Characterization of Soil Bacterial Communities in Different Vegetation Types on the Lava Plateau of Jingpo Lake
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description and Soil Sampling
2.2. Soil Collection and Treatment
2.3. Determination of Soil Physico-Chemical Properties
2.4. High-Throughput Sequencing of Soil Bacteria
2.5. Data Processing and Analysis
3. Results and Analyses
3.1. Soil Physico-Chemical Properties of Different Vegetation Types
3.2. Soil Bacterial Community Composition in Different Vegetation Types
3.3. Soil Bacterial Diversity in Different Vegetation Types
3.4. Prediction of Soil Bacterial Community Function in Different Vegetation Types
3.5. Correlation Between Soil Physico-Chemical Properties and Bacterial Community Composition in Different Vegetation Types
3.6. Correlation Between Alpha-Diversity Indices of Soil Bacterial Communities and Soil Physico-Chemical Properties in Different Vegetation Types
3.7. Correlation Between Soil Bacterial Community Functions and Soil Physico-Chemical Properties in Different Vegetation Types
4. Discussion
4.1. Physico-Chemical Properties of Soils of Different Vegetation Types
4.2. Structure and Diversity of Soil Microbial Communities in Different Vegetation Types
4.3. Potential Functional Groups of Soil Microorganisms
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GL | Grassland |
SL | Shrubland |
DB | Deciduous Forest |
CB | Mixed Coniferous Forest |
CF | Coniferous Forest |
SOM | Soil Organic Matter |
SWC | Soil Water Content |
TN | Total Nitrogen |
AN | Available Nitrogen |
TP | Total Phosphorus |
AP | Quick-Acting Phosphorus |
TK | Total Potassium |
AK | Acting Potassium |
BD | Soil Bulk Density |
EC | Electrical Conductivity |
ANOVA | One-Way Analysis Of Variance |
RDA | Redundancy Analysis |
PCR | Polymerase Chain Reaction |
DNA | Deoxyribonucleic Acid |
References
- Zhang, Y.; Liang, E.Y.; Wang, T.; Pu, S.L. Progress of research on the impact of volcanic eruption on terrestrial vegetation and carbon cycle. Sci. Bull. 2024, 69, 160–168. [Google Scholar]
- Liu, S.; He, J.P.; Ning, Y.W.; Li, J.J.; Zhang, H.; Liu, Y. Assessment of Artificial Forest Restoration by Exploring the Microbial Community Structure and Function in a Reclaimed Coal Gob Pile in a Loess Hilly Area of Shanxi, China. Forests 2023, 14, 1888. [Google Scholar] [CrossRef]
- Ma, C.; Tang, Y.J.; Mitchell, R.N.; Li, Y.F.; Sun, S.L.; Zhu, J.C.; Foley, S.F.; Wang, M.; Ye, C.Y.; Ying, J.F.; et al. Volcanic phosphorus supply boosted Mesozoic terrestrial biotas in northern China. Sci. Bull. 2023, 68, 1317–1326. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C. Relationship between environmental geology and climate. Public Underst. Sci. 2011, 21, 102–103. [Google Scholar]
- Shen, J.; Yin, R.S.; Zhang, S.; Algeo, T.J.; Bottjer, D.J.; Yu, J.X.; Xu, G.Z.; Penman, D.; Wang, Y.D.; Li, L.Q.; et al. Intensified continental chemical weathering and carbon-cycle perturbations linked to volcanism during the Triassic–Jurassic transition. Nat. Commun. 2022, 13, 299. [Google Scholar] [CrossRef]
- Ma, C.; Tang, Y.J.; Ying, J.F.; ZHao, X.M.; Xiao, Y.; Zhang, H.F. The impetus for bloom of Mesozoic Terrestrial Ecosystems in Northern China: Insights from Volcanic Nutrient and harmful Element Delivery. Geophys. Res. Lett. 2023, 50, e2022GL102376. [Google Scholar] [CrossRef]
- Chang, Z.; Xu, S.L.; Gao, M.X.; Guo, H. Characterisation of Soil Nutrients in the Holocene Basalt Terrace of Mirror Lake. J. Northeast. For. Univ. 2009, 37, 57–59. [Google Scholar]
