Evolution of Resistant Mutants in Pseudomonas aeruginosa Persister Cells Under Meropenem Treatment
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Plasmids, and Primers
2.2. Antimicrobial Susceptibility Test
2.3. Bacteria Killing Assay
2.4. Experimental Evolution of Persister Cells
2.5. Genomic Sequencing
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MEM | meropenem |
CIP | ciprofloxacin |
TOB | tobramycin |
References
- Shortridge, D.; Gales, A.C.; Streit, J.M.; Huband, M.D.; Tsakris, A.; Jones, R.N. Geographic and temporal patterns of antimicrobial resistance in Pseudomonas aeruginosa over 20 years from the SENTRY antimicrobial surveillance program, 1997–2016. Open Forum Infect. Dis. 2019, 6 (Suppl. 1), S63–S68. [Google Scholar] [CrossRef] [PubMed]
- Botelho, J.; Grosso, F.; Peixe, L. Antibiotic resistance Pseudomonas aeruginosa—Mechanisms, epidemiology and evolution. Drug Resist. Updates 2019, 44, 100640. [Google Scholar] [CrossRef] [PubMed]
- Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Doi, Y. Treatment Options for Carbapenem-resistant Gram-negative Bacterial Infections. Clin. Infect. Dis. 2019, 69 (Suppl. 7), S565–S575. [Google Scholar] [CrossRef] [PubMed]
- Durante-Mangoni, E.; Andini, R.; Zampino, R. Management of carbapenem-resistant Enterobacteriaceae infections. Clin. Microbiol. Infect. 2019, 25, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Sabour, S.; Harrington, K.R.V.; Martinson, E.; Bhatnagar, A.S.; Huang, J.Y.; Duffy, D.; Bantle, K.; Lutgring, J.D.; Karlsson, M.; Brown, A.C. Characterization of carbapenem-resistant Enterobacterales and Pseudomonas aeruginosa carrying multiple carbapenemase genes-Antimicrobial Resistance Laboratory Network, 2018–2022. J. Clin. Microbiol. 2024, 62, e0122024. [Google Scholar] [CrossRef] [PubMed]
- Tenover, F.C.; Nicolau, D.P.; Gill, C.M. Carbapenemase-producing Pseudomonas aeruginosa—An emerging challenge. Emerg. Microbes Infect. 2022, 11, 811–814. [Google Scholar] [CrossRef] [PubMed]
- Karampatakis, T.; Antachopoulos, C.; Tsakris, A.; Roilides, E. Molecular epidemiology of carbapenem-resistant Pseudomonas aeruginosa in an endemic area: Comparison with global data. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 1211–1220. [Google Scholar] [CrossRef] [PubMed]
- Brink, A.J. Epidemiology of carbapenem-resistant Gram-negative infections globally. Curr. Opin. Infect. Dis. 2019, 32, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Fraile-Ribot, P.A.; Cabot, G.; Mulet, X.; Periañez, L.; Martín-Pena, M.L.; Juan, C.; Pérez, J.L.; Oliver, A. Mechanisms leading to in vivo ceftolozane/tazobactam resistance development during the treatment of infections caused by MDR Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2018, 73, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yi, C.; Zhang, J.; Zhang, W.; Ge, Z.; Yang, C.; He, C. Structural insight into the oxidation-sensing mechanism of the antibiotic resistance of regulator MexR. EMBO Rep. 2010, 11, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Cameron, D.R.; Pitton, M.; Oberhaensli, S.; Schlegel, K.; Prod’hOm, G.; Blanc, D.S.; Jakob, S.M.; Que, Y.-A.; Goldberg, J.B. Parallel Evolution of Pseudomonas aeruginosa during a Prolonged ICU-Infection Outbreak. Microbiol. Spectr. 2022, 10, e0274322. [Google Scholar] [CrossRef] [PubMed]
- Souque, C.; González Ojeda, I.; Baym, M. From Petri Dishes to Patients to Populations: Scales and Evolutionary Mechanisms Driving Antibiotic Resistance. Annu. Rev. Microbiol. 2024, 78, 361–382. [Google Scholar] [CrossRef] [PubMed]
