Harnessing and Degradation Mechanism of Persistent Polyethylene Waste by Newly Isolated Bacteria from Waxworm and Termite Gut Symbionts
Abstract
1. Introduction
2. Materials and Methods
2.1. LDPE Polymer, Bacterial Strains, and Culture Media
2.2. Assessment of Cell Surface Hydrophobicity
2.3. LDPE Biodegradation Assay
2.4. Characterization of LDPE Films
2.5. Statistical Analysis
3. Results and Discussion
3.1. Bacterial Cell Hydrophobicity
3.2. Bacterial Growth and Biofilm Biomass Evaluation on LDPE Surface
3.3. Biodegradation Assays
3.3.1. Weight Loss of LDPE Films
3.3.2. Tensile Strength Reduction in LDPE Film
3.4. Characterization of LDPE Film After Biodegradation
3.4.1. Molecular Weight Reduction in LDPE Sheet
3.4.2. Surface Morphology
3.4.3. FTIR Analysis
3.4.4. XRD Analysis
3.5. Proposed Mechanism of LDPE Degradation by Bacteria
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, S.S.; Elsamahy, T.; Al-Tohamy, R.; Sun, J. A critical review of microplastics in aquatic ecosystems: Degradation mechanisms and removing strategies. Environ. Sci. Ecotechnol. 2024, 21, 100427. [Google Scholar] [CrossRef]
- Gautam, B.P.S.; Qureshi, A.; Gwasikoti, A.; Kumar, V.; Gondwal, M. Global scenario of plastic production, consumption, and waste generation and their impacts on environment and human health. In Advanced Strategies for Biodegradation of Plastic Polymers; Springer Nature: Cham, Switzerland, 2024; pp. 1–34. [Google Scholar]
- Dennison, M.S.; Paramasivam, S.K.; Wanazusi, T.; Sundarrajan, K.J.; Erheyovwe, B.P.; Marshal Williams, A.M. Addressing plastic waste challenges in Africa: The potential of pyrolysis for waste-to-energy conversion. Clean Technol. 2025, 7, 20. [Google Scholar] [CrossRef]
- Ali, S.S.; Alsharbaty, M.H.M.; Al-Tohamy, R.; Schagerl, M.; Al-Zahrani, M.; Kornaros, M.; Sun, J. Microplastics as persistent and vectors of other threats in the marine environment: Toxicological impacts, management and strategical roadmap to end plastic pollution. Environ. Chem. Ecotoxicol. 2025, 7, 229–251. [Google Scholar] [CrossRef]
- Ali, S.S.; Elsamahy, T.; Koutra, E.; Kornaros, M.; El-Sheekh, M.; Abdelkarim, E.A.; Zhu, D.; Sun, J. Degradation of conventional plastic wastes in the environment: A review on current status of knowledge and future perspectives of disposal. Sci. Total Environ. 2021, 771, 144719. [Google Scholar] [CrossRef] [PubMed]
- Praveenkumar, T.R.; Sekar, M.; Pasupuleti, R.R.; Gavurová, B.; Kumar, G.A.; Kumar, M.V. Current technologies for plastic waste treatment for energy recovery, its effects on poly aromatic hydrocarbons emission and recycling strategies. Fuel 2024, 357, 129379. [Google Scholar] [CrossRef]
- Choudhary, M.; Singh, D.; Parihar, M.; Choudhary, K.B.; Nogia, M.; Samal, S.K.; Mishra, R. Impact of municipal solid waste on the environment, soil, and human health. In Waste Management for Sustainable and Restored Agricultural Soil; Academic Press: Cambridge, MA, USA, 2024; pp. 33–58. [Google Scholar]
- Rhodes, C.J. Solving the plastic problem: From cradle to grave, to reincarnation. Sci. Prog. 2019, 102, 218–248. [Google Scholar] [CrossRef]
- Hale, R.C.; Seeley, M.E.; La Guardia, M.J.; Mai, L.; Zeng, E.Y. A global perspective on microplastics. J. Geophys. Res. Oceans 2020, 125, e2018JC014719. [Google Scholar] [CrossRef]
- Wojnowska-Baryła, I.; Bernat, K.; Zaborowska, M. Plastic waste degradation in landfill conditions: The problem with microplastics, and their direct and indirect environmental effects. Int. J. Environ. Res. Public Health 2022, 19, 13223. [Google Scholar] [CrossRef]
- Gbogbo, F.; Essandoh, A.A.; Baffoe, W.T.; Groos, H.; Boateng, C.M.; Blankson, E.R. Plastic waste and fish landed by beach seine fishers in coastal Ghana. Environ. Sci. Pollut. Res. 2023, 30, 92371–92378. [Google Scholar] [CrossRef]
- Ali, S.S.; Elsamahy, T.; Zhu, D.; Sun, J. Biodegradability of polyethylene by efficient bacteria from the guts of plastic-eating waxworms and investigation of its degradation mechanism. J. Hazard. Mater. 2023, 443, 130287. [Google Scholar] [CrossRef]
- Saha, N.C.; Ghosh, A.K.; Garg, M.; Sadhu, S.D. Flexible packaging material—Manufacturing processes and its application. In Food Packaging: Materials, Techniques and Environmental Issues; Springer Nature: Singapore, 2022; pp. 47–87. [Google Scholar]
- Matjašič, T.; Simčič, T.; Medvešček, N.; Bajt, O.; Dreo, T.; Mori, N. Critical evaluation of biodegradation studies on synthetic plastics through a systematic literature review. Sci. Total Environ. 2021, 752, 141959. [Google Scholar] [CrossRef] [PubMed]
- Lange, J.P. Managing plastic waste─sorting, recycling, disposal, and product redesign. ACS Sustain. Chem. Eng. 2021, 9, 15722–15738. [Google Scholar] [CrossRef]
- Ali, S.S.; Elsamahy, T.; El-Sapagh, S.; Khalil, M.A.; Al-Tohamy, R.; Zhu, D.; Sun, J. Exploring the potential of insect gut symbionts for polyethylene biodegradation. Process Saf. Environ. Prot. 2024, 190, 22–33. [Google Scholar] [CrossRef]
- Elsamahy, T.; Sun, J.; Elsilk, S.E.; Ali, S.S. Biodegradation of low-density polyethylene plastic waste by a constructed tri-culture yeast consortium from wood-feeding termite: Degradation mechanism and pathway. J. Hazard. Mater. 2023, 448, 130944. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.K.; Devi, D. Characteristics investigation on biofilm formation and biodegradation activities of Pseudomonas aeruginosa strain ISJ14 colonizing low density polyethylene (LDPE) surface. Heliyon 2020, 6, e04672. [Google Scholar] [CrossRef]
- Rad, M.M.; Moghimi, H.; Azin, E. Biodegradation of thermo-oxidative pretreated low-density polyethylene (LDPE) and polyvinyl chloride (PVC) microplastics by Achromobacter denitrificans Ebl13. Mar. Pollut. Bull. 2022, 181, 113830. [Google Scholar]
- Muhonja, C.N.; Makonde, H.; Magoma, G.; Imbuga, M. Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. PLoS ONE 2018, 13, e0198446. [Google Scholar] [CrossRef]
- Yang, X.G.; Wen, P.P.; Yang, Y.F.; Jia, P.P.; Li, W.G.; Pei, D.S. Plastic biodegradation by in vitro environmental microorganisms and in vivo gut microorganisms of insects. Front. Microbiol. 2023, 13, 1001750. [Google Scholar] [CrossRef]
- Boctor, J.; Pandey, G.; Xu, W.; Murphy, D.V.; Hoyle, F.C. Nature’s plastic predators: A comprehensive and bibliometric review of plastivore insects. Polymers 2024, 16, 1671. [Google Scholar] [CrossRef]
- Mondal, S.; Somani, J.; Roy, S.; Babu, A.; Pandey, A.K. Insect microbial symbionts: Ecology, interactions, and biological significance. Microorganisms 2023, 11, 2665. [Google Scholar] [CrossRef]
- Xu, L.; Li, Z.; Wang, L.; Xu, Z.; Zhang, S.; Zhang, Q. Progress in polystyrene biodegradation by insect gut microbiota. World J. Microbiol. Biotechnol. 2024, 40, 143. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Abd Manap, A.S.; Kolobe, S.D.; Monnye, M.; Yudhistira, B.; Fernando, I. Insects for plastic biodegradation–A review. Process Saf. Environ. Prot. 2024, 186, 833–849. [Google Scholar] [CrossRef]
- Peng, B.Y.; Su, Y.; Chen, Z.; Chen, J.; Zhou, X.; Benbow, M.E.; Criddle, C.S.; Wu, W.M.; Zhang, Y. Biodegradation of polystyrene by dark (Tenebrio obscurus) and yellow (Tenebrio molitor) mealworms (Coleoptera: Tenebrionidae). Environ. Sci. Technol. 2019, 53, 5256–5265. [Google Scholar] [CrossRef]
- Dar, M.A.; Xie, R.; Zabed, H.M.; Pawar, K.D.; Dhole, N.P.; Sun, J. Current paradigms and future challenges in harnessing gut bacterial symbionts of insects for biodegradation of plastic wastes. Insect Sci. 2024, 32, 726–752. [Google Scholar] [CrossRef] [PubMed]
- Mohanan, N.; Montazer, Z.; Sharma, P.K.; Levin, D.B. Microbial and enzymatic degradation of synthetic plastics. Front. Microbiol. 2020, 11, 580709. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.E.; Messer, L.F.; Wattiez, R.; Matallana-Surget, S. Decoding microbial plastic colonisation: Multi-omic insights into the fast-evolving dynamics of early-stage biofilms. Proteomics 2025, 25, e202400208. [Google Scholar] [CrossRef]
- Gilani, I.E.; Sayadi, S.; Zouari, N.; Al-Ghouti, M.A. Plastic waste impact and biotechnology: Exploring polymer degradation, microbial role, and sustainable development implications. Bioresour. Technol. Rep. 2023, 24, 101606. [Google Scholar] [CrossRef]
- Jiao, H.; Tsigkou, K.; Elsamahy, T.; Pispas, K.; Sun, J.; Manthos, G.; Schagerl, M.; Sventzouri, E.; Al-Tohamy, R.; Kornaros, M.; et al. Recent advances in sustainable hydrogen production from microalgae: Mechanisms, challenges, and future perspectives. Ecotoxicol. Environ. Saf. 2024, 270, 115908. [Google Scholar] [CrossRef]
- Kapahi, N.; Marwaha, L. Polyethylene degradation by larvae of wax moth. J. Entomol. Res. 2022, 46, 620–625. [Google Scholar] [CrossRef]
- Kundungal, H.; Gangarapu, M.; Sarangapani, S.; Patchaiyappan, A.; Devipriya, S.P. Efficient biodegradation of polyethylene (HDPE) waste by the plastic-eating lesser waxworm (Achroia grisella). Environ. Sci. Pollut. Res. 2019, 26, 18509–18519. [Google Scholar] [CrossRef]
- Nyamjav, I.; Jang, Y.; Park, N.; Lee, Y.E.; Lee, S. Physicochemical and structural evidence that Bacillus cereus isolated from the gut of waxworms (Galleria mellonella larvae) biodegrades polypropylene efficiently in vitro. J. Polym. Environ. 2023, 31, 4274–4287. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Pedersen, J.N.; Eser, B.E.; Guo, Z. Biodegradation of polyethylene and polystyrene: From microbial deterioration to enzyme discovery. Biotechnol. Adv. 2022, 60, 107991. [Google Scholar] [CrossRef] [PubMed]
- Reineke, W.; Schlömann, M. Microbial degradation of pollutants. In Environmental Microbiology; Springer: Berlin/Heidelberg, Germany, 2023; pp. 161–290. [Google Scholar]
- Tokuda, G.; Itakura, S.; Lo, N. Physiology of the Formosan subterranean termite, with special reference to wood degradation and metabolism. In Biology and Management of the Formosan Subterranean Termite and Related Species; CABI: Wallingford, UK, 2023; pp. 109–126. [Google Scholar]
- Husseneder, C. Symbiosis and microbiome in termite guts: A unique quadripartite system. In Biology and Management of the Formosan Subterranean Termite and Related Species; CABI: Wallingford, UK, 2023; pp. 144–170. [Google Scholar]
- Ghosh, S.; Qureshi, A.; Purohit, H.J. Impact of microbial biofilm community. In Soil Microbiome of the Cold Habitats: Trends and Applications; Springer: Cham, Switzerland, 2023; p. 117. [Google Scholar]
- Oliveira, J.; Belchior, A.; Da Silva, V.D.; Rotter, A.; Petrovski, Ž.; Almeida, P.L.; Lourenço, N.D.; Gaudêncio, S.P. Marine environmental plastic pollution: Mitigation by microorganism degradation and recycling valorization. Front. Mar. Sci. 2020, 7, 567126. [Google Scholar] [CrossRef]
- Shafana Farveen, M.; Narayanan, R. Omic-driven strategies to unveil microbiome potential for biodegradation of plastics: A review. Arch. Microbiol. 2024, 206, 441. [Google Scholar] [CrossRef]
- Meng, T.K.; Kassim, A.S.B.M.; Razak, A.H.B.A.; Fauzi, N.A.B.M. Bacillus megaterium: A potential and an efficient bio-degrader of polystyrene. Braz. Arch. Biol. Technol. 2021, 64, e21190321. [Google Scholar] [CrossRef]
- Harshvardhan, K.; Jha, B. Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Mar. Pollut. Bull. 2013, 77, 100–106. [Google Scholar] [CrossRef]
- Auta, H.S.; Emenike, C.U.; Jayanthi, B.; Fauziah, S.H. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Mar. Pollut. Bull. 2018, 127, 15–21. [Google Scholar] [CrossRef]
- Torre, D.Y.Z.D.; Santos, L.A.D.; Reyes, M.L.C.; Baculi, R.Q. Biodegradation of low-density polyethylene by bacteria isolated from serpentinization-driven alkaline spring. Philipp. Sci. Lett. 2018, 11, 1–12. [Google Scholar]
- Sanz, L.A.N.D.O.N.; Tran, T.H.I.E.N.; Kainer, D.A.N.I.E.L. Potential of Tenebrio molitor and Zophobas morio in plastic degradation: Mechanisms, microorganisms, and enzymes. J. Adv. Technol. Educ. 2024, 3, 194–218. [Google Scholar]
- Nakanishi, E.Y.; Palacios, J.H.; Godbout, S.; Fournel, S. Interaction between biofilm formation, surface material and cleanability considering different materials used in pig facilities—An overview. Sustainability 2021, 13, 5836. [Google Scholar] [CrossRef]
- Liu, F.; Wu, Y.; Zheng, M.; Liu, Y.; Cao, S.; Qiu, Y.; Zhao, Z.; Deng, H. Inherently micro/nano-patterned and hydrophobic-hydrophilic inlay natural material assembly for efficient nanoplastics removal. Adv. Funct. Mater. 2025, 35, 2418911. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, H.; Zhang, Y.; Zhao, Y.; Zhang, Y.; Feng, X.; Lin, H. Diverse roles of MYB transcription factors in plants. J. Integr. Plant Biol. 2025, 67, 539–562. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.; Whittington, H.D.; Knickmeyer, R.; Azcarate-Peril, M.A.; Bruno-Bárcena, J.M. Non-stochastic reassembly of a metabolically cohesive gut consortium shaped by N-acetyl-lactosamine-enriched fibers. Gut Microbes 2025, 17, 2440120. [Google Scholar] [CrossRef] [PubMed]
- Jayan, N.; Skariyachan, S.; Sebastian, D. The escalated potential of the novel isolate Bacillus cereus NJD1 for effective biodegradation of LDPE films without pre-treatment. J. Hazard. Mater. 2023, 455, 131623. [Google Scholar] [CrossRef] [PubMed]
- Shilpa; Basak, N.; Meena, S.S. Biodegradation of low-density polythene (LDPE) by a novel strain of Pseudomonas aeruginosa WD4 isolated from plastic dumpsite. Biodegradation 2024, 35, 641–655. [Google Scholar] [CrossRef]
- Gilan, I.; Sivan, A. Effect of proteases on biofilm formation of the plastic-degrading actinomycete Rhodococcus ruber C208. FEMS Microbiol. Lett. 2013, 342, 18–23. [Google Scholar] [CrossRef]
- Kyaw, B.M.; Champakalakshmi, R.; Sakharkar, M.K.; Lim, C.S.; Sakharkar, K.R. Biodegradation of low density polythene (LDPE) by Pseudomonas species. Indian J. Microbiol. 2012, 52, 411–419. [Google Scholar] [CrossRef]
- Soleimani, Z.; Gharavi, S.; Soudi, M.; Moosavi-Nejad, Z. A survey of intact low-density polyethylene film biodegradation by terrestrial Actinobacterial species. Int. Microbiol. 2021, 24, 65–73. [Google Scholar] [CrossRef]
- Matyakubov, B.; Lee, T.J. Optimizing polystyrene degradation, microbial community and metabolite analysis of intestinal flora of yellow mealworms, Tenebrio molitor. Bioresour. Technol. 2024, 403, 130895. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, L.; Li, X.; Wang, J.; Wang, H.; Chen, C.; Guo, H.; Han, T.; Zhou, A.; Zhao, X. Different plastics ingestion preferences and efficiencies of superworm (Zophobas atratus Fab.) and yellow mealworm (Tenebrio molitor Linn.) associated with distinct gut microbiome changes. Sci. Total Environ. 2022, 837, 155719. [Google Scholar] [CrossRef]
- Lu, B.; Lou, Y.; Wang, J.; Liu, Q.; Yang, S.S.; Ren, N.; Wu, W.M.; Xing, D. Understanding the ecological robustness and adaptability of the gut microbiome in plastic-degrading superworms (Zophobas atratus) in response to microplastics and antibiotics. Environ. Sci. Technol. 2024, 58, 12028–12041. [Google Scholar] [CrossRef] [PubMed]
- Vital-Vilchis, I.; Karunakaran, E. Using insect larvae and their microbiota for plastic degradation. Insects 2025, 16, 165. [Google Scholar] [CrossRef] [PubMed]
- Mitra, B.; Das, A. Microbes and environment sustainability: An in-depth review on the role of insect gut microbiota in plastic biodegradation. In Synergistic Approaches for Bioremediation of Environmental Pollutants: Recent Advances and Challenges; Springer: Cham, Switzerland, 2022; pp. 1–25. [Google Scholar]
- Parray, J.A.; Yaseen Mir, M.; Haghi, A.K. Enzymatic degradation of synthetic plastics: New insights. In Enzymes in Environmental Management; Springer Nature: Cham, Switzerland, 2024; pp. 19–37. [Google Scholar]
- Mohammadi, S.; Moussavi, G.; Rezaei, M. Enhanced peroxidase-mediated biodegradation of polyethylene using the bacterial consortia under H2O2-biostimulation. Polymer 2022, 240, 124508. [Google Scholar] [CrossRef]
- Sowmya, H.V.; Ramalingappa; Krishnappa, M.; Thippeswamy, B. Degradation of polyethylene by Trichoderma harzianum—SEM, FTIR, and NMR analyses. Environ. Monit. Assess. 2014, 186, 6577–6586. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, Y.; Gou, H.; Feng, X.; Zhang, X.; Yang, L. Screening of polyethylene-degrading bacteria from Rhyzopertha dominica and evaluation of its key enzymes degrading polyethylene. Polymers 2022, 14, 5127. [Google Scholar] [CrossRef]
- Rotaru, R.; Savin, M.; Tudorachi, N.; Peptu, C.; Samoila, P.; Sacarescu, L.; Harabagiu, V. Ferromagnetic iron oxide–cellulose nanocomposites prepared by ultrasonication. Polym. Chem. 2018, 9, 860–868. [Google Scholar] [CrossRef]
- Fehr, S.M.; Krossing, I. Spectroscopic signatures of pressurized carbon dioxide in diffuse reflectance infrared spectroscopy of heterogeneous catalysts. ChemCatChem 2020, 12, 2622–2629. [Google Scholar] [CrossRef]
- Gaweł, B.A.; Ulvensøen, A.; Łukaszuk, K.; Arstad, B.; Muggerud, A.M.F.; Erbe, A. Structural evolution of water and hydroxyl groups during thermal, mechanical and chemical treatment of high purity natural quartz. RSC Adv. 2020, 10, 29018–29030. [Google Scholar] [CrossRef]
- Wasserbauer, R.; Beranova, M.; Vancurova, D.; Doležel, B. Biodegradation of polyethylene foils by bacterial and liver homogenates. Biomaterials 1990, 11, 36–40. [Google Scholar] [CrossRef]
- Arutchelvi, J.; Sudhakar, M.; Arkatkar, A.; Doble, M.; Bhaduri, S.; Uppara, P.V. Biodegradation of polyethylene and polypropylene. Indian J. Biotechnol. 2008, 7, 9. [Google Scholar]
- Chakraborty, P.; Sarkar, S.; Roy, A.; Tamang, K.; Das, P. Plastic degradation using chemical/solar/biodegradation. In Remediation of Plastic and Microplastic Waste; CRC Press: Boca Raton, FL, USA, 2024; pp. 186–202. [Google Scholar]
- Yang, Y.; Yang, J.; Wu, W.M.; Zhao, J.; Song, Y.; Gao, L.; Yang, R.; Jiang, L. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 1. Chemical and physical characterization and isotopic tests. Environ. Sci. Technol. 2015, 49, 12080–12086. [Google Scholar] [CrossRef] [PubMed]
- Das, M.P.; Kumar, S. An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. 3 Biotech 2015, 5, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Ojha, M.D.; Skariyachan, S. Degradation of low-density polyethylene by physical, chemical, and microbial-based approaches. In Sustainable Microbial Technology for Synthetic and Cellulosic Microfiber Bioremediation; Springer Nature: Cham, Switzerland, 2024; pp. 259–274. [Google Scholar]
- González-Márquez, A.; Andrade-Alvarado, A.D.; González-Mota, R.; Sánchez, C. Effect of hydrogen peroxide as an inducing agent of peroxidase enzymes for the polyethylene biodegradation by Pleurotus ostreatus in liquid fermentation. Mex. J. Biotechnol. 2025, 10, 89–104. [Google Scholar] [CrossRef]
- Ray, A.S.; Rajasekaran, M.; Uddin, M.; Kandasamy, R. Laccase-driven biocatalytic oxidation to reduce polymeric surface hydrophobicity: An effective pre-treatment strategy to enhance biofilm-mediated degradation of polyethylene and polycarbonate plastics. Sci. Total Environ. 2023, 904, 166721. [Google Scholar] [CrossRef]
- Chaudhary, A.K.; Chitriv, S.P.; Chaitanya, K.; Vijayakumar, R.P. Influence of ultraviolet and chemical treatment on the biodegradation of low-density polyethylene and high-density polyethylene by Cephalosporium strain. Environ. Monit. Assess. 2023, 195, 395. [Google Scholar] [CrossRef]
- Akram, M.A.; Savitha, R.; Kinsella, G.K.; Nolan, K.; Ryan, B.J.; Henehan, G.T. Microbial and enzymatic biodegradation of plastic waste for a circular economy. Appl. Sci. 2024, 14, 11942. [Google Scholar] [CrossRef]
- Warnke, M.; Jacoby, C.; Jung, T.; Agne, M.; Mergelsberg, M.; Starke, R.; Jehmlich, N.; Von Bergen, M.; Richnow, H.H.; Brüls, T.; et al. A patchwork pathway for oxygenase-independent degradation of side chain containing steroids. Environ. Microbiol. 2017, 19, 4684–4699. [Google Scholar] [CrossRef]
- Carmona, M.; Zamarro, M.T.; Blázquez, B.; Durante-Rodríguez, G.; Juárez, J.F.; Valderrama, J.A.; Barragán, M.J.; García, J.L.; Díaz, E. Anaerobic catabolism of aromatic compounds: A genetic and genomic view. Microbiol. Mol. Biol. Rev. 2009, 73, 71–133. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Flavourings (FAF); Younes, M.; Aquilina, G.; Castle, L.; Engel, K.H.; Fowler, P.; Fürst, P.; Gürtler, R.; Gundert-Remy, U.; Husøy, T.; et al. Re-evaluation of hydrogenated poly-1-decene (E 907) as food additive. EFSA J. 2020, 18, e06034. [Google Scholar]
- Yang, X.; Ge, S. Recent progress in cobalt-catalyzed enantioselective hydrogenation and hydroboration reactions of alkenes. Curr. Opin. Green Sustain. Chem. 2021, 31, 100542. [Google Scholar] [CrossRef]
- Fiume, M.M.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G., Jr.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Safety assessment of alkyl phosphates as used in cosmetics. Int. J. Toxicol. 2019, 38 (Suppl. S2), 12S–32S. [Google Scholar] [CrossRef] [PubMed]
- Marcus, Y. Properties of deep eutectic solvents. In Deep Eutectic Solvents; Elsevier: Amsterdam, The Netherlands, 2019; pp. 45–110. [Google Scholar]
- Hawthorne, S.B.; Yang, Y.; Miller, D.J. Extraction of organic pollutants from environmental solids with sub- and supercritical water. Anal. Chem. 1994, 66, 2912–2920. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Nutrient Sources Added to Food (ANS); Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipič, M.; Frutos, M.J.; Galtier, P.; Gundert-Remy, U.; et al. Guidance on safety evaluation of sources of nutrients and bioavailability of nutrient from the sources. EFSA J. 2018, 16, e05294. [Google Scholar] [CrossRef] [PubMed]
- Robello, M.; Barresi, E.; Baglini, E.; Salerno, S.; Taliani, S.; Settimo, F.D. The alpha keto amide moiety as a privileged motif in medicinal chemistry: Current insights and emerging opportunities. J. Med. Chem. 2021, 64, 3508–3545. [Google Scholar] [CrossRef]
- Mfuh, A.M.; Mahindaratne, M.P.; Yñigez-Gutierrez, A.E.; Dominguez, J.R.R.; Bedell II, J.T.; Garcia, C.D.; Negrete, G.R. Acid-responsive nanospheres from an asparagine-derived amphiphile. RSC Adv. 2015, 5, 8585–8590. [Google Scholar] [CrossRef]
- Zhu, G.; Xiao, Z. Flavors and fragrances: Structure of various flavors with food ingredients. In Flavors and Fragrances in Food Processing: Preparation and Characterization Methods; American Chemical Society: Washington, DC, USA, 2022; pp. 21–188. [Google Scholar]
- Okechukwu, P.N. Evaluation of anti-inflammatory, analgesic, antipyretic effect of eicosane, pentadecane, octacosane, and heneicosane. Asian J. Pharm. Clin. Res. 2020, 13, 29–35. [Google Scholar] [CrossRef]
- Thiel, A.; Schoenmakers, A.C.M.; Verbaan, I.A.J.; Chenal, E.; Etheve, S.; Beilstein, P. 3-NOP: Mutagenicity and genotoxicity assessment. Food Chem. Toxicol. 2019, 123, 566–573. [Google Scholar] [CrossRef]
- Enadeghe, R.; Asoya, E.V.; Iluma, J.; Kolawole, O.; Omoregie, A.E. Phytochemistry and acute toxicity study of aqueous and methanol stem bark extract of Terminalia catappa. Trop. J. Nat. Prod. Res. 2022, 6, 931–937. [Google Scholar]
- Salman, M.; Javed, N.; Liu, X.; He, M. Azeotrope separation of ethyl propionate and ethanol by extractive distillation and pressure swing distillation method. Sep. Purif. Technol. 2023, 311, 123361. [Google Scholar] [CrossRef]
- Veenstra, G.; Webb, C.; Sanderson, H.; Belanger, S.E.; Fisk, P.; Nielsen, A.; Kasai, Y.; Willing, A.; Dyer, S.; Penney, D.; et al. Human health risk assessment of long chain alcohols. Ecotoxicol. Environ. Saf. 2009, 72, 1016–1030. [Google Scholar] [CrossRef]
- Zhuang, D.; Li, Y.; Zhu, J. Antiaromaticity-promoted activation of dihydrogen with borole fused cyclooctatetraene frustrated Lewis pairs: A density functional theory study. Organometallics 2020, 39, 2636–2641. [Google Scholar] [CrossRef]
- Matthew, S.A.; Seib, F.P. The dawning era of anticancer nanomedicines: From first principles to application of silk nanoparticles. Adv. Ther. 2025, 8, 2400130. [Google Scholar] [CrossRef]
- American Chemistry Council n-Alkane VCCEP Consortium. N-Alkane Category: Decane, Undecane, Dodecane. Voluntary Children’s Chemical Evaluation Program (VCCEP) Submission; American Chemistry Council: Washington, DC, USA, 2004; Available online: https://tera.org/Peer/VCCEP/n-alkanes/VCCEP%20n-Alkanes%20Submission%20Jun%2017%202004%20-%20revised.pdf (accessed on 17 June 2004).