- Lou, C.Y.; Ren, H.B.; Chen, X.M.; Mi, X.C.; Tong, R.; Zhu, N.F.; Chen, L.; Wu, T.G.; Shen, X.L. Species and structural diversity of forest communities in Qianjiangyuan National Park and their impacts on the occurrence of black muntjac (Muntiacus crinifrons). Biodivers. Sci. 2023, 31, 22518. [Google Scholar] [CrossRef]
- Wu, Q.S.; Long, J.; Liao, H.K.; Liu, L.F.; Li, J.; Wu, J.N.; Xiao, X. Characteristics of soil bacterial communities in different microhabitats of Maolan karst forest in Guizhou. Chin. J. Appl. Ecol. 2019, 30, 108–116. [Google Scholar] [CrossRef]
- Yang, A.N.; Li, Z.Y.; Mou, L.; Yang, B.Y.; Sai, B.L.; Zhang, L.; Zhang, Z.K.; Wang, W.S.; Du, Y.C.; You, W.H.; et al. Variation of soil bacterial communities in different vegetation types on Dajinshan Island, Shanghai. Chin. J. Plant Ecol. 2024, 48, 377–389. [Google Scholar]
- Lynch, J.M.; Whipps, J.M. Substrate flow in the rhizosphere. Plant Soil. 1990, 129, 1–10. [Google Scholar] [CrossRef]
- Song, S.Z.; Xiong, K.N.; Chi, Y.K.; He, C.; Fang, J.Z.; He, S.Y. Effect of Cultivated Pastures on Soil Bacterial Communities in the Karst Rocky Desertification Area. Front. Microbiol. 2022, 13, 922989. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.L.; Xu, M.; Zou, X.; Chen, J.; Zhang, J.; Zhang, J. Influence of different vegetation types on the characteristics of soil bacterial communities in hilly areas of Qianzhong mountainous region. J. Ecol. Rural Environ. 2021, 37, 518–525. [Google Scholar] [CrossRef]
- Wu, H.; Wang, L.D.; Song, D.C.; Guo, C.X.; Wnag, F.L.; He, F.L.; Zhao, H.R. Physico-chemical Properties and Enzyme Activities of Soils of Different Years of Fallow Land in Minqin Fallow Area. Agric. Res. Arid. Areas 2021, 39, 191–199. [Google Scholar]
- Liu, C.X.; Zhao, X.R.; Lin, Q.M.; Li, G.T. Decrease in diversity and shift in composition of the soil bacterial community were closely related to high available phosphorus in agricultural Fluvisols of North China. Acta Agric. Scand. Sect. B 2019, 69, 618–630. [Google Scholar] [CrossRef]
- Cong, M.Y.; Xu, Y.Y.; Tang, L.Y. Diversity analysis of bryophytes in lava terrace of Jingpo Lake World Geopark. J. Plant Resour. Environ. 2020, 29, 57–65. [Google Scholar]
- Ren, G.Y.; Pan, X.L.; Liu, X.C.; Anabiek, S.B. Analysis of the Control Index of Desert Vegetation in Dynamics and Restoring Strategy; SPIE: Berlin, Germany, 2003. [Google Scholar]
- Jiang, Y.; Zhu, W.X.; Zhu, K.Y.; Ge, Y.; Li, W.Z.; Liao, N.Y. Similarities and differences in the microbial structure of surface soils of different vegetation types. PeerJ 2023, 11, e16260. [Google Scholar] [CrossRef]
- Cheng, Z.C.; Yang, L.B.; Sui, X.; Zhang, T.; Wang, W.H.; Yin, W.P.; Li, G.F.; Song, F.Q. Analysis of functional diversity of soil microorganisms in different forest types in the Black-billed Grouse National Nature Reserve, Central Station, Heilongjiang. Res. Environ. Sci. 2021, 34, 1177–1186. [Google Scholar] [CrossRef]
- Zou, J.; Zhao, L.; Xu, S.; Xu, X.; Chen, D.; Li, Q.; Zhao, N.; Luo, C.; Zhao, X. Livestock exclosure with consequent vegetation changes alters photo-assimilated carbon cycling in a Kobresia meadow. Biogeosci. Discuss. 2013, 10, 17633–17661. [Google Scholar] [CrossRef]
- Lv, C.S.; Wang, H.B.; Zhou, W. Effects of Different Tillage Treatments Combined with Fertiliser Application and Straw Return on Soil Microbial Diversity. Anhui Agron. Bull. 2013, 19, 65–68. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agrochemical Analysis; China Agricultural Press: Beijing, China, 2008. [Google Scholar]
- Lu, R.K. Methods of Soil Agrochemical Analysis; China Agricultural Science and Technology Press: Beijing, China, 2000. [Google Scholar]