- Nicoloff, H.; Hjort, K.; Andersson, D.I.; Wang, H. Three concurrent mechanisms generate gene copy number variation and transient antibiotic heteroresistance. Nat. Commun. 2024, 15, 3981. [Google Scholar] [CrossRef] [PubMed]
- Livermore, D.M. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: Our worst nightmare? Clin. Infect. Dis. 2002, 34, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Parsons, J.B.; Sidders, A.E.; Velez, A.Z.; Hanson, B.M.; Angeles-Solano, M.; Ruffin, F.; Rowe, S.E.; Arias, C.A.; Fowler, V.G., Jr.; Thaden, J.T.; et al. In-patient evolution of a high-persister Escherichia coli strain with reduced in vivo antibiotic susceptibility. Proc. Natl. Acad. Sci. USA 2024, 121, e2314514121. [Google Scholar] [CrossRef] [PubMed]
- Levin-Reisman, I.; Ronin, I.; Gefen, O.; Braniss, I.; Shoresh, N.; Balaban, N.Q. Antibiotic tolerance facilitates the evolution of resistance. Science 2017, 355, 826–830. [Google Scholar] [CrossRef] [PubMed]
- Balaban, N.Q. Persistence: Mechanisms for triggering and enhancing phenotypic variability. Curr. Opin. Genet. Dev. 2011, 21, 768–775. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K. Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol. 2007, 5, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Yadav, M.; Singh, G.; Chaudhary, S.; Ghosh, C.; Rathore, J.S. Decoding the TAome and computational insights into parDE toxin-antitoxin systems in Pseudomonas aeruginosa. Arch. Microbiol. 2024, 206, 360. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.J.; Liu, J.; Huang, Y.S.; Chen, W.M.; Lin, J. Cyclic Diguanylate G-Quadruplex Inducer-Quorum Sensing Inhibitor Hybrids as Bifunctional Anti-biofilm and Anti-virulence Agents Against Pseudomonas aeruginosa. J. Med. Chem. 2024, 67, 18911–18929. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Guo, H.; Wang, L.; Tao, R.; Song, G.; Cao, L.; Yan, W.; Wu, Z.; Liu, Q.; Chen, Y.; et al. A plasmid-encoded inactive toxin-antitoxin system MtvT/MtvA regulates plasmid conjugative transfer and bacterial virulence in Pseudomonas aeruginosa. Nucleic Acids Res. 2025, 53, gkaf075. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chen, T.; Lu, W.; Lin, Y.; Zhou, M.; Cai, X. Hybrid Cell Membrane-Engineered Nanocarrier for Triple-Action Strategy to Address Pseudomonas aeruginosa Infection. Adv. Sci. 2025, 12, e2411261. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhang, S.; Zhao, N.; Nong, C.; He, Y.; Bao, R. Pseudomonas aeruginosa two-component system CprRS regulates HigBA expression and bacterial cytotoxicity in response to LL-37 stress. PLoS Pathog. 2024, 20, e1011946. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Wu, Z.; Liang, W.; Zhang, X.; Cai, X.; Li, J.; Liang, L.; Lin, D.; Stoesser, N.; Doi, Y.; et al. Prediction of Antibiotic Resistance Evolution by Growth Measurement of All Proximal Mutants of Beta-Lactamase. Mol. Biol. Evol. 2022, 39, msac086. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.L.; Zhang, S.; Wang, Z.; Song, A.; Gao, C.; Song, J.B.; Wang, P.; Zhang, L.; Zhou, Y.; Shan, W.; et al. Pathogen-derived glyoxylate inhibits Tet2 DNA dioxygenase to facilitate bacterial persister formation. Cell Metab. 2025, 37, 1137–1151.e5. [Google Scholar] [CrossRef] [PubMed]
- Geyrhofer, L.; Ruelens, P.; Farr, A.D.; Pesce, D.; de Visser, J.A.G.M.; Brenner, N. Minimal Surviving Inoculum in Collective Antibiotic Resistance. mBio 2023, 14, e0245622. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gullberg, E.; Cao, S.; Berg, O.G.; Ilbäck, C.; Sandegren, L.; Hughes, D.; Andersson, D.I.; Lipsitch, M. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 2011, 7, e1002158. [Google Scholar] [CrossRef] [PubMed]
- M100-Ed34; Performance Standards for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2024.
- Ferrara, A.; Grassi, G.; Grassi, F.A.; Piccioni, P.D.; Gialdroni Grassi, G. Bactericidal activity of meropenem and interactions with other antibiotics. J. Antimicrob. Chemother. 1989, 24 (Suppl. A), 239–250. [Google Scholar] [CrossRef] [PubMed]
- Andrews, J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001, 48 (Suppl. 1), 5–16, Erratum in J. Antimicrob. Chemother. 2002, 49, 1049. [Google Scholar] [CrossRef]
- Niu, H.; Gu, J.; Zhang, Y. Bacterial persisters: Molecular mechanisms and therapeutic development. Signal Transduct. Target. Ther. 2024, 9, 174. [Google Scholar] [CrossRef] [PubMed]
- Takada, K.; Yoshioka, Y.; Morikawa, K.; Ariyoshi, W.; Yamasaki, R. Glucose Supplementation Enhances the Bactericidal Effect of Penicillin and Gentamicin on Streptococcus sanguinis Persisters. Antibiotics 2025, 14, 36. [Google Scholar] [CrossRef] [PubMed]
- Attrill, E.L.; Łapińska, U.; Westra, E.R.; Harding, S.V.; Pagliara, S. Slow growing bacteria survive bacteriophage in isolation. ISME Commun. 2023, 3, 95. [Google Scholar] [CrossRef] [PubMed]
- Amankwah, S.; Abdella, K.; Kassa, T. Bacterial Biofilm Destruction: A Focused Review on The Recent Use of Phage-Based Strategies with Other Antibiofilm Agents. Nanotechnol. Sci. Appl. 2021, 14, 161–177. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.W.; Fung, D.K.; Wang, J.D. Regulatory Themes and Variations by the Stress-Signaling Nucleotide Alarmones (p)ppGpp in Bacteria. Annu. Rev. Genet. 2021, 55, 115–133. [Google Scholar] [CrossRef] [PubMed]
- Weaver, J.W.; Proshkin, S.; Duan, W.; Epshtein, V.; Gowder, M.; Bharati, B.K.; Afanaseva, E.; Mironov, A.; Serganov, A.; Nudler, E. Control of transcription elongation and DNA repair by alarmone ppGpp. Nat. Struct. Mol. Biol. 2023, 30, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Andersson, D.I.; Hughes, D. Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol. 2014, 12, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Baquero, F.; Coque, T.M.; de la Cruz, F. Ecology and evolution as targets: The need for novel eco-evo drugs and strategies to fight antibiotic resistance. Antimicrob. Agents Chemother. 2011, 55, 3649–3660. [Google Scholar] [CrossRef] [PubMed]
- Meylan, S.; Andrews, I.W.; Collins, J.J. Targeting antibiotic tolerance, pathogen by pathogen. Cell 2018, 172, 1228–1238. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, X.Y.; Wan, L.G.; Jiang, W.Y.; Li, F.Q.; Yang, J.H. Efflux system overexpression and decreased OprD contribute to the carbapenem resistance among extended-spectrum beta-lactamase-producing Pseudomonas aeruginosa isolates from a Chinese university hospital. Microb. Drug Resist. 2013, 19, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, D.; Das Talukdar, A.; Choudhury, M.D.; Maurya, A.P.; Paul, D.; Chanda, D.D.; Chakravorty, A.; Bhattacharjee, A.; Chang, Y.-F. Transcriptional analysis of MexAB-OprM efflux pumps system of Pseudomonas aeruginosa and its role in carbapenem resistance in a tertiary referral hospital in India. PLoS ONE 2015, 10, e0133842. [Google Scholar] [CrossRef] [PubMed]
- Mirsalehian, A.; Kalantar-Neyestanaki, D.; Nourijelyani, K.; Asadollahi, K.; Taherikalani, M.; Emaneini, M.; Jabalameli, F. Detection of AmpC-betalactamases producing isolates among carbapenem resistant P. aeruginosa isolated from burn patient. Iran. J. Microbiol. 2014, 6, 306–310. [Google Scholar] [PubMed]
- Vestergaard, M.; Paulander, W.; Marvig, R.L.; Clasen, J.; Jochumsen, N.; Molin, S.; Jelsbak, L.; Ingmer, H.; Folkesson, A. Antibiotic combination therapy can select for broad-spectrum multidrug resistance in Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 2016, 47, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Srikumar, R.; Paul, C.J.; Poole, K. Influence of mutations in the mexR repressor gene on expression of the MexA-MexB-oprM multidrug efflux system of Pseudomonas aeruginosa. J. Bacteriol. 2000, 182, 1410–1414. [Google Scholar] [CrossRef] [PubMed]
- Lister, P.D.; Wolter, D.J.; Hanson, N.D. Antibacterial-resistant Pseudomonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev. 2009, 22, 582–610. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhou, J.-Y.; Qu, T.-T.; Shen, P.; Wei, Z.-Q.; Yu, Y.-S.; Li, L.-J. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Chinese hospitals. Int. J. Antimicrob. Agents 2010, 35, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Diene, S.M.; L’hOmme, T.; Bellulo, S.; Stremler, N.; Dubus, J.-C.; Mely, L.; Leroy, S.; Degand, N.; Rolain, J.-M. ISPa46, a novel insertion sequence in the oprD porin gene of an imipenem-resistant Pseudomonas aeruginosa isolate from a cystic fibrosis patient in Marseille, France. Int. J. Antimicrob. Agents 2013, 42, 268–271. [Google Scholar] [CrossRef] [PubMed]
- Abisado-Duque, R.G.; Townsend, K.A.; Mckee, B.M.; Woods, K.; Koirala, P.; Holder, A.J.; Craddock, V.D.; Cabeen, M.; Chandler, J.R.; Mullineaux, C.W. An Amino Acid Substitution in Elongation Factor EF-G1A Alters the Antibiotic Susceptibility of Pseudomonas aeruginosa LasR-Null Mutants. J. Bacteriol. 2023, 205, e0011423. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; Han, L.; Xue, Y.; Yang, I.T.; Fan, X.; Tang, R.; Zhang, C.; Zhu, M.; Tian, X.; Shao, P.; et al. Multidrug-resistant Pseudomonas aeruginosa is predisposed to lasR mutation through up-regulated activity of efflux pumps in non-cystic fibrosis bronchiectasis patients. Front. Cell Infect. Microbiol. 2022, 12, 934439. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Yang, X.; Zeng, Q.; Zhang, Y.; Li, H.; Yan, C.; Li, J.S.; Liu, H.; Du, L.; Wu, Y.; et al. Evolution of lasR mutants in polymorphic Pseudomonas aeruginosa populations facilitates chronic infection of the lung. Nat. Commun. 2023, 14, 5976. [Google Scholar] [CrossRef] [PubMed]
- Sappington, K.J.; Dandekar, A.A.; Oinuma, K.; Greenberg, E.P. Reversible signal binding by the Pseudomonas aeruginosa quorum-sensing signal receptor LasR. mBio 2011, 2, e00011-11. [Google Scholar] [CrossRef] [PubMed]
- Kok, L.-C.; Tsai, C.-C.; Liao, Y.-H.; Lo, Y.-L.; Cheng, N.-W.; Lin, C.-T.; Chang, H.-Y. Roles of transcriptional factor PsrA in the regulation of quorum sensing in Pseudomonas aeruginosa PAO1. Front. Microbiol. 2024, 15, 1424330. [Google Scholar] [CrossRef] [PubMed]
- Bondí, R.; Longo, F.; Messina, M.; D’ANgelo, F.; Visca, P.; Leoni, L.; Rampioni, G. The multi-output incoherent feedforward loop constituted by the transcriptional regulators LasR and RsaL confers robustness to a subset of quorum sensing genes in Pseudomonas aeruginosa. Mol. Biosyst. 2017, 13, 1080–1089. [Google Scholar] [CrossRef] [PubMed]
- Jeske, A.; Arce-Rodriguez, A.; Thöming, J.G.; Tomasch, J.; Häussler, S. Evolution of biofilm-adapted gene expression profiles in lasR-deficient clinical Pseudomonas aeruginosa isolates. npj Biofilms Microbiomes 2022, 8, 6. [Google Scholar] [CrossRef] [PubMed]
- Hammond, J.H.; Hebert, W.P.; Naimie, A.; Ray, K.; Van Gelder, R.D.; DiGiandomenico, A.; Lalitha, P.; Srinivasan, M.; Acharya, N.R.; Lietman, T.; et al. Environmentally Endemic Pseudomonas aeruginosa Strains with Mutations in lasR Are Associated with Increased Disease Severity in Corneal Ulcers. mSphere 2016, 1, e00140-16. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, L.R.; Richardson, A.R.; Houston, L.S.; Kulasekara, H.D.; Martens-Habbena, W.; Klausen, M.; Burns, J.L.; Stahl, D.A.; Hassett, D.J.; Fang, F.C.; et al. Nutrient availability as a mechanism for selection of antibiotic tolerant Pseudomonas aeruginosa within the CF airway. PLoS Pathog. 2010, 6, e1000712. [Google Scholar] [CrossRef] [PubMed]
- Markus, V.; Golberg, K.; Teralı, K.; Ozer, N.; Kramarsky-Winter, E.; Marks, R.S.; Kushmaro, A. Assessing the Molecular Targets and Mode of Action of Furanone C-30 on Pseudomonas aeruginosa Quorum Sensing. Molecules 2021, 26, 1620. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zou, H.; Li, J.; Song, T.; Lv, W.; Wang, W.; Wang, Z.; Tao, S. Impact of quorum sensing signaling molecules in gram-negative bacteria on host cells: Current understanding and future perspectives. Gut Microbes 2022, 14, 2039048. [Google Scholar] [CrossRef] [PubMed]
- Tamber, S.; Ochs, M.M.; Hancock, R.E. Role of the novel OprD family of porins in nutrient uptake in Pseudomonas aeruginosa. J. Bacteriol. 2006, 188, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Gyger, J.; Torrens, G.; Cava, F.; Bernhardt, T.G.; Fumeaux, C. A potential space-making role in cell wall biogenesis for SltB1 and DacB revealed by a beta-lactamase induction phenotype in Pseudomonas aeruginosa. mBio 2024, 15, e0141924. [Google Scholar] [CrossRef] [PubMed]
- Cavallari, J.F.; Lamers, R.P.; Scheurwater, E.M.; Matos, A.L.; Burrows, L.L. Changes to its peptidoglycan-remodeling enzyme repertoire modulate β-lactam resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2013, 57, 3078–3084. [Google Scholar] [CrossRef] [PubMed]
- Lamers, R.P.; Nguyen, U.T.; Nguyen, Y.; Buensuceso, R.N.; Burrows, L.L. Loss of membrane-bound lytic transglycosylases increases outer membrane permeability and β-lactam sensitivity in Pseudomonas aeruginosa. Microbiologyopen 2015, 4, 879–895. [Google Scholar] [CrossRef] [PubMed]
- Van den Bergh, B.; Fauvart, M.; Michiels, J. Formation, physiology, ecology, evolution and clinical importance of bacterial persisters. FEMS Microbiol. Rev. 2017, 41, 219–251. [Google Scholar] [CrossRef] [PubMed]
- Pu, Y.; Zhao, Z.; Li, Y.; Zou, J.; Ma, Q.; Zhao, Y.; Ke, Y.; Zhu, Y.; Chen, H.; Baker, M.A.; et al. Enhanced efflux activity facilitates drug tolerance in dormant bacterial cells. Mol. Cell. 2016, 62, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Allison, K.R.; Brynildsen, M.P.; Collins, J.J. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 2011, 473, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Dörr, T.; Vulić, M.; Lewis, K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol. 2010, 8, e1000317. [Google Scholar] [CrossRef] [PubMed]
- Vega, N.M.; Allison, K.R.; Khalil, A.S.; Collins, J.J. Signaling-mediated bacterial persister formation. Nat. Chem. Biol. 2012, 8, 431–433. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.H.; Molla, M.N.; Cantor, C.R.; Collins, J.J. Bacterial charity work leads to population-wide resistance. Nature 2010, 467, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Hernando-Amado, S.; Laborda, P.; Valverde, J.R.; Martínez, J.L. Mutational background influences P. aeruginosa ciprofloxacin resistance evolution but preserves collateral sensitivity robustness. Proc. Natl. Acad. Sci. USA 2024, 121, e2109370119. [Google Scholar] [CrossRef]
- Ikawa, Y.; Wakai, T.; Funahashi, H.; Soe, T.H.; Watanabe, K.; Ohtsuki, T. Evolution of the Pseudomonas aeruginosa mutational resistome in an international Cystic Fibrosis clone. Sci. Rep. 2023, 13, 13123. [Google Scholar] [CrossRef]
- Ye, C.; Wang, A.; Breakwell, C.; Tan, R.; Bezzu, C.G.; Hunter-Sellars, E.; Williams, D.R.; Brandon, N.P.; Klusener, P.A.A.; Kucernak, A.R.; et al. Antibiotic collateral sensitivity is contingent on the repeatability of evolution. Nat. Commun. 2022, 13, 3340. [Google Scholar] [CrossRef]
- Choi, K.H.; Schweizer, H.P. mini-Tn7 insertion in bacteria with single attTn7 sites: Example Pseudomonas aeruginosa. Nat. Protoc. 2006, 1, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Heurlier, K.; Williams, F.; Heeb, S.; Dormond, C.; Pessi, G.; Singer, D.; Cámara, M.; Williams, P.; Haas, D. Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. J. Bacteriol. 2004, 186, 2936–2945. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Strain | MIC (μg/mL) | ||||||||
---|---|---|---|---|---|---|---|---|---|
MEM | CIP | TOB | |||||||
PA14 | 0.5 | 0.125 | 0.5 | ||||||
Colony | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
Parallel-1 | 64 | 64 | 64 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Parallel-2 | 64 | 64 | 64 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Parallel-3 | 64 | 64 | 64 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Strain | oprD Mutation | mexRT130P Mutation * | ||||
---|---|---|---|---|---|---|
Colony | 1 | 2 | 3 | 1 | 2 | 3 |
Parallel-1 | 100D | 37P | 341D | + | + | + |
Parallel-2 | 37P | 37P | 341D | + | + | + |
Parallel-3 | 341D | 899P | 413P | + | + | + |
Strain | Description | MIC (μg/mL) | ||
---|---|---|---|---|
MEM | CIP | TOB | ||
PA14 | Wild-type reference strain | 0.5 | 0.125 | 0.5 |
ΔmexR | mexR knockout | 2 | 0.5 | 0.5 |
ΔmexR/mexR | mexR knockout with pUC18T-mini-Tn7T-mexR | 0.5 | 0.125 | 0.5 |
mexRT130P | mexR mutation at the 130th amino acid: threonine to proline | 2 | 0.5 | 0.5 |
mexRT130P/mexR | mexRT130P with pUC18T-mini-Tn7T-mexR | 0.5 | 0.125 | 0.5 |
ΔoprD | oprD knockout | 8 | 0.25 | 0.5 |
ΔoprD/pUCP24-oprD | oprD knockout with pUCP24-oprD | 0.5 | 0.125 | 0.5 |
ΔmexRΔoprD | mexR knockout and oprD knockout | 64 | 0.5 | 0.5 |
mexRT130PΔoprD | oprD knockout and mexR mutation at the 130th amino acid: threonine to proline | 64 | 0.5 | 0.5 |
ΔmexRΔoprD/ pUCP24-mexR+oprD | mexR knockout and oprD knockout with pUCP24- mexR+oprD | 1 | 0.125 | 0.5 |
mexRT130PΔoprD/ pUCP24-mexR+oprD | oprD knockout and mexR mutation at the 130th amino acid: threonine to proline with pUCP24-mexR+oprD | 1 | 0.125 | 0.5 |
MEM Concentration | Passages | MIC (μg/mL) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEM | CIP | TOB | |||||||||||||||||
Colony | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 | |
16 μg/mL | Parallel-1–11th | 64 | 64 | 64 | 64 | 64 | 64 | 0.5 | 0.25 | 0.5 | 0.25 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Parallel-2–13th | 64 | 64 | 64 | 64 | 64 | 64 | 0.5 | 0.5 | 0.25 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | |
Parallel-3–14th | 64 | 64 | 64 | 64 | 64 | 64 | 0.5 | 0.25 | 0.25 | 0.25 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | |
8 μg/mL | Parallel-1–10th | 32 | 32 | 32 | 32 | 32 | 32 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Parallel-2–10th | 32 | 32 | 32 | 32 | 32 | 16 | 0.5 | 0.5 | 0.25 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | |
Parallel-3–11th | 32 | 32 | 32 | 32 | 16 | 16 | 0.5 | 0.5 | 0.25 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | |
4 μg/mL | Parallel-1–8th | 16 | 16 | 16 | 16 | 8 | 8 | 0.125 | 0.125 | 0.25 | 0.25 | 0.25 | 0.25 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Parallel-2–8th | 16 | 16 | 8 | 8 | 8 | 8 | 0.5 | 0.5 | 0.25 | 0.25 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | |
Parallel-3–8th | 16 | 16 | 16 | 8 | 8 | 8 | 0.125 | 0.125 | 0.25 | 0.25 | 0.25 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | |
2 μg/mL | Parallel-1–7th | 8 | 8 | 8 | 4 | 4 | 4 | 1 | 1 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Parallel-2–6th | 8 | 4 | 4 | 4 | 4 | 4 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | |
Parallel-3–6th | 8 | 8 | 4 | 4 | 4 | 4 | 0.25 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
MEM Concentration | Passages | oprD Mutations * | mexRT130P Mutations * | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 | ||
16 μg/mL | 11th-MEM-1 | 341D | 341D, 734D | 591D | 105D | 1183P | 899P | + | + | + | + | + | + |
13th-MEM-2 | 341D | 341D | 341D | 656P | 710P | 105D | + | + | + | + | + | + | |
13th-MEM-3 | 341D | 341D | 341D | 899P | 899P | 323D | + | + | + | + | + | + | |
8 μg/mL | 10th-MEM-1 | 341D, 1204I | 341D | 760P | 105D | 591D | 1024P | + | + | + | + | + | + |
10th-MEM-2 | 341D | 341D | 341D | 805P | 899P | 105D | + | + | + | + | + | + | |
11th-MEM-3 | 341D | 341D | 591D | 105D | 1183P | 899P | + | + | + | + | + | + | |
4 μg/mL | 8th-MEM-1 | 341D, 150P | 341D | 341D | 793I, 805I | 793I, 805I | 899P | ||||||
8th-MEM-2 | 341D | 341D | 341D | 793I | |||||||||
8th-MEM-3 | 341D | 341D | 954P | 793I |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, J.; Bian, Y.; Xu, C.; Cheng, Z.; Jin, Y.; Jin, S.; Wu, W. Evolution of Resistant Mutants in Pseudomonas aeruginosa Persister Cells Under Meropenem Treatment. Microorganisms 2025, 13, 1672. https://doi.org/10.3390/microorganisms13071672
Feng J, Bian Y, Xu C, Cheng Z, Jin Y, Jin S, Wu W. Evolution of Resistant Mutants in Pseudomonas aeruginosa Persister Cells Under Meropenem Treatment. Microorganisms. 2025; 13(7):1672. https://doi.org/10.3390/microorganisms13071672
Chicago/Turabian StyleFeng, Jie, Yifan Bian, Congjuan Xu, Zhihui Cheng, Yongxin Jin, Shouguang Jin, and Weihui Wu. 2025. "Evolution of Resistant Mutants in Pseudomonas aeruginosa Persister Cells Under Meropenem Treatment" Microorganisms 13, no. 7: 1672. https://doi.org/10.3390/microorganisms13071672
APA StyleFeng, J., Bian, Y., Xu, C., Cheng, Z., Jin, Y., Jin, S., & Wu, W. (2025). Evolution of Resistant Mutants in Pseudomonas aeruginosa Persister Cells Under Meropenem Treatment. Microorganisms, 13(7), 1672. https://doi.org/10.3390/microorganisms13071672