- Wang, F.; Rijal, D. Sustainable aviation fuels for clean skies: Exploring the potential and perspectives of strained hydrocarbons. Energy Fuels 2024, 38, 4904–4920. [Google Scholar] [CrossRef]
- Kaurav, M.; Sahu, K.; Joshi, R.; Akram, W.; Raj, P.M.; Raj, R.; Minz, S. Oil and fats as raw materials for coating industries. In Oils and Fats as Raw Materials for Industry; Elsevier: Amsterdam, The Netherlands, 2024; pp. 169–194. [Google Scholar]
- Kumar, A. Engineered nanomaterials and associated threats in the environment: Risk assessment strategies. In Biotechnological Interventions in the Removal of Emerging Pollutants; Springer Nature: Singapore, 2025; pp. 515–537. [Google Scholar]
No. | RT (min) | Compound Name | Molecular Formula | m/z | Mw | Classification |
---|---|---|---|---|---|---|
LDPE-DB2 | ||||||
1 | 1.62 | Butane | C4H10 | 43 | 58 | Alkane |
2 | 3.64 | 1-Heptene | C7H14 | 41 | 98 | Alkene |
3 | 4.34 | Acetic acid | C2H4O2 | 43 | 60 | Carboxylic acid |
4 | 6.94 | 1,3,5,7-Cyclooctatetraene | C8H8 | 104 | 104 | Alkene (cyclic) |
5 | 8.62 | 1-Decene | C10H20 | 41 | 140 | Alkene |
6 | 13.51 | Tridecane | C13H28 | 57 | 184 | Alkane |
7 | 13.16 | Lauric aldehyde | C12H24O | 43 | 184 | Aldehyde |
8 | 15.42 | n-Dodecan-1-ol | C12H26O | 55 | 186 | Alcohol |
9 | 17.66 | N,N-Dimethyltetradecylamine | C16H35N | 58 | 241 | Amine |
10 | 20.51 | 1-Nonadecene | C19H38 | 55 | 266 | Alkene |
11 | 21.13 | 1-Octadecanol | C18H38O | 83 | 270 | Alcohol |
12 | 26.76 | Octacosane | C28H58 | 57 | 394 | Alkane |
Compound | LD50 (mg/kg) | References |
---|---|---|
1-Decene | Low toxicity | [80] |
1-Heptene | Low toxicity | [81] |
1-Nonadecene | Low toxicity | [81] |
1-Octadecanol | >2000 | [82] |
Acetic acid | 3530 | [83] |
Heptadecane | >5000 | [84] |
Lauric acid | >10,000 | [85] |
N,N-Dimethyltetradecylamine | 1320 | [86] |
n-Dodecan-1-ol | Non-toxic | [87] |
Lauraldehyde | 23,000 | [88] |
Octacosane | 1000 | [89] |
Propanoic acid | Low toxicity | [90] |
Myristic acid | >5000 | [91] |
Tridecane | >5000 | [87] |
Undecane | >2000 | [87] |
Ethyl propionate | >2000 | [92] |
1-Octadecanol | >2000 | [93] |
1,3,5,7-Cyclooctatetraene | Low toxicity | [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, S.S.; Sun, J.; Al-Tohamy, R.; Khalil, M.A.; Elsamahy, T.; Schagerl, M.; Zhu, D.; El-Sapagh, S. Harnessing and Degradation Mechanism of Persistent Polyethylene Waste by Newly Isolated Bacteria from Waxworm and Termite Gut Symbionts. Microorganisms 2025, 13, 1929. https://doi.org/10.3390/microorganisms13081929
Ali SS, Sun J, Al-Tohamy R, Khalil MA, Elsamahy T, Schagerl M, Zhu D, El-Sapagh S. Harnessing and Degradation Mechanism of Persistent Polyethylene Waste by Newly Isolated Bacteria from Waxworm and Termite Gut Symbionts. Microorganisms. 2025; 13(8):1929. https://doi.org/10.3390/microorganisms13081929
Chicago/Turabian StyleAli, Sameh Samir, Jianzhong Sun, Rania Al-Tohamy, Maha A. Khalil, Tamer Elsamahy, Michael Schagerl, Daochen Zhu, and Shimaa El-Sapagh. 2025. "Harnessing and Degradation Mechanism of Persistent Polyethylene Waste by Newly Isolated Bacteria from Waxworm and Termite Gut Symbionts" Microorganisms 13, no. 8: 1929. https://doi.org/10.3390/microorganisms13081929
APA StyleAli, S. S., Sun, J., Al-Tohamy, R., Khalil, M. A., Elsamahy, T., Schagerl, M., Zhu, D., & El-Sapagh, S. (2025). Harnessing and Degradation Mechanism of Persistent Polyethylene Waste by Newly Isolated Bacteria from Waxworm and Termite Gut Symbionts. Microorganisms, 13(8), 1929. https://doi.org/10.3390/microorganisms13081929