- Ji, F.J.; Gu, L.H.; Rong, G.; Hu, C.J.; Sun, W.P.; Wang, D.F.; Peng, W.Q.; Lin, D.J.; Liu, Q.W.; Wu, H.Z.; et al. Using Extract From the Stems and Leaves of Yizhi (Alpiniae oxyphyllae) as Feed Additive Increases Meat Quality and Intestinal Health in Ducks. Front. Vet. Sci. 2022, 8, 793698. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.H.; Dai, J.P.; Wang, L.T.; Chen, L.; Zeng, G.X.; Liu, E.L.; Zhou, X.D.; Yao, H.; Xiao, Y.H.; Fang, J. Ca(H2PO4)2 and MgSO4 activated nitrogen-related bacteria and genes in thermophilic stage of compost. Appl. Microbiol. Biotechnol. 2024, 108, 331. [Google Scholar] [CrossRef] [PubMed]
- Othman, A.; Shawky, M.; Amer, W.; Fayez, M.; Monib, M.; Hegazi, N. Biodiversity of microorganisms in semi-arid soils of north sinai deserts. Arch. Agron. Soil Sci. 2003, 49, 241–260. [Google Scholar] [CrossRef]
- Yang, H.; Ma, Q.R.; Yang, J.L.; Zhou, L.; Cao, B.; Zhang, W.J. Characteristics of soil microbial communities in different restoration modes in the ecological migrant relocation area of southern Ningxia. Chin. J. Appl. Ecol. 2022, 33, 219–228. [Google Scholar] [CrossRef]
- Tang, W.P.; Li, J.Y.; Hu, X.Y.; Cui, H.X. Effects of continuous planting of poplar plantation forests in the Jianghan Plain on soil quality of forest land. J. Huazhong Agric. Univ. 2009, 28, 750–755. [Google Scholar] [CrossRef]
- Ou, Y.S.; Wang, X.; Li, J.; Jia, H.X.; Zhao, Y.F.; Huang, Z.; Hong, M.M. Soil Carbon, Nitrogen and Phosphorus Contents and Their Ecological Stoichiometric Characteristics in Artificial Grassland with Different Restoration Years. J. Appl. Environ. Biol. 2019, 25, 38–45. [Google Scholar] [CrossRef]
- Li, C.; Qiao, S.S.; Liu, J.X.; Chai, B.F. Spatial and temporal dynamics of soil carbon cycle microbial communities in temperate subalpine coniferous forests. Chin. Environ. Sci. 2020, 40, 4540–4548. [Google Scholar] [CrossRef]
- Rana, M.K. Organic Production of Vegetable Crops; Apple Academic Press: New York, NY, USA, 2025. [Google Scholar]
- Ma, Y.B.; Xu, Z.Q.; Zhang, Y.; Chen, S.; Huang, X.R.; Cui, B.W.; Di, K. Effects of North China Larch Plantation Forests on Soil Chemical Properties in the Mountainous Area of Northern Hebei Province, China. J. Soil Water Conserv. 2015, 29, 165–170. [Google Scholar] [CrossRef]
- Lin, Y.; Liao, S.; Wu, F.Z.; Zhagn, X.Y.; Ni, X.Y. Apoplastic leaf and soil phosphorus leaching losses from chinkapin and cedar plantations. Chin. J. Appl. Environ. Biol. 2024, 30, 530–536. [Google Scholar] [CrossRef]
- Xiao, H.L.; Ma, Y.; Zhou, H.C.; Zhang, C.J.; Yao, Y.J.; Chen, J.G.; Zhang, D.G. Characteristics of soil trace elements and vegetation in degraded alpine grassland of Sanjiangyuan and their relationship. Acta Agrest. Sin. 2022, 30, 1925–1933. [Google Scholar]
- Wang, Y.; Wang, K.L.; Zou, D.S.; Li, L.; Cheng, C.H. Effects of Vegetation Succession on Soil Quality in Karst Region of Guangxi, China. J. Soil Water Conserv. 2007, 130–134. [Google Scholar] [CrossRef]
- Liu, M.X.; Che, Y.D.; Jiao, J.; Li, L.R.; Jiang, X.X. Exploring the community phylogenetic structure along the slope aspect of subalpine meadows in the eastern Qinghai–Tibetan Plateau, China. Ecol. Evol. 2019, 9, 5270–5280. [Google Scholar] [CrossRef] [PubMed]
- Qiao, H.; Meng, Z.J.; Wang, N.; Li, H.N. Characteristics of Soil Nutrients and Plant Communities in Different Grassland Types in Xilingol. Agric. Technol. 2022, 42, 61–65. [Google Scholar] [CrossRef]
- Hu, X.; Wang, D.; Zhang, X.; LiU, S.H.; Xie, W.D. Plant Diversity and Biomass Characteristics of Different Vegetation Types in Restored Antimony Mining Areