, 289. [Google Scholar] [CrossRef] [PubMed]
- Mvula, R.L.S.; Mundike, J.; Nguvulu, A. Spatial suitability analysis for site selection of municipal solid waste landfill using hybrid GIS and MCDA approach: The case of Kitwe, Zambia. Sci. Afr. 2023, 21, e01885. [Google Scholar] [CrossRef]
- Halder, B.; Bandyopadhyay, J.; Sandhyaki, S. Impact assessment of environmental disturbances triggering aquaculture land suitability mapping using AHP and MCDA techniques. Aquacult Int. 2024, 32, 2039–2075. [Google Scholar] [CrossRef]
- Asfaw, H.; Karuppannan, S.; Erduno, T.; Almohamad, H.; Dughairi, A.A.A.; Al-Mutiry, M.; Abdo, H.G. Evaluation of vulnerability status of the infection risk to covid-19 using geographic information systems (Gis) and multi-criteria decision analysis (Mcda): A case study of addis ababa city, ethiopia. Int. J. Environ. Res. Public Health 2022, 19, 7811. [Google Scholar] [CrossRef]
- Tsheten, T.; Clements, A.C.A.; Gray, D.J.; Wangdi, K. Dengue risk assessment using multicriteria decision analysis: A case study of Bhutan. PLoS Negl. Trop. Dis. 2021, 15, e0009021. [Google Scholar] [CrossRef]
- Cinelli, M.; Kadziński, M.; Gonzalez, M.; Słowiński, R. How to support the application of multiple criteria decision analysis? Let us start with a comprehensive taxonomy. Omega 2020, 96, 102261. [Google Scholar] [CrossRef]
- Yuan, Z.; Wen, B.; He, C.; Zhou, J.; Zhou, Z.; Xu, F. Application of multi-criteria decision-making analysis to rural spatial sustainability evaluation: A systematic review. Int. J. Environ. Res. Public Health 2022, 19, 6572. [Google Scholar] [CrossRef]
- Medilabsecure. 2024. Available online: https://www.medilabsecure.com/our-mission (accessed on 22 January 2025).
- Crimean-Congo Haemorrhagic Fever. 2022. Available online: https://www.who.int/health-topics/crimean-congo-haemorrhagic-fever (accessed on 23 January 2025).
- Hyalomma Marginatum—ECDC: August 2023. Available online: https://www.ecdc.europa.eu/en/publications-data/hyalomma-marginatum-current-known-distribution-august-2023 (accessed on 23 January 2025).
- Düzlü, Ö.; İnci, A.; Yıldırım, A.; Doğanay, M.; Özbel, Y.; Aksoy, S. Vector-borne zoonotic diseases in turkey: Rising threats on public health. Turk. Parazitol. Derg. 2020, 44, 168–175. [Google Scholar] [CrossRef]
- Garritty, C.; Gartlehner, G.; Nussbaumer-Streit, B.; King, V.J.; Hamel, C.; Kamel, C.; Affengruber, L.; Stevens, A. Cochrane Rapid Reviews Methods Group offers evidence-informed guidance to conduct rapid reviews. J. Clin. Epidemiol. 2021, 130, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Fanelli, A.; Schnitzler, J.C.; De Nardi, M.; Donachie, A.; Capua, I.; Lanave, G.; Buonavoglia, D.; Caceres-Soto, P.; Tizzani, P. Epidemic intelligence data of Crimean-Congo haemorrhagic fever, European Region, 2012 to 2022: A new opportunity for risk mapping of neglected diseases. Eurosurveillance 2023, 28, 2200542. [Google Scholar] [CrossRef]
- Messina, J.P.; Wint, G.R.W. The spatial distribution of crimean–congo haemorrhagic fever and its potential vectors in europe and beyond. Insects 2023, 14, 771. [Google Scholar] [CrossRef] [PubMed]
- Zlaugotne, B.; Zihare, L.; Balode, L.; Kalnbalkite, A.; Khabdullin, A.; Blumberga, D. Multi-criteria decision analysis methods comparison. Environ. Clim. Technol. 2020, 24, 454–471. [Google Scholar] [CrossRef]
- Więckowski, J.; Sałabun, W. Sensitivity analysis approaches in multi-criteria decision analysis: A systematic review. Appl. Soft Comput. 2023, 148, 110915. [Google Scholar] [CrossRef]
- Mahmoody Vanolya, N.; Jelokhani-Niaraki, M.; Toomanian, A. Validation of spatial multicriteria decision analysis results using public participation GIS. Appl. Geogr. 2019, 112, 102061. [Google Scholar] [CrossRef]
- Shocket, M.S.; Anderson, C.B.; Caldwell, J.M.; Childs, M.L.; Couper, L.I.; Han, S.; Harris, M.J.; Howard, M.E.; Kai, M.P.; MacDonald, A.J.; et al. Environmental drivers of vector-borne diseases. In Population Biology of Vector-Borne Diseases, 1st ed.; Drake, J.M., Bonsall, M., Strand, M., Eds.; Oxford University Press: Oxford, UK, 2020; pp. 85–118. Available online: https://academic.oup.com/book/41101/chapter/350399641 (accessed on 13 December 2024).
- De Souza, W.M.; Weaver, S.C. Effects of climate change and human activities on vector-borne diseases. Nat. Rev. Microbiol. 2024, 22, 476–491. [Google Scholar] [CrossRef]
- Culex Pipiens—Factsheet for Experts. 2020. Available online: https://www.ecdc.europa.eu/en/infectious-disease-topics/related-public-health-topics/disease-vectors/facts/mosquito-factsheets/culex-pipiens (accessed on 15 December 2024).
- Hyalomma Marginatum—Factsheet for Experts. 2017. Available online: https://www.ecdc.europa.eu/en/disease-vectors/facts/tick-factsheets/hyalomma-marginatum (accessed on 15 December 2024).
- Rocklöv, J.; Dubrow, R. Climate change: An enduring challenge for vector-borne disease prevention and control. Nat. Immunol. 2020, 21, 479–483. [Google Scholar] [CrossRef]
- Semenza, J.C.; Paz, S. Climate change and infectious disease in Europe: Impact, projection and adaptation. Lancet Reg. Health—Eur. 2021, 9, 100230. [Google Scholar] [CrossRef]
- Hekimoglu, O.; Elverici, C.; Kuyucu, A.C. Predicting climate-driven distribution shifts in Hyalomma marginatum (Ixodidae). Parasitology 2023, 150, 883–893. [Google Scholar] [CrossRef]
- Valcárcel, F.; González, J.; González, M.G.; Sánchez, M.; Tercero, J.M.; Elhachimi, L.; Carbonell, J.D.; Olmeda, A.S. Comparative ecology of hyalomma lusitanicum and hyalomma marginatum koch, 1844 (Acarina: Ixodidae). Insects 2020, 11, 303. [Google Scholar] [CrossRef]
- Estrada-Peña, A. The climate niche of the invasive tick species Hyalomma marginatum and Hyalomma rufipes (Ixodidae) with recommendations for modeling exercises. Exp. Appl. Acarol. 2023, 89, 231–250. [Google Scholar] [CrossRef]
- Fernández-Ruiz, N.; Estrada-Peña, A. Towards new horizons: Climate trends in europe increase the environmental suitability for permanent populations of hyalomma marginatum(Ixodidae). Pathogens 2021, 10, 95. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim Mohammed, H.; Majid, Z.; Bin Yusof, N.; Bello Yamusa, Y. Analysis of multi-criteria evaluation method of landfill site selection for municipal solid waste management. E3S Web. Conf. 2018, 34, 02010. [Google Scholar] [CrossRef]
- Tavana, M.; Soltanifar, M.; Santos-Arteaga, F.J. Analytical hierarchy process: Revolution and evolution. Ann. Oper. Res. 2023, 326, 879–907. [Google Scholar] [CrossRef]
- Zarin, R.; Azmat, M.; Naqvi, S.R.; Saddique, Q.; Ullah, S. Landfill site selection by integrating fuzzy logic, AHP, and WLC method based on multi-criteria decision analysis. Environ. Sci. Pollut. Res. 2021, 28, 19726–19741. [Google Scholar] [CrossRef]
- Zamani, A.; Sharifi, A.; Felegari, S.; Tariq, A.; Zhao, N. Agro climatic zoning of saffron culture in miyaneh city by using wlc method and remote sensing data. Agriculture 2022, 12, 118. [Google Scholar] [CrossRef]
- Aliani, H.; Ghanbari Motlagh, M.; Danesh, G.; Aliani, H. Land suitability analysis for urban development using TOPSIS, WLC and ANP techniques (Eastern cities of gilan-iran). Arab. J. Geosci. 2021, 14, 1276. [Google Scholar] [CrossRef]
- Baker, R.E.; Mahmud, A.S.; Miller, I.F.; Rajeev, M.; Rasambainarivo, F.; Rice, B.L.; Takahashi, S.; Tatem, A.J.; Wagner, C.E.; Wang, L.F.; et al. Infectious disease in an era of global change. Nat. Rev. Microbiol. 2022, 20, 193–205. [Google Scholar] [CrossRef]
- Hassell, J.M.; Newbold, T.; Dobson, A.P.; Linton, Y.M.; Franklinos, L.H.V.; Zimmerman, D.; Pagenkopp Lohan, K.M. Publisher Correction: Towards an ecosystem model of infectious disease. Nat. Ecol. Evol. 2021, 5, 1186. [Google Scholar] [CrossRef] [PubMed]
Sector | Criteria |
---|---|
Human | Density |
Animal | Density, distribution |
Socio-economic | Knowledge, per capita gross domestic product (PGDP) |
Climate | Temperature, precipitation, humidity |
Ecological | Habitat characteristics, NDVI, landcover |
Physical | Distance from human settlement, distance from nature, soil/water characteristics |
Precipitation | NDVI | Temperature | Vapor Pressure | |
---|---|---|---|---|
Precipitation | 1 | 2 | 5 | 5 |
NDVI | 1/2 | 1 | 4 | 4 |
Temperature | 1/5 | 1/4 | 1 | 1 |
Vapor pressure | 1/5 | 1/4 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milano, A.; Juache, A.; Houben, S.; Dente, M.G.; Robbiati, C.; Declich, S.; Danielyan, R.; Ozkul, A.; Karayel-Hacıoglu, I.; Drakulović, M.B.; et al. Multicriteria Decision Analysis as a Tool for Assessing Vector-Borne Diseases Risk: The Case of Crimean–Congo Hemorrhagic Fever in Türkiye. Microorganisms 2025, 13, 1987. https://doi.org/10.3390/microorganisms13091987
Milano A, Juache A, Houben S, Dente MG, Robbiati C, Declich S, Danielyan R, Ozkul A, Karayel-Hacıoglu I, Drakulović MB, et al. Multicriteria Decision Analysis as a Tool for Assessing Vector-Borne Diseases Risk: The Case of Crimean–Congo Hemorrhagic Fever in Türkiye. Microorganisms. 2025; 13(9):1987. https://doi.org/10.3390/microorganisms13091987
Chicago/Turabian StyleMilano, Alessia, Alan Juache, Sarah Houben, Maria Grazia Dente, Claudia Robbiati, Silvia Declich, Ruben Danielyan, Aykut Ozkul, Ilke Karayel-Hacıoglu, Mitra B. Drakulović, and et al. 2025. "Multicriteria Decision Analysis as a Tool for Assessing Vector-Borne Diseases Risk: The Case of Crimean–Congo Hemorrhagic Fever in Türkiye" Microorganisms 13, no. 9: 1987. https://doi.org/10.3390/microorganisms13091987
APA StyleMilano, A., Juache, A., Houben, S., Dente, M. G., Robbiati, C., Declich, S., Danielyan, R., Ozkul, A., Karayel-Hacıoglu, I., Drakulović, M. B., Hendrickx, G., & Marsboom, C. (2025). Multicriteria Decision Analysis as a Tool for Assessing Vector-Borne Diseases Risk: The Case of Crimean–Congo Hemorrhagic Fever in Türkiye. Microorganisms, 13(9), 1987. https://doi.org/10.3390/microorganisms13091987