Burkholderia Phages and Control of Burkholderia-Associated Human, Animal, and Plant Diseases
Abstract
1. Introduction
2. Pathogenic Burkholderia Species
2.1. Human and Animal Pathogens
2.2. Plant Pathogens
Species | Host Range | Key Virulence Factor | Resistance Trait | Zoonotic Risk | Reference |
---|---|---|---|---|---|
B. cepacia | Humans, occasionally animals, plants | Biofilm formation, motility, pili, lipopolysaccharide variation, quorum sensing (QS), extracellular enzymes | Efflux pumps, β-lactamases, low permeability, modified lipopolysaccharide | Opportunistic zoonotic risk | [45,46] |
B. multivorans | Humans (CF) | Biofilm formation, motility, cable pili, QS-controlled virulence | Aminoglycoside, β-lactam resistance, efflux pumps, polymyxin resistance | No known zoonotic transmission | [14,46] |
B. cenocepacia | Humans (CF, immunocompromised) | Biofilm formation, motility, QS-regulated proteases, cable pili, secretion systems, siderophore production | Efflux pumps, β-lactamases, polymyxin resistance | Potential zoonotic pathogen | [14,46,47,48] |
B. dolosa | Humans (CF) | Biofilm and capsule formation, motility, adhesins and proteases, secretion systems | Extensive multidrug resistance, multiple efflux pumps, β-lactamases | No known zoonotic transmission | [49,50] |
B. contaminans | Humans (nosocomial) | Biofilm formation, motility, hemolysins, antifungal activity, secretion systems | β-lactams, disinfectants, efflux pumps | Potential zoonotic pathogen | [33,46,51] |
B. pseudomallei | Humans and animals | Biofilm formation, motility, intracellular survival, polysaccharides, QS, secretion systems, immune evasion | Aminoglycosides, macrolides, β-lactamases, efflux pumps, polymyxin resistance | Confirmed zoonotic agent | [14,52,53,54] |
B. mallei | Equids, zoonotic to humans | Biofilm formation, motility, secretion systems, immune evasion, novel virulence proteins, modulation of ubiquitination, actin-cytoskeleton rearrangement | Aminoglycosides, β-lactams, efflux pumps | Confirmed zoonotic agent | [52,73,74,75] |
B. thailandensis | Environment, immunocompromised hosts | Biofilm formation, motility, attenuated virulence, secretion systems, QS, siderophore (malleobactin) production | Limited resistance, efflux pumps, β-lactamases | Opportunistic zoonotic risk | [76,77,78] |
B. glumae | Plants, rare human cases | Biofilm formation, motility, toxoflavin, lipase, QS, flagella, extracellular polysaccharides, lipase, secretion systems | Multidrug resistance, efflux pumps, β-lactamases | No known zoonotic transmission | [55,67,68,69] |
B. gladioli | Plants, humans (CF, immunocompromised) | Biofilm formation, protein secretion systems (T2SS, T3SS), motility, proteases, toxoflavin, QS | β-lactams, aminoglycosides, multidrug efflux | Potential zoonotic pathogen | [70,71,72] |
3. Characterization of Burkholderia Phages
3.1. Isolation
3.2. Morphology
3.3. Life Cycle
3.4. Host Range and Specificity
3.5. Genomic Taxonomy
Phage Name | Morphotype | ICTV Taxonomy (Class > Order > Family > Genus) | Host | Lifestyle | GC Content (%) | Genome Length (bp) | Reference |
---|---|---|---|---|---|---|---|
BCE1 | / | Tectiliviricetes > Kalamavirales > Tectiviridae > Alphatectivirus | B. cepacia | / | 48.21 | 14,800 | [103] |
Class Caudoviricetes | |||||||
FLC6 | Myovirus | Chimalliviridae > Chiangmaivirus | B. glumae; B. plantarii; Ralstonia pseudosolanacearum | Lytic | 52.01 | 227,105 | [83] |
FLC8 | Myovirus | Chimalliviridae > Chiangmaivirus | B. glumae; B. plantarii | Lytic | 52.05 | 225,545 | [82] |
S13 | Myovirus | Chimalliviridae > Chiangmaivirus | B. glumae; B. gladioli; B. multivorans; B. cenocepacia; B. dolosa; | Lytic | 51.7 | 227,647 | [21] |
FLC9 | Myovirus | Novel species 16 within a novel genus 8 * | B. glumae; B. plantarii | / | 55.97 | 321,833 | [82] |
BcepSauron | Myovirus | Sarumanvirus | B. cenocepacia | Lytic | 58.10 | 262,653 | [104] |
BcepSaruman | Myovirus | Sarumanvirus | B. cenocepacia | Unknown | 58.14 | 263,735 | / |
BCSR5 | Myovirus | Novel species 4 within a novel genus 2 * | B. cepacia | / | 54.74 | 227,351 | [105] |
KL1 | Siphovirus | Jondennisvirinae > Kilunavirus | B. cenocepacia | Lytic | 54.61 | 42,832 | [106] |
BcepGomr | / | Novel species 7 within a novel genus 3 * | Burkholderia | Unknown | 56.29 | 52,414 | [106] |
Bp-AMP2 | Podovirus | Autographivirales > Autonotataviridae > Ampunavirus | B. pseudomallei | / | 61.76 | 42,492 | [92] |
Bp-AMP1 | Podovirus | Autographivirales > Autonotataviridae > Ampunavirus | B. pseudomallei; B. thaliandensis | Temperate | 61.75 | 42,409 | [92,93] |
Bp AMP4 | Podovirus | Autographivirales > Autonotataviridae > Ampunavirus | B. pseudomallei | / | 61.79 | 42,112 | [92] |
Bp AMP3 | Podovirus | Autographivirales > Autonotataviridae > Ampunavirus | B. pseudomallei | / | 61.77 | 41,882 | [92] |
JG068 | Podovirus | Autographivirales > Autonotataviridae > Mguuvirus | B. multivorans; B. cenocepacia; B. stabilis; B. dolosa | Lytic | 60.69 | 41,604 | [107] |
Paku | / | Autographivirales > Autonotataviridae > Pakuvirus | B. cenocepacia | Temperate | 61.86 | 42,727 | [107] |
Maja | Myovirus | Lindbergviridae > Gladiolivirus | B. gladioli | Temperate | 54.50 | 68,393 | [108] |
BcepF1 | Myovirus | Lindbergviridae > Bcepfunavirus | B. ambifaria | / | 55.89 | 72,415 | [106,109] |
BCSR52 | Myovirus | Lindbergviridae > Irusalimvirus | B. cepacia | / | 51.45 | 70,038 | / |
WTB | Myovirus | Bglawtbvirus | B. gladioli | Lytic | 60.04 | 68,541 | [110] |
BCSR129 | Myovirus | Novel species 10 within a novel genus 5 * | B. cepacia | Unknown | 58.42 | 66,147 | [105] |
BcepB1A | Myovirus | Novel species 2 within a novel genus 1 * | B. cenocepacia | Lytic | 54.45 | 47,399 | [106] |
BcepNazgul | Siphovirus | Casjensviridae > Nazgulvirus | B. cepacia | Lytic | 60.64 | 57,455 | [111] |
AH2 | Siphovirus | Casjensviridae > Ahduovirus | B. cenocepacia; B. gladioli | Lytic | 61.31 | 58,065 | [106,112] |
PhiE255 | Myovirus | Bcepmuvirus | B. thailandensis | Temperate | 63.05 | 37,446 | [91] |
BcepMu | Myovirus | Bcepmuvirus | B. cenocepacia | Temperate | 62.86 | 36,748 | [18] |
KS10 | Myovirus | Novel species 25 within a novel genus 10 * | B. cenocepacia; B. stabilis; B. ambifaria | Temperate | 62.87 | 37,635 | [113] |
phiX216 | Myovirus | Peduoviridae > Tigrvirus | B. pseudomallei; B. mallei | Temperate | 64.82 | 37,637 | [114] |
phi52237 | Myovirus | Peduoviridae > Tigrvirus | B. pseudomallei | Temperate | 64.82 | 37,639 | [91] |
BEK | Myovirus | Peduoviridae > Tigrvirus | B.pseudomallei | / | 68.82 | 37,631 | [85] |
phiE202 | Myovirus | Peduoviridae > Tigrvirus | B. mallei; B. pseudomallei | Temperate | 65.43 | 35,741 | [91] |
phiE094 | Myovirus | Peduoviridae > Tigrvirus | B. thailandensis; B. pseudomallei | Temperate | 64.48 | 37,727 | [115] |
NBP1-1 | Myovirus | Peduoviridae > Tigrvirus | B. glumae | Lytic | 63.23 | 40,570 | [20] |
NBP4-7 | Myovirus | Peduoviridae > Tigrvirus | B. glumae | Lytic | 63.23 | 40,563 | [20] |
NBP4-8 | Myovirus | Peduoviridae > Tigrvirus | B. glumae | Lytic | 63.23 | 40,568 | [20] |
KL3 | Myovirus | Peduoviridae > Kayeltresvirus | B. ambifaria | Temperate | 63.23 | 40,555 | [90] |
PK23 | Myovirus | Peduoviridae > Duodecimduovirus | B. pseudomallei | Temperate | 65.12 | 35,343 | [116] |
phiE12_2 | Myovirus | Peduoviridae > Duodecimduovirus | B. mallei | Temperate | 64.62 | 36,690 | [91] |
FLC10 | Myovirus | Peduoviridae > Kisquattuordecimvirus | B. glumae | Lytic | 61.29 | 32,867 | [82] |
FLC5 | Myovirus | Peduoviridae > Kisquattuordecimvirus | B. glumae; B. plantarii | Temperate | 61.79 | 32,090 | [117] |
KS14 | Myovirus | Peduoviridae > Kisquattuordecimvirus | B. multivorans; B. cenocepacia; B. dolosa; B. ambifaria | Temperate | 62.28 | 32,317 | [90] |
vB BceM AP3 | Myovirus | Peduoviridae > Aptresvirus | B. cenocepacia | Temperate | 64.04 | 36,499 | [85] |
Mana | Myovirus | Peduoviridae > Aptresvirus | B. gladioli | / | 64.31 | 38,038 | [118] |
KS5 | Myovirus | Peduoviridae > Kisquinquevirus | B. multivorans; B. cenocepacia | Temperate | 63.71 | 37,236 | [90] |
ST79 | Myovirus | Peduoviridae > Nampongvirus | B. pseudomallei; B. mallei | Lytic | 62.50 | 35,430 | [119] |
BcepMigl | Podovirus | Lessievirus | B. cenocepacia | / | 65.51 | 62,952 | / |
Bcep22 | Podovirus | Lessievirus | B. cenocepacia | Temperate | 65.31 | 63,882 | [84] |
DC1 | Podovirus | Lessievirus | B. cepacia; B. cenocepacia; B. stabilis | Temperate, unstably lysogenic | 66.21 | 61,847 | [120] |
BcepIL02 | Podovirus | Lessievirus | B. cenocepacia | Temperate | 66.20 | 62,715 | [84] |
Mica | Myovirus | Micavirus | B. cenocepacia | Temperate | 62.15 | 43,707 | [121] |
Bcep781 | Myovirus | Naesvirus | B. cepacia | Lytic | 63.33 | 48,247 | [122] |
Bcep43 | Myovirus | Naesvirus | B. cepacia | Lytic | 63.43 | 48,024 | [122] |
BcepNY3 | / | Naesvirus | B. cenocepacia | / | 63.64 | 47,382 | / |
Bcep1 | Myovirus | Naesvirus | B. cenocepacia | Lytic | 63.64 | 48,177 | [122] |
phiE058 | Myovirus | Novel species 40 within a novel genus 16 * | B. mallei; B. pseudomallei; B. thailandensis | Temperate | 64.12 | 44,121 | [123] |
PE067 | Myovirus | Novel species 39 within a novel genus 16 * | B. pseudomallei; B. thailandensis | Temperate | 64.48 | 43,649 | [123] |
BcepC6B | Podovirus | Ryyoungvirus | B. cepacia | Temperate | 65.19 | 42,415 | [122] |
vB BmuP KL4 | / | Kelquatrovirus | B. multivorans | / | 63.18 | 42,250 | / |
Magia | Myovirus | Magiavirus | B. cenocepacia | Temperate | 65.06 | 44,942 | [124] |
phiE125 | Siphovirus | Stanholtvirus | B. mallei | Temperate | 61.19 | 53,373 | [86] |
Phi644_2 | Siphovirus | Stanholtvirus | B. mallei; B. pseudomallei | Temperate | 60.45 | 48,674 | [91] |
PhiBP82.1 | / | Stanholtvirus | B. pseudomallei | / | 60.68 | 54,921 | / |
Phi1026b | Siphovirus | Stanholtvirus | B. mallei; B. pseudomallei | Temperate | 60.68 | 54,865 | [87] |
phiBt | / | Stanholtvirus | B. pseudomallei | / | 60.30 | 56,453 | / |
Bcep176 | Siphovirus | Stanholtvirus | B. multivorans; B. cepacia | Temperate | 61.54 | 44,856 | [125] |
KS9 | Siphovirus | Stanholtvirus | B. pyrrocinia; B. cenocepacia | Temperate | 60.68 | 39,896 | [18,126] |
4. Mechanism of Phage Action and Burkholderia Resistance
5. Biotechnological Applications of Burkholderia Phages
5.1. Medical and Veterinary Applications
5.2. Agricultural Applications
5.3. Nanotechnology-Enhanced Delivery
6. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bach, E.; Sant’Anna, F.H.; dos Santos Seger, G.D.; Passaglia, L.M.P. Pangenome inventory of Burkholderia sensu lato, Burkholderia sensu stricto, and the Burkholderia cepacia complex reveals the uniqueness of Burkholderia catarinensis. Genomics 2022, 114, 398–408. [Google Scholar] [CrossRef]
- Mullins, A.J.; Mahenthiralingam, E. The hidden genomic diversity, specialized metabolite capacity, and revised taxonomy of Burkholderia sensu lato. Front. Microbiol. 2021, 12, 726847. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Camele, I. An overview of metabolic activity, beneficial and pathogenic aspects of Burkholderia spp. Metabolites 2021, 11, 321. [Google Scholar] [CrossRef]
- Morya, R.; Salvachúa, D.; Thakur, I.S. Burkholderia: An untapped but promising bacterial genus for the conversion of aromatic compounds. Trends Biotechnol. 2020, 38, 963–975. [Google Scholar] [CrossRef]
- Limmathurotsakul, D.; Golding, N.; Dance, D.A.; Messina, J.P.; Pigott, D.M.; Moyes, C.L.; Rolim, D.B.; Bertherat, E.; Day, N.P.; Peacock, S.J.; et al. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat. Microbiol. 2016, 1, 15008. [Google Scholar] [CrossRef]
- Weinberg, J.B.; Alexander, B.D.; Majure, J.M.; Williams, L.W.; Kim, J.Y.; Vandamme, P.; LiPuma, J.J. Burkholderia glumae infection in an infant with chronic granulomatous disease. J. Clin. Microbiol. 2007, 45, 662–665. [Google Scholar] [CrossRef] [PubMed]
- Segonds, C.; Clavel-Batut, P.; Thouverez, M.; Grenet, D.; Le Coustumier, A.; Plésiat, P.; Chabanon, G. Microbiological and epidemiological features of clinical respiratory isolates of Burkholderia gladioli. J. Clin. Microbiol. 2009, 47, 1510–1516. [Google Scholar] [CrossRef] [PubMed]
- Rajendraprasad, S.; Creech, Z.A.; Truong, G.T.D.; Nguyen, T.; Addula, M.; Mendoza, N.; Velagapudi, M. Fatal case of Burkholderia gladioli pneumonia in a patient with COVID-19. Ochsner J. 2022, 22, 349–352. [Google Scholar] [CrossRef]
- Yao, L.; Qian, C.; Guo, J.; Zhang, H.; Li, Z.; Xie, D.; Xia, L.; Wu, Q.; Hong, M. Traceability and characteristic investigation of Burkholderia gladioli bloodstream infection in patients with hematologic malignancies. Blood 2023, 142, 5569. [Google Scholar] [CrossRef]
- Zhou, J.; Ren, H.; Hu, M.; Zhou, J.; Li, B.; Kong, N.; Zhang, Q.; Jin, Y.; Liang, L.; Yue, J. Characterization of Burkholderia cepacia complex core genome and the underlying recombination and positive selection. Front. Genet. 2020, 11, 506. [Google Scholar] [CrossRef]
- Vial, L.; Chapalain, A.; Groleau, M.C.; Déziel, E. The various lifestyles of the Burkholderia cepacia complex species: A tribute to adaptation. Environ. Microbiol. 2011, 13, 1–12. [Google Scholar] [CrossRef]
- Mannaa, M.; Park, I.; Seo, Y.-S. Genomic features and insights into the taxonomy, virulence, and benevolence of plant-associated Burkholderia species. Int. J. Mol. Sci. 2018, 20, 121. [Google Scholar] [CrossRef]
- Podnecky, N.L.; Rhodes, K.A.; Schweizer, H.P. Efflux pump-mediated drug resistance in Burkholderia. Front. Microbiol. 2015, 6, 305. [Google Scholar] [CrossRef]
- Rhodes, K.A.; Schweizer, H.P. Antibiotic resistance in Burkholderia species. Drug Resist. Updat. 2016, 28, 82–90. [Google Scholar] [CrossRef]
- Lauman, P.; Dennis, J.J. Advances in phage therapy: Targeting the Burkholderia cepacia complex. Viruses 2021, 13, 1331. [Google Scholar] [CrossRef]
- Merril, C.R.; Scholl, D.; Adhya, S.L. The prospect for bacteriophage therapy in Western medicine. Nat. Rev. Drug Discov. 2003, 2, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Guang-Han, O.; Leang-Chung, C.; Vellasamy, K.M.; Mariappan, V.; Li-Yen, C.; Vadivelu, J. Experimental phage therapy for Burkholderia pseudomallei infection. PLoS ONE 2016, 11, e0158213. [Google Scholar] [CrossRef]
- Semler, D.D.; Lynch, K.H.; Dennis, J.J. The promise of bacteriophage therapy for Burkholderia cepacia complex respiratory infections. Front. Cell. Infect. Microbiol. 2012, 1, 27. [Google Scholar] [CrossRef] [PubMed]
- Mehmood Khan, F.; Manohar, P.; Singh Gondil, V.; Mehra, N.; Kayode Oyejobi, G.; Odiwuor, N.; Ahmad, T.; Huang, G. The applications of animal models in phage therapy: An update. Hum. Vaccines Immunother. 2023, 19, 2175519. [Google Scholar] [CrossRef] [PubMed]
- Jungkhun, N.; Farias, A.R.; Barphagha, I.; Patarapuwadol, S.; Ham, J.H. Isolation and characterization of bacteriophages infecting Burkholderia glumae, the major causal agent of bacterial panicle blight in rice. Plant Dis. 2021, 105, 2551–2559. [Google Scholar] [CrossRef]
- Supina, B.S.; McCutcheon, J.G.; Peskett, S.R.; Stothard, P.; Dennis, J.J. A flagella-dependent Burkholderia jumbo phage controls rice seedling rot and steers Burkholderia glumae toward reduced virulence in rice seedlings. mBio 2025, 16, e02814-24. [Google Scholar] [CrossRef]
- Ryan, E.M.; Gorman, S.P.; Donnelly, R.F.; Gilmore, B.F. Recent advances in bacteriophage therapy: How delivery routes, formulation, concentration and timing influence the success of phage therapy. J. Pharm. Pharmacol. 2011, 63, 1253–1264. [Google Scholar] [CrossRef]
- Holtappels, D.; Fortuna, K.; Lavigne, R.; Wagemans, J. The future of phage biocontrol in integrated plant protection for sustainable crop production. Curr. Opin. Biotechnol. 2021, 68, 60–71. [Google Scholar] [CrossRef]
- Ke, D.; Luo, J.; Liu, P.; Shou, L.; Ijaz, M.; Ahmed, T.; Shahid, M.S.; An, Q.; Mustać, I.; Ondrasek, G.; et al. Advancements in Bacteriophages for the Fire Blight Pathogen Erwinia amylovora. Viruses 2024, 16, 1619. [Google Scholar] [CrossRef] [PubMed]
- Shang, W.; Xiong, Q.; Xie, Z.; Cheng, J.; Yu, B.; Zhang, H.; Su, Y.; Zhao, J. Functional, eco-friendly, and starch-based nanocarriers with sustained release of carvacrol for persistent control of tomato gray mold. Crop Health 2023, 1, 13. [Google Scholar] [CrossRef]
- Paczesny, J.; Bielec, K. Application of bacteriophages in nanotechnology. Nanomaterials 2020, 10, 1944. [Google Scholar] [CrossRef] [PubMed]
- Mahenthiralingam, E.; Urban, T.A.; Goldberg, J.B. The multifarious, multireplicon Burkholderia cepacia complex. Nat. Rev. Microbiol. 2005, 3, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Drevinek, P.; Mahenthiralingam, E. Burkholderia cenocepacia in cystic fibrosis: Epidemiology and molecular mechanisms of virulence. Clin. Microbiol. Infect. 2010, 16, 821–830. [Google Scholar] [CrossRef]
- Roux, D.; Weatherholt, M.; Clark, B.; Gadjeva, M.; Renaud, D.; Scott, D.; Skurnik, D.; Priebe, G.P.; Pier, G.; Gerard, C.; et al. Immune recognition of the epidemic cystic fibrosis pathogen Burkholderia dolosa. Infect. Immun. 2017, 85, e00765-16. [Google Scholar] [CrossRef]
- Pham, A.; Volmer, J.G.; Chambers, D.C.; Smith, D.J.; Reid, D.W.; Burr, L.; Wells, T.J. Genomic analyses of Burkholderia respiratory isolates indicates two evolutionarily distinct B. anthina clades. Front. Microbiol. 2023, 14, 1274280. [Google Scholar] [CrossRef]
- Hudson, M.J. Outbreak of Burkholderia stabilis infections associated with contaminated nonsterile, multiuse ultrasound gel—10 states, May–September 2021. MMWR Morb. Mortal. Wkly Rep. 2022, 71, 1517–1521. [Google Scholar] [CrossRef]
- Seth-Smith, H.M.; Casanova, C.; Sommerstein, R.; Meinel, D.M.; Abdelbary, M.M.; Blanc, D.S.; Droz, S.; Führer, U.; Lienhard, R.; Lang, C.; et al. Phenotypic and genomic analyses of Burkholderia stabilis clinical contamination, Switzerland. Emerg. Infect. Dis. 2019, 25, 1084. [Google Scholar] [CrossRef] [PubMed]
- Nunvar, J.; Kalferstova, L.; Bloodworth, R.A.; Kolar, M.; Degrossi, J.; Lubovich, S.; Cardona, S.T.; Drevinek, P. Understanding the pathogenicity of Burkholderia contaminans, an emerging pathogen in cystic fibrosis. PLoS ONE 2016, 11, e0160975. [Google Scholar] [CrossRef]
- Moehring, R.W.; Lewis, S.S.; Isaacs, P.J.; Schell, W.A.; Thomann, W.R.; Althaus, M.M.; Hazen, K.C.; Dicks, K.V.; LiPuma, J.J.; Chen, L.F.; et al. Outbreak of bacteremia due to Burkholderia contaminans linked to intravenous fentanyl from an institutional compounding pharmacy. JAMA Intern. Med. 2014, 174, 606–612. [Google Scholar] [CrossRef]
- Fujii, Y.; Suwa, A.; Tsuyuki, Y.; Koyama, K.; Nio-Kobayashi, J.; Yoshii, K. The First case of a cat infected with Burkholderia pseudomultivorans, a member of the Burkholderia cepacia complex. Vet. Sci. 2024, 11, 559. [Google Scholar] [CrossRef]
- Peeters, C.; Zlosnik, J.E.; Spilker, T.; Hird, T.J.; LiPuma, J.J.; Vandamme, P. Burkholderia pseudomultivorans sp. nov. a novel Burkholderia cepacia complex species from human respiratory samples and the rhizosphere. Syst. Appl. Microbiol. 2013, 36, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Campos, C.G.; Byrd, M.S.; Cotter, P.A. Functional characterization of Burkholderia pseudomallei trimeric autotransporters. Infect. Immun. 2013, 81, 2788–2799. [Google Scholar] [CrossRef] [PubMed]
- Dance, D. Melioidosis: The tip of the iceberg? Clin. Microbiol. Rev. 1991, 4, 52–60. [Google Scholar] [CrossRef]
- Kettle, A.N.; Wernery, U. Glanders and the risk for its introduction through the international movement of horses. Equine Vet. J. 2016, 48, 654–658. [Google Scholar] [CrossRef]
- Khan, I.; Wieler, L.; Melzer, F.; Elschner, M.; Muhammad, G.; Ali, S.; Sprague, L.; Neubauer, H.; Saqib, M. Glanders in animals: A review on epidemiology, clinical presentation, diagnosis and countermeasures. Transbound. Emerg. Dis. 2013, 60, 204–221. [Google Scholar] [CrossRef]
- Srinivasan, A.; Kraus, C.N.; DeShazer, D.; Becker, P.M.; Dick, J.D.; Spacek, L.; Bartlett, J.G.; Byrne, W.R.; Thomas, D.L. Glanders in a military research microbiologist. N. Engl. J. Med. 2001, 345, 256–258. [Google Scholar] [CrossRef] [PubMed]
- Brett, P.J.; DeShazer, D.; Woods, D.E. Note: Burkholderia thailandensis sp. nov. a Burkholderia pseudomallei-like species. Int. J. Syst. Evol. Microbiol. 1998, 48, 317–320. [Google Scholar] [CrossRef]
- Glass, M.B.; Gee, J.E.; Steigerwalt, A.G.; Cavuoti, D.; Barton, T.; Hardy, R.D.; Godoy, D.; Spratt, B.G.; Clark, T.A.; Wilkins, P.P. Pneumonia and septicemia caused by Burkholderia thailandensis in the United States. J. Clin. Microbiol. 2006, 44, 4601–4604. [Google Scholar] [CrossRef]
- Lertpatanasuwan, N.; Sermsri, K.; Petkaseam, A.; Trakulsomboon, S.; Thamlikitkul, V.; Suputtamongkol, Y. Arabinose-positive Burkholderia pseudomallei infection in humans: Case report. Clin. Infect. Dis. 1999, 28, 927–928. [Google Scholar] [CrossRef]
- Patro, S.; Sharma, V.; Choudhary, A.; Varuneil, Y.; Pathi, B.K.; Pattnaik, S.S.; Pathi, B. Clinical and microbiological insights into Burkholderia infections: A retrospective study from a tertiary care hospital. Cureus 2025, 17, e76742. [Google Scholar] [CrossRef]
- Leitão, J.H.; Sousa, S.A.; Ferreira, A.S.; Ramos, C.G.; Silva, I.N.; Moreira, L.M. Pathogenicity, virulence factors, and strategies to fight against Burkholderia cepacia complex pathogens and related species. Appl. Microbiol. Biotechnol. 2010, 87, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Mahenthiralingam, E.; Baldwin, A.; Dowson, C.G. Burkholderia cepacia complex bacteria: Opportunistic pathogens with important natural biology. J. Appl. Microbiol. 2008, 104, 1539–1551. [Google Scholar] [CrossRef]
- Uehlinger, S.; Schwager, S.; Bernier, S.P.; Riedel, K.; Nguyen, D.T.; Sokol, P.A.; Eberl, L. Identification of specific and universal virulence factors in Burkholderia cenocepacia strains by using multiple infection hosts. Infect. Immun. 2009, 77, 4102–4110. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Nguyen, C.L.; Nguyen, T.S.; Do, B.N.; Tran, T.T.T.; Le, T.T.H.; Bui, T.T.; Le, H.S.; Van Quyen, D.; Hayer, J.; et al. Genomic insights into an extensively drug-resistant and hypervirulent Burkholderia dolosa N149 isolate of a novel sequence type (ST2237) from a Vietnamese patient hospitalised for stroke. J. Glob. Antimicrob. Resist. 2024, 37, 44–47. [Google Scholar] [CrossRef]
- Bernier, S.P.; Son, S.; Surette, M.G. The Mla pathway plays an essential role in the intrinsic resistance of Burkholderia cepacia complex species to antimicrobials and host innate components. J. Bacteriol. 2018, 200, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Deng, P.; Wang, X.; Baird, S.M.; Showmaker, K.C.; Smith, L.; Peterson, D.G.; Lu, S. Comparative genome-wide analysis reveals that Burkholderia contaminans MS 14 possesses multiple antimicrobial biosynthesis genes but not major genetic loci required for pathogenesis. Microbiologyopen 2016, 5, 353–369. [Google Scholar] [CrossRef]
- Galyov, E.E.; Brett, P.J.; DeShazer, D. Molecular insights into Burkholderia pseudomallei and Burkholderia mallei pathogenesis. Annu. Rev. Microbiol. 2010, 64, 495–517. [Google Scholar] [CrossRef]
- Wiersinga, W.J.; Van der Poll, T.; White, N.J.; Day, N.P.; Peacock, S.J. Melioidosis: Insights into the pathogenicity of Burkholderia pseudomallei. Nat. Rev. Microbiol. 2006, 4, 272–282. [Google Scholar] [CrossRef]
- Bzdyl, N.M.; Moran, C.L.; Bendo, J.; Sarkar-Tyson, M. Pathogenicity and virulence of Burkholderia pseudomallei. Virulence 2022, 13, 2139063. [Google Scholar] [CrossRef] [PubMed]
- Ham, J.H.; Melanson, R.A.; Rush, M.C. Burkholderia glumae: Next major pathogen of rice? Mol. Plant Pathol. 2011, 12, 329–339. [Google Scholar] [CrossRef]
- Jeong, Y.; Kim, J.; Kim, S.; Kang, Y.; Nagamatsu, T.; Hwang, I. Toxoflavin produced by Burkholderia glumae causing rice grain rot is responsible for inducing bacterial wilt in many field crops. Plant Dis. 2003, 87, 890–895. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, S.; Kakar, K.U.; Xie, G.; Li, B.; Chen, G.; Zhu, B. Genome sequence and adaptation analysis of the human and rice pathogenic strain Burkholderia glumae AU6208. Pathogens 2021, 10, 87. [Google Scholar] [CrossRef] [PubMed]
- Brizendine, K.; Baddley, J.; Pappas, P.; Leon, K.; Rodriguez, J. Fatal Burkholderia gladioli infection misidentified as Empedobacter brevis in a lung transplant recipient with cystic fibrosis. Transpl. Infect. Dis. 2012, 14, E13–E18. [Google Scholar] [CrossRef] [PubMed]
- Graves, M.; Robin, T.; Chipman, A.M.; Wong, J.; Khashe, S.; Janda, J.M. Four additional cases of Burkholderia gladioli infection with microbiological correlates and review. Clin. Infect. Dis. 1997, 25, 838–842. [Google Scholar] [CrossRef]
- Nandakumar, R.; Shahjahan, A.; Yuan, X.; Dickstein, E.; Groth, D.; Clark, C.; Cartwright, R.; Rush, M. Burkholderia glumae and B. gladioli cause bacterial panicle blight in rice in the southern United States. Plant Dis. 2009, 93, 896–905. [Google Scholar] [CrossRef]
- Ura, H.; Furuya, N.; Iiyama, K.; Hidaka, M.; Tsuchiya, K.; Matsuyama, N. Burkholderia gladioli associated with symptoms of bacterial grain rot and leaf-sheath browning of rice plants. J. Gen. Plant Pathol. 2006, 72, 98–103. [Google Scholar] [CrossRef]
- Wang, M.; Wei, P.; Cao, M.; Zhu, L.; Lu, Y. First report of rice seedling blight caused by Burkholderia plantarii in north and southeast China. Plant Dis. 2016, 100, 645. [Google Scholar] [CrossRef]
- Matsumoto, H.; Fan, X.; Wang, Y.; Kusstatscher, P.; Duan, J.; Wu, S.; Chen, S.; Qiao, K.; Wang, Y.; Ma, B.; et al. Bacterial seed endophyte shapes disease resistance in rice. Nat. Plants 2021, 7, 60–72. [Google Scholar] [CrossRef]
- Burkholder, W.H. Sour skin, a bacterial rot of onion bulbs. Phytopathology 1950, 40, 115–117. [Google Scholar]
- Morales-Ruíz, L.-M.; Rodríguez-Cisneros, M.; Kerber-Díaz, J.-C.; Rojas-Rojas, F.-U.; Ibarra, J.A.; Estrada-de Los Santos, P. Burkholderia orbicola sp. nov. a novel species within the Burkholderia cepacia complex. Arch. Microbiol. 2022, 204, 178. [Google Scholar] [CrossRef] [PubMed]
- Velez, L.S.; Aburjaile, F.F.; Farias, A.R.; Baia, A.D.; Oliveira, W.J.; Silva, A.M.; Benko-Iseppon, A.M.; Azevedo, V.; Brenig, B.; Ham, J.H.; et al. Burkholderia semiarida sp. nov. and Burkholderia sola sp. nov. two novel B. cepacia complex species causing onion sour skin. Syst. Appl. Microbiol. 2023, 46, 126415. [Google Scholar] [CrossRef]
- Kim, N.; Lee, D.; Lee, S.-B.; Lim, G.-H.; Kim, S.-W.; Kim, T.-J.; Park, D.-S.; Seo, Y.-S. Understanding Burkholderia glumae BGR1 virulence through the application of toxoflavin-degrading enzyme, TxeA. Plants 2023, 12, 3934. [Google Scholar] [CrossRef] [PubMed]
- Lelis, T.; Peng, J.; Barphagha, I.; Chen, R.; Ham, J.H. The virulence function and regulation of the metalloprotease gene prtA in the plant-pathogenic bacterium Burkholderia glumae. Mol. Plant-Microbe Interact. 2019, 32, 841–852. [Google Scholar] [CrossRef] [PubMed]
- Marunga, J.; Goo, E.; Kang, Y.; Hwang, I. Mutations in the two-component GluS-GluR regulatory system confer resistance to β-lactam antibiotics in Burkholderia glumae. Front. Microbiol. 2021, 12, 721444. [Google Scholar] [CrossRef]
- Lee, J.; Park, J.; Kim, S.; Park, I.; Seo, Y.S. Differential regulation of toxoflavin production and its role in the enhanced virulence of Burkholderia gladioli. Mol. Plant Pathol. 2016, 17, 65–76. [Google Scholar] [CrossRef]
- Paudel, S.; Franco, Y.; Zhao, M.; Dutta, B.; Kvitko, B.H. Distinct virulence mechanisms of Burkholderia gladioli in onion foliar and bulb scale tissues. Mol. Plant-Microbe Interact. 2025, 38, 427–439. [Google Scholar] [CrossRef] [PubMed]
- Zeiser, E.T.; Becka, S.A.; Wilson, B.M.; Barnes, M.D.; LiPuma, J.J.; Papp-Wallace, K.M. “Switching partners”: Piperacillin-avibactam is a highly potent combination against multidrug-resistant Burkholderia cepacia complex and Burkholderia gladioli cystic fibrosis isolates. J. Clin. Microbiol. 2019, 57, e00181-19. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, E.B.; Santos, L.R.d.; Egito, A.A.d.; Santos, M.G.d.; Mantovani, C.; Rieger, J.d.S.G.; Abrantes, G.A.d.S.; Suniga, P.A.P.; Favacho, J.d.M.; Pinto, I.B.; et al. Assessment of the virulence of the Burkholderia mallei strain BAC 86/19 in BALB/c mice. Microorganisms 2023, 11, 2597. [Google Scholar] [CrossRef]
- Memišević, V.; Zavaljevski, N.; Pieper, R.; Rajagopala, S.V.; Kwon, K.; Townsend, K.; Yu, C.; Yu, X.; DeShazer, D.; Reifman, J.; et al. Novel Burkholderia mallei virulence factors linked to specific host-pathogen protein interactions. Mol. Cell. Proteom. 2013, 12, 3036–3051. [Google Scholar] [CrossRef]
- Saikh, K.U.; Mott, T.M. Innate immune response to Burkholderia mallei. Curr. Opin. Infect. Dis. 2017, 30, 297–302. [Google Scholar] [CrossRef]
- Li, J.; Zhong, Q.; Li, J.; Chong, H.-M.; Wang, L.-X.; Xing, Y.; Lu, W.-P. Genomic features and virulence characteristics of a rare Burkholderia thailandensis strain causing human infection. J. Med. Microbiol. 2023, 72, 001688. [Google Scholar] [CrossRef]
- Thapa, S.S.; Al-Tohamy, A.; Grove, A. The global regulator MftR controls virulence and siderophore production in Burkholderia thailandensis. J. Bacteriol. 2022, 204, e00237-22. [Google Scholar] [CrossRef]
- Kovacs-Simon, A.; Hemsley, C.; Scott, A.; Prior, J.; Titball, R. Burkholderia thailandensis strain E555 is a surrogate for the investigation of Burkholderia pseudomallei replication and survival in macrophages. BMC Microbiol. 2019, 19, 97. [Google Scholar] [CrossRef]
- Hyman, P. Phages for phage therapy: Isolation, characterization, and host range breadth. Pharmaceuticals 2019, 12, 35. [Google Scholar] [CrossRef]
- Khan Mirzaei, M.; Nilsson, A.S. Isolation of phages for phage therapy: A comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS ONE 2015, 10, e0118557. [Google Scholar] [CrossRef] [PubMed]
- Adachi, N.; Tsukamoto, S.; Inoue, Y.; Azegami, K. Control of bacterial seedling rot and seedling blight of rice by bacteriophage. Plant Dis. 2012, 96, 1033–1036. [Google Scholar] [CrossRef] [PubMed]
- Kanaizuka, A.; Sasaki, R.; Miyashita, S.; Ando, S.; Ito, K.; Fukuhara, T.; Takahashi, H. Isolation of Burkholderia jumbo phages and their utilization as biocontrol agents to suppress rice seedling rot disease. J. Gen. Plant Pathol. 2023, 89, 24–34. [Google Scholar] [CrossRef]
- Sasaki, R.; Miyashita, S.; Ando, S.; Ito, K.; Fukuhara, T.; Takahashi, H. Isolation and characterization of a novel jumbo phage from leaf litter compost and its suppressive effect on rice seedling rot diseases. Viruses 2021, 13, 591. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.J.; Summer, E.J.; Russell, W.K.; Cologna, S.M.; Carlile, T.M.; Fuller, A.C.; Kitsopoulos, K.; Mebane, L.M.; Parkinson, B.N.; Sullivan, D.; et al. Genomes and characterization of phages Bcep22 and BcepIL02, founders of a novel phage type in Burkholderia cenocepacia. J. Bacteriol. 2011, 193, 5300–5313. [Google Scholar] [CrossRef]
- Roszniowski, B.; Latka, A.; Maciejewska, B.; Vandenheuvel, D.; Olszak, T.; Briers, Y.; Holt, G.S.; Valvano, M.A.; Lavigne, R.; Smith, D.L.; et al. The temperate Burkholderia phage AP3 of the Peduovirinae shows efficient antimicrobial activity against B. cenocepacia of the IIIA lineage. Appl. Microbiol. Biotechnol. 2017, 101, 1203–1216. [Google Scholar] [CrossRef]
- Woods, D.E.; Jeddeloh, J.A.; Fritz, D.L.; DeShazer, D. Burkholderia thailandensis E125 harbors a temperate bacteriophage specific for Burkholderia mallei. J. Bacteriol. 2002, 184, 4003–4017. [Google Scholar] [CrossRef]
- DeShazer, D. Genomic diversity of Burkholderia pseudomallei clinical isolates: Subtractive hybridization reveals a Burkholderia mallei-specific prophage in B. pseudomallei 1026b. J. Bacteriol. 2004, 186, 3938–3950. [Google Scholar] [CrossRef]
- Gatedee, J.; Kritsiriwuthinan, K.; Galyov, E.E.; Shan, J.; Dubinina, E.; Intarak, N.; Clokie, M.R.; Korbsrisate, S. Isolation and characterization of a novel podovirus which infects Burkholderia pseudomallei. Virol. J. 2011, 8, 366. [Google Scholar] [CrossRef]
- Ackermann, H.-W. Bacteriophage electron microscopy. Adv. Virus Res. 2012, 82, 1–32. [Google Scholar]
- Lynch, K.H.; Stothard, P.; Dennis, J.J. Genomic analysis and relatedness of P2-like phages of the Burkholderia cepacia complex. BMC Genom. 2010, 11, 599. [Google Scholar] [CrossRef]
- Ronning, C.M.; Losada, L.; Brinkac, L.; Inman, J.; Ulrich, R.L.; Schell, M.; Nierman, W.C.; DeShazer, D. Genetic and phenotypic diversity in Burkholderia: Contributions by prophage and phage-like elements. BMC Microbiol. 2010, 10, 202. [Google Scholar] [CrossRef]
- Shan, J.; Korbsrisate, S.; Withatanung, P.; Adler, N.L.; Clokie, M.R.; Galyov, E.E. Temperature dependent bacteriophages of a tropical bacterial pathogen. Front. Microbiol. 2014, 5, 599. [Google Scholar] [CrossRef] [PubMed]
- Letarov, A.V.; Letarova, M.A.; Ivanov, P.A.; Belalov, I.S.; Clokie, M.R.; Galyov, E.E. Genetic analysis of the cold-sensitive growth phenotype of Burkholderia pseudomallei/thailandensis bacteriophage AMP1. Sci. Rep. 2022, 12, 4288. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, R.; Pires, D.P.; Costa, A.R.; Azeredo, J. Phage therapy: Going temperate? Trends Microbiol. 2019, 27, 368–378. [Google Scholar] [CrossRef] [PubMed]
- Seed, K.D.; Dennis, J.J. Isolation and characterization of bacteriophages of the Burkholderia cepacia complex. FEMS Microbiol. Lett. 2005, 251, 273–280. [Google Scholar] [CrossRef]
- Islam, M.Z.; Fokine, A.; Mahalingam, M.; Zhang, Z.; Garcia-Doval, C.; van Raaij, M.J.; Rossmann, M.G.; Rao, V.B. Molecular anatomy of the receptor binding module of a bacteriophage long tail fiber. PLoS Pathog. 2019, 15, e1008193. [Google Scholar] [CrossRef]
- Taslem Mourosi, J.; Awe, A.; Guo, W.; Batra, H.; Ganesh, H.; Wu, X.; Zhu, J. Understanding bacteriophage tail fiber interaction with host surface receptor: The key “blueprint” for reprogramming phage host range. Int. J. Mol. Sci. 2022, 23, 12146. [Google Scholar] [CrossRef]
- Le, S.; He, X.; Tan, Y.; Huang, G.; Zhang, L.; Lux, R.; Shi, W.; Hu, F. Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of Pseudomonas aeruginosa bacteriophages PaP1 and JG004. PLoS ONE 2013, 8, e68562. [Google Scholar] [CrossRef]
- He, P.; Cao, F.; Qu, Q.; Geng, H.; Yang, X.; Xu, T.; Wang, R.; Jia, X.; Lu, M.; Zeng, P.; et al. Host range expansion of Acinetobacter phage vB_Ab4_Hep4 driven by a spontaneous tail tubular mutation. Front. Cell. Infect. Microbiol. 2024, 14, 1301089. [Google Scholar] [CrossRef]
- Zhang, J.; Ning, H.; Lin, H.; She, J.; Wang, L.; Jing, Y.; Wang, J. Expansion of the plaquing host range and improvement of the absorption rate of a T5-like Salmonella phage by altering the long tail fibers. Appl. Environ. Microbiol. 2022, 88, e00895-22. [Google Scholar] [CrossRef]
- Turner, D.; Kropinski, A.M.; Adriaenssens, E.M. A roadmap for genome-based phage taxonomy. Viruses 2021, 13, 506. [Google Scholar] [CrossRef]
- Turner, D.; Shkoporov, A.N.; Lood, C.; Millard, A.D.; Dutilh, B.E.; Alfenas-Zerbini, P.; Van Zyl, L.J.; Aziz, R.K.; Oksanen, H.M.; Poranen, M.M.; et al. Abolishment of morphology-based taxa and change to binomial species names: 2022 taxonomy update of the ICTV bacterial viruses subcommittee. Arch. Virol. 2023, 168, 74. [Google Scholar] [CrossRef] [PubMed]
- Quinones-Olvera, N.; Owen, S.V.; McCully, L.M.; Marin, M.G.; Rand, E.A.; Fan, A.C.; Martins Dosumu, O.J.; Paul, K.; Sanchez Castaño, C.E.; Petherbridge, R.; et al. Diverse and abundant phages exploit conjugative plasmids. Nat. Commun. 2024, 15, 3197. [Google Scholar] [CrossRef]
- Park, K.E. The Genomes of Bacteriophages NY12 and Sauron. Bachelor’s Thesis, Texas A&M University, College Station, TX, USA, 2014. [Google Scholar]
- Porat, S.B.; Gelman, D.; Yerushalmy, O.; Alkalay-Oren, S.; Coppenhagen-Glazer, S.; Cohen-Cymberknoh, M.; Kerem, E.; Amirav, I.; Nir-Paz, R.; Hazan, R. Expanding clinical phage microbiology: Simulating phage inhalation for respiratory tract infections. ERJ Open Res. 2021, 7, 00367–02021. [Google Scholar] [CrossRef]
- Lynch, K.H.; Stothard, P.; Dennis, J.J. Comparative analysis of two phenotypically-similar but genomically-distinct Burkholderia cenocepacia-specific bacteriophages. BMC Genom. 2012, 13, 223. [Google Scholar] [CrossRef]
- Rezene, S.; Yao, G.; Le, T.; Burrowes, B.; Gonzalez, C.; Liu, M.; Gill, J. Complete genome sequence of Burkholderia cenocepacia phage Paku. Microbiol. Resour. Announc. 2022, 11, e01220-21. [Google Scholar] [CrossRef]
- Yu, Z.; Yao, G.; Vizoso-Pinto, M.G.; Sun, L.; Young, R.; Gonzalez, C.; Liu, M. Complete genome sequence of Burkholderia gladioli Phage Maja. Microbiol. Resour. Announc. 2021, 10, 10–1128. [Google Scholar] [CrossRef]
- Summer, E.J.; Gill, J.J.; Upton, C.; Gonzalez, C.F.; Young, R. Role of phages in the pathogenesis of Burkholderia, or ‘Where are the toxin genes in Burkholderia phages?’. Curr. Opin. Microbiol. 2007, 10, 410–417. [Google Scholar] [CrossRef]
- Wang, T.; Cheng, B.; Jiao, R.; Zhang, X.; Zhang, D.; Cheng, X.; Ling, N.; Ye, Y. Characterization of a novel high-efficiency cracking Burkholderia gladiolus phage vB_BglM_WTB and its application in black fungus. Int. J. Food Microbiol. 2024, 414, 110615. [Google Scholar] [CrossRef] [PubMed]
- Ahern, S.J.; Das, M.; Bhowmick, T.S.; Young, R.; Gonzalez, C.F. Characterization of novel virulent broad-host-range phages of Xylella fastidiosa and Xanthomonas. J. Bacteriol. 2014, 196, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Lauman, P.; Dennis, J.J. Prophylactic phage biocontrol prevents Burkholderia gladioli infection in a quantitative ex planta model of bacterial virulence. Appl. Environ. Microbiol. 2024, 90, e01317-24. [Google Scholar] [CrossRef]
- Goudie, A.D.; Lynch, K.H.; Seed, K.D.; Stothard, P.; Shrivastava, S.; Wishart, D.S.; Dennis, J.J. Genomic sequence and activity of KS10, a transposable phage of the Burkholderia cepacia complex. BMC Genom. 2008, 9, 615. [Google Scholar] [CrossRef] [PubMed]
- Kvitko, B.H.; Cox, C.R.; DeShazer, D.; Johnson, S.L.; Voorhees, K.J.; Schweizer, H.P. φX216, a P2-like bacteriophage with broad Burkholderia pseudomallei and B. mallei strain infectivity. BMC Microbiol. 2012, 12, 289. [Google Scholar] [CrossRef] [PubMed]
- Muangsombut, V.; Withatanung, P.; Chantratita, N.; Chareonsudjai, S.; Lim, J.; Galyov, E.E.; Ottiwet, O.; Sengyee, S.; Janesomboon, S.; Loessner, M.J.; et al. Rapid clinical screening of Burkholderia pseudomallei colonies by a bacteriophage tail fiber-based latex agglutination assay. Appl. Environ. Microbiol. 2021, 87, e03019-20. [Google Scholar] [CrossRef]
- Khrongsee, P.; Kaewrakmuk, J.; Alami-Rose, M.; Subramaniam, K.; Waltzek, T.B.; Schweizer, H.P.; Tuanyok, A. Exploring Burkholderia pseudomallei-specific bacteriophages: Overcoming O-antigen specificity and adaptive mutation in phage tail fiber. Front. Bacteriol. 2024, 3, 1433593. [Google Scholar] [CrossRef]
- Sasaki, R.; Miyashita, S.; Ando, S.; Ito, K.; Fukuhara, T.; Kormelink, R.; Takahashi, H. Complete genomic sequence of a novel phytopathogenic Burkholderia phage isolated from fallen leaf compost. Arch. Virol. 2021, 166, 313–316. [Google Scholar] [CrossRef]
- Godoy, B.; Yao, G.; Le, T.; Vizoso-Pinto, M.G.; Gill, J.; Gonzalez, C.; Liu, M. Complete genome sequence of Burkholderia gladioli Myophage Mana. Microbiol. Resour. Announc. 2021, 10, e00402-21. [Google Scholar] [CrossRef]
- Yordpratum, U.; Tattawasart, U.; Wongratanacheewin, S.; Sermswan, R.W. Novel lytic bacteriophages from soil that lyse Burkholderia pseudomallei. FEMS Microbiol. Lett. 2011, 314, 81–88. [Google Scholar] [CrossRef]
- Lynch, K.H.; Stothard, P.; Dennis, J.J. Characterization of DC1, a broad-host-range Bcep22-like podovirus. Appl. Environ. Microbiol. 2012, 78, 889–891. [Google Scholar] [CrossRef]
- Garcia, J.; Yao, G.; Vizoso-Pinto, M.G.; Clark, J.; Le, T.; Gonzalez, C.; Gill, J.; Liu, M. Complete genome sequence of Burkholderia cenocepacia phage mica. Microbiol. Resour. Announc. 2021, 10, e01407-20. [Google Scholar] [CrossRef]
- Summer, E.J.; Gonzalez, C.F.; Bomer, M.; Carlile, T.; Embry, A.; Kucherka, A.M.; Lee, J.; Mebane, L.; Morrison, W.C.; Mark, L.; et al. Divergence and mosaicism among virulent soil phages of the Burkholderia cepacia complex. J. Bacteriol. 2006, 188, 255–268. [Google Scholar] [CrossRef]
- Hammerl, J.A.; Volkmar, S.; Jacob, D.; Klein, I.; Jäckel, C.; Hertwig, S. The Burkholderia thailandensis phages ΦE058 and ΦE067 represent distinct prototypes of a new subgroup of temperate Burkholderia myoviruses. Front. Microbiol. 2020, 11, 1120. [Google Scholar] [CrossRef]
- Gafford-Gaby, D.; Yao, G.; Le, T.; Clark, J.; Gonzalez, C.; Gill, J.; Liu, M. Complete genome sequence of Burkholderia cenocepacia phage Magia. Microbiol. Resour. Announc. 2021, 10, e01473-20. [Google Scholar] [CrossRef]
- Mera, L. Bcep176 and Bglu421-Two Novel Phages Contributing to the Understanding of Pathogenicity and Diversity in Burkholderiacae. Bachelor’s Thesis, Texas A&M University, College Station, TX, USA, 2006. [Google Scholar]
- Lynch, K.H.; Seed, K.D.; Stothard, P.; Dennis, J.J. Inactivation of Burkholderia cepacia complex phage KS9 gp41 identifies the phage repressor and generates lytic virions. J. Virol. 2010, 84, 1276–1288. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Göker, M. VICTOR: Genome-based phylogeny and classification of prokaryotic viruses. Bioinformatics 2017, 33, 3396–3404. [Google Scholar] [CrossRef] [PubMed]
- Lefort, V.; Desper, R.; Gascuel, O. FastME, 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 2015, 32, 2798–2800. [Google Scholar] [CrossRef] [PubMed]
- Göker, M.; García-Blázquez, G.; Voglmayr, H.; Tellería, M.T.; Martín, M.P. Molecular taxonomy of phytopathogenic fungi: A case study in Peronospora. PLoS ONE 2009, 4, e6319. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Hahnke, R.L.; Petersen, J.; Scheuner, C.; Michael, V.; Fiebig, A.; Rohde, C.; Rohde, M.; Fartmann, B.; Goodwin, L.A.; et al. Complete genome sequence of DSM 30083 (T), the type strain (U5/41(T)) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand. Genom. Sci. 2014, 9, 2. [Google Scholar] [CrossRef]
- Walmagh, M.; Boczkowska, B.; Grymonprez, B.; Briers, Y.; Drulis-Kawa, Z.; Lavigne, R. Characterization of five novel endolysins from Gram-negative infecting bacteriophages. Appl. Microbiol. Biotechnol. 2013, 97, 4369–4375. [Google Scholar] [CrossRef]
- Comeau, A.M.; Tétart, F.; Trojet, S.N.; Prère, M.-F.; Krisch, H. Phage-antibiotic synergy (PAS): β-lactam and quinolone antibiotics stimulate virulent phage growth. PLoS ONE 2007, 2, e799. [Google Scholar] [CrossRef]
- Ruest, M.K.; Supina, B.S.; Dennis, J.J. Bacteriophage steering of Burkholderia cenocepacia toward reduced virulence and increased antibiotic sensitivity. J. Bacteriol. 2023, 205, e00196-23. [Google Scholar] [CrossRef] [PubMed]
- Kraus, S.; Fletcher, M.L.; Łapińska, U.; Chawla, K.; Baker, E.; Attrill, E.L.; O’Neill, P.; Farbos, A.; Jeffries, A.; Galyov, E.E.; et al. Phage-induced efflux down-regulation boosts antibiotic efficacy. PLoS Pathog. 2024, 20, e1012361. [Google Scholar] [CrossRef]
- Egido, J.E.; Costa, A.R.; Aparicio-Maldonado, C.; Haas, P.-J.; Brouns, S.J. Mechanisms and clinical importance of bacteriophage resistance. FEMS Microbiol. Rev. 2022, 46, fuab048. [Google Scholar] [CrossRef]
- Dicks, L.M.; Vermeulen, W. Bacteriophage–Host interactions and the therapeutic potential of bacteriophages. Viruses 2024, 16, 478. [Google Scholar] [CrossRef]
- Kamal, F.; Dennis, J.J. Burkholderia cepacia complex phage-antibiotic synergy (PAS): Antibiotics stimulate lytic phage activity. Appl. Environ. Microbiol. 2015, 81, 1132–1138. [Google Scholar] [CrossRef]
- Canning, J.S.; Laucirica, D.R.; Ling, K.-M.; Nicol, M.P.; Stick, S.M.; Kicic, A. Phage therapy to treat cystic fibrosis Burkholderia cepacia complex lung infections: Perspectives and challenges. Front. Microbiol. 2024, 15, 1476041. [Google Scholar] [CrossRef] [PubMed]
- Colom, J.; Cano-Sarabia, M.; Otero, J.; Aríñez-Soriano, J.; Cortés, P.; Maspoch, D.; Llagostera, M. Microencapsulation with alginate/CaCO3: A strategy for improved phage therapy. Sci. Rep. 2017, 7, 41441. [Google Scholar] [CrossRef] [PubMed]
- Jain, L.; Kumar, V.; Jain, S.K.; Kaushal, P.; Ghosh, P.K. Isolation of bacteriophages infecting Xanthomonas oryzae pv. oryzae and genomic characterization of novel phage vB_XooS_NR08 for biocontrol of bacterial leaf blight of rice. Front. Microbiol. 2023, 14, 1084025. [Google Scholar]
- Vila, M.M.; Balcão, L.M.; Balcão, V.M. Phage delivery strategies for biocontrolling human, animal, and plant bacterial infections: State of the art. Pharmaceutics 2024, 16, 374. [Google Scholar] [CrossRef]
- Erdrich, S.H.; Schurr, U.; Frunzke, J.; Arsova, B. Seed coating with phages for sustainable plant biocontrol of plant pathogens and influence of the seed coat mucilage. Microb. Biotechnol. 2024, 17, e14507. [Google Scholar] [CrossRef]
- Li, S.; Zhang, H.; Chen, K.; Jin, M.; Vu, S.H.; Jung, S.; He, N.; Zheng, Z.; Lee, M.-S. Application of chitosan/alginate nanoparticle in oral drug delivery systems: Prospects and challenges. Drug Deliv. 2022, 29, 1142–1149. [Google Scholar] [CrossRef] [PubMed]
- Yadollahi, Z.; Motiei, M.; Kazantseva, N.; Císař, J.; Sáha, P. Whey protein isolate-chitosan PolyElectrolyte nanoparticles as a drug delivery system. Molecules 2023, 28, 1724. [Google Scholar] [CrossRef] [PubMed]
- Cinquerrui, S.; Mancuso, F.; Vladisavljević, G.T.; Bakker, S.E.; Malik, D.J. Nanoencapsulation of bacteriophages in liposomes prepared using microfluidic hydrodynamic flow focusing. Front. Microbiol. 2018, 9, 2172. [Google Scholar] [CrossRef] [PubMed]
- Sangwan, A.; Singh, N. Advanced nanostrategies for biomolecule delivery in plant disease management. J. Agric. Food Chem. 2024, 73, 66–84. [Google Scholar] [CrossRef]
- Choińska-Pulit, A.; Mituła, P.; Śliwka, P.; Łaba, W.; Skaradzińska, A. Bacteriophage encapsulation: Trends and potential applications. Trends Food Sci. Technol. 2015, 45, 212–221. [Google Scholar] [CrossRef]
- Wang, X.; Xie, Z.; Zhao, J.; Zhu, Z.; Yang, C.; Liu, Y. Prospects of inhaled phage therapy for combatting pulmonary infections. Front. Cell. Infect. Microbiol. 2021, 11, 758392. [Google Scholar] [CrossRef]
- Luo, M.; Ma, L.; Guo, Y.; Zhu, C.; Chen, J.; Zhang, B.; Zhu, J.; Jellicoe, M.; He, S.; Zou, Y.; et al. Preparation and characterization of microcapsules and tablets for probiotic encapsulation via whey protein isolate-nanochitin complex coacervation. Int. J. Biol. Macromol. 2025, 285, 138225. [Google Scholar] [CrossRef]
- Mohammadi, M.; Mirabzadeh, S.; Shahvalizadeh, R.; Hamishehkar, H. Development of novel active packaging films based on whey protein isolate incorporated with chitosan nanofiber and nano-formulated cinnamon oil. Int. J. Biol. Macromol. 2020, 149, 11–20. [Google Scholar] [CrossRef]
- Vonasek, E.; Le, P.; Nitin, N. Encapsulation of bacteriophages in whey protein films for extended storage and release. Food Hydrocoll. 2014, 37, 7–13. [Google Scholar] [CrossRef]
- Lu, Y.; Cheng, D.; Niu, B.; Wang, X.; Wu, X.; Wang, A. Properties of poly (lactic-co-glycolic acid) and progress of poly (lactic-co-glycolic acid)-based biodegradable materials in biomedical research. Pharmaceuticals 2023, 16, 454. [Google Scholar] [CrossRef]
- Hines, D.J.; Kaplan, D.L. Poly (lactic-co-glycolic) acid-controlled-release systems: Experimental and modeling insights. Crit. Rev. Ther. Drug Carr. Syst. 2013, 30, 257–276. [Google Scholar] [CrossRef]
- Kim, S.-G.; Giri, S.S.; Jo, S.-J.; Kang, J.-W.; Lee, S.-B.; Jung, W.-J.; Lee, Y.-M.; Kim, H.-J.; Kim, J.-H.; Park, S.-C. Prolongation of fate of bacteriophages in vivo by polylactic-co-glycolic-acid/alginate-composite encapsulation. Antibiotics 2022, 11, 1264. [Google Scholar] [CrossRef]
- Golshahi, L.; Lynch, K.; Dennis, J.; Finlay, W. In vitro lung delivery of bacteriophages KS4-M and ΦKZ using dry powder inhalers for treatment of Burkholderia cepacia complex and Pseudomonas aeruginosa infections in cystic fibrosis. J. Appl. Microbiol. 2011, 110, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Luo, J.; Noman, M.; Ijaz, M.; Wang, X.; Masood, H.A.; Manzoor, N.; Wang, Y.; Li, B. Microbe-mediated nanoparticle intervention for the management of plant diseases. Crop Health 2023, 1, 3. [Google Scholar] [CrossRef]
- Noman, M.; Ahmed, T.; Wang, J.; Ijaz, M.; Shahid, M.; Islam, M.S.; Azizullah; Manzoor, I.; Li, D.; Song, F. Nano-enabled crop resilience against pathogens: Potential, mechanisms and strategies. Crop Health 2023, 1, 15. [Google Scholar] [CrossRef]
- Thomassen, M.; Demko, C.; Klinger, J.; Stern, R. Pseudomonas cepacia colonization among patients with cystic fibrosis: A new opportunist. Am. Rev. Respir. Dis. 1985, 131, 791–796. [Google Scholar]
- Zhang, Y.; Liu, F.; Wang, B.; Qiu, D.; Liu, J.; Wu, H.; Cheng, C.; Bei, X.; Lü, P. First report of Burkholderia cepacia causing finger-tip rot on banana fruit in the Guangxi province of China. Plant Dis. 2022, 106, 1979. [Google Scholar] [CrossRef]
- Cain, C.L.; Cole, S.D.; Bradley II, C.W.; Canfield, M.S.; Mauldin, E.A. Clinical and histopathological features of Burkholderia cepacia complex dermatitis in dogs: A series of four cases. Vet. Dermatol. 2018, 29, 457-e156. [Google Scholar] [CrossRef]
- Epithelia, W.-D.H.A. Role of Actin Filament Network in Burkholderia multivorans Invasion in Well-Differentiated Human Airway Epithelia. Infect. Immun. 2003, 71, 6607–6609. [Google Scholar] [CrossRef]
- Peralta, D.P.; Chang, A.Y.; Ariza-Hutchinson, A.; Ho, C.A. Burkholderia multivorans: A rare yet emerging cause of bacterial meningitis. IDCases 2018, 11, 61–63. [Google Scholar] [CrossRef]
- Kar, M.; Dubey, A.; Sahu, C.; Patel, S.S. Burkholderia vietnamiensis causing bacteremia in patients suffering from B-Cell acute lymphocytic leukemia: A case series and review of literature. J. Lab. Physicians 2023, 16, 134–139. [Google Scholar] [CrossRef]
- Flores-Vega, V.R.; Lara-Zavala, B.A.; Jarillo-Quijada, M.D.; Fernández-Vázquez, J.L.; Alcántar-Curiel, M.D.; Vargas-Roldán, S.Y.; Ares, M.A.; de la Cruz, M.A.; Morfín-Otero, R.; Rodríguez-Noriega, E. Burkholderia vietnamiensis causing infections in noncystic fibrosis patients in a tertiary care hospital in Mexico. Diagn. Microbiol. Infect. Dis. 2023, 105, 115866. [Google Scholar] [CrossRef]
- Kalish, L.A.; Waltz, D.A.; Dovey, M.; Potter-Bynoe, G.; McAdam, A.J.; LiPuma, J.J.; Gerard, C.; Goldmann, D. Impact of Burkholderia dolosa on lung function and survival in cystic fibrosis. Am. J. Respir. Crit. Care Med. 2006, 173, 421–425. [Google Scholar] [CrossRef]
- Vial, L.; Groleau, M.-C.; Lamarche, M.G.; Filion, G.; Castonguay-Vanier, J.; Dekimpe, V.; Daigle, F.; Charette, S.J.; Déziel, E. Phase variation has a role in Burkholderia ambifaria niche adaptation. ISME J. 2010, 4, 49–60. [Google Scholar] [CrossRef]
- Alshiekheid, M.A.; Dou, A.M.; Algahtani, M.; Al-Megrin, W.A.I.; Alhawday, Y.A.; Alradhi, A.E.; Bukhari, K.; Alharbi, B.F.; Algefary, A.N.; Alhunayhani, B.A. Bioinformatics and immunoinformatics assisted multiepitope vaccine construct against Burkholderia anthina. Saudi Pharm. J. 2024, 32, 101917. [Google Scholar] [CrossRef]
- Manno, G.; Dalmastri, C.; Tabacchioni, S.; Vandamme, P.; Lorini, R.; Minicucci, L.; Romano, L.; Giannattasio, A.; Chiarini, L.; Bevivino, A. Epidemiology and clinical course of Burkholderia cepacia complex infections, particularly those caused by different Burkholderia cenocepacia strains, among patients attending an Italian cystic fibrosis center. J. Clin. Microbiol. 2004, 42, 1491–1497. [Google Scholar] [CrossRef]
- Savi, D.; De Biase, R.V.; Amaddeo, A.; Anile, M.; Venuta, F.; Ruberto, F.; Simmonds, N.; Cimino, G.; Quattrucci, S. Burkholderia pyrrocinia in cystic fibrosis lung transplantation: A case report. Transplant. Proc. 2014, 46, 295–297. [Google Scholar] [CrossRef] [PubMed]
- Martina, P.; Bettiol, M.; Vescina, C.; Montanaro, P.; Mannino, M.C.; Prieto, C.I.; Vay, C.; Naumann, D.; Schmitt, J.; Yantorno, O. Genetic diversity of Burkholderia contaminans isolates from cystic fibrosis patients in Argentina. J. Clin. Microbiol. 2013, 51, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, C.P.; Barreto, C.; Pereira, L.; Lito, L.; Melo Cristino, J.; Sa-Correia, I. Incidence of Burkholderia contaminans at a cystic fibrosis centre with an unusually high representation of Burkholderia cepacia during 15 years of epidemiological surveillance. J. Med. Microbiol. 2015, 64, 927–935. [Google Scholar] [CrossRef]
- Leong, L.E.; Lagana, D.; Carter, G.P.; Wang, Q.; Smith, K.; Stinear, T.P.; Shaw, D.; Sintchenko, V.; Wesselingh, S.L.; Bastian, I. Burkholderia lata infections from intrinsically contaminated chlorhexidine mouthwash, Australia, 2016. Emerging Infect. Dis. 2018, 24, 2109. [Google Scholar] [CrossRef] [PubMed]
- Dance, D.A. Ecology of Burkholderia pseudomallei and the interactions between environmental Burkholderia spp. and human–animal hosts. Acta Trop. 2000, 74, 159–168. [Google Scholar] [CrossRef]
- Lazar Adler, N.R.; Govan, B.; Cullinane, M.; Harper, M.; Adler, B.; Boyce, J.D. The molecular and cellular basis of pathogenesis in melioidosis: How does Burkholderia pseudomallei cause disease? FEMS Microbiol. Rev. 2009, 33, 1079–1099. [Google Scholar] [CrossRef] [PubMed]
- Glass, M.B.; Steigerwalt, A.G.; Jordan, J.G.; Wilkins, P.P.; Gee, J.E. Burkholderia oklahomensis sp. nov. a Burkholderia pseudomallei-like species formerly known as the Oklahoma strain of Pseudomonas pseudomallei. Int. J. Syst. Evol. Microbiol. 2006, 56, 2171–2176. [Google Scholar] [CrossRef] [PubMed]
- Vandamme, P.; Peeters, C.; De Smet, B.; Price, E.P.; Sarovich, D.S.; Henry, D.A.; Hird, T.J.; Zlosnik, J.E.; Mayo, M.; Warner, J. Comparative genomics of Burkholderia singularis sp. nov. a low G+ C content, free-living bacterium that defies taxonomic dissection of the genus Burkholderia. Front. Microbiol. 2017, 8, 1679. [Google Scholar] [CrossRef] [PubMed]
- Azegami, K.; Nishiyama, K.; Kato, H. Effect of iron limitation on “Pseudomonas plantarii” growth and tropolone and protein production. Appl. Environ. Microbiol. 1988, 54, 844–847. [Google Scholar] [CrossRef]
Nanocarrier Type | Mechanism/Function | Human/Veterinary Use | Potentials in Agriculture | Translational Insight | References |
---|---|---|---|---|---|
Alginate/Chitosan | pH-responsive protection; mucosal adhesion | Oral delivery in gastrointestinal infections | Seed coating or root-targeted release | Protect phages during transit through acidic environments: adaptable to rhizosphere targeting | [143] |
Hydrogels like Alginate–CaCO3 | Sustained, slow release over time | Poultry models for Salmonella control | Soil drenching or foliar application | Long-lasting effect under variable field conditions; ideal for crop protection | [139] |
Liposomes | Encapsulation for enhanced penetration | Oral delivery for gastrointestinal infections | Not yet applied | Protect phages from acid and enzymes while enabling slow release | [145] |
Polymeric nanoparticles | Precision targeting; immune evasion | Under development | Experimental in agriculture | Enhance nanoparticle uptake by plant cells through foliar spray or irrigation water delivery to plant tissues | [146] |
Nanofibers | High surface area; controlled release and adhesion | Wound dressing, tissue scaffolds for drug delivery | Leaf surface coating or seed coating | Provide gradual phage release, enhance adhesion to plant surfaces, and improve stability | [147] |
Whey protein isolate-based films | Biopolymer matrix for encapsulation; moisture barrier, and controlled release | Not yet applied clinically; explored for probiotic and drug delivery | Edible coating, seed wraps, and phage packaging for crops | Enhance phage storage stability and enable slow release. Integration with nanofibers, chitosan, or nano-chitin expands potential for agricultural delivery systems | [150,151] |
DL-lactic-co-glycolic acid microspheres (PLGA) | Encapsulate lyophilized (freeze-dried) phages for controlled release and protection | Biocompatible and approved for human use like inhalable phage delivery | Foliar or root delivery; greenhouse applications | Biodegradable, biocompatible, and tunable degradation rates (via lactide/glycolide ratios) for sustained phage release in crops | [152,153,154] |
Lactose/lactoferrin 60:40 (w/w) | Carrier matrix for dry powder phage formulations; enhance stability and dispersibility | Used in inhalable dry powder formulations for pulmonary phage therapy | Spray-dried phage powders for crop protection | Protect phages during drying and storage; potential for integration into foliar sprays | [155] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Zhang, J.; Chen, L.; Ijaz, M.; Bi, J.; Li, C.; Dong, D.; Wang, Y.; Li, B.; Luo, J.; et al. Burkholderia Phages and Control of Burkholderia-Associated Human, Animal, and Plant Diseases. Microorganisms 2025, 13, 1873. https://doi.org/10.3390/microorganisms13081873
Wang B, Zhang J, Chen L, Ijaz M, Bi J, Li C, Dong D, Wang Y, Li B, Luo J, et al. Burkholderia Phages and Control of Burkholderia-Associated Human, Animal, and Plant Diseases. Microorganisms. 2025; 13(8):1873. https://doi.org/10.3390/microorganisms13081873
Chicago/Turabian StyleWang, Bingjie, Jiayi Zhang, Lei Chen, Munazza Ijaz, Ji’an Bi, Chenhao Li, Daixing Dong, Yanxin Wang, Bin Li, Jinyan Luo, and et al. 2025. "Burkholderia Phages and Control of Burkholderia-Associated Human, Animal, and Plant Diseases" Microorganisms 13, no. 8: 1873. https://doi.org/10.3390/microorganisms13081873
APA StyleWang, B., Zhang, J., Chen, L., Ijaz, M., Bi, J., Li, C., Dong, D., Wang, Y., Li, B., Luo, J., & An, Q. (2025). Burkholderia Phages and Control of Burkholderia-Associated Human, Animal, and Plant Diseases. Microorganisms, 13(8), 1873. https://doi.org/10.3390/microorganisms13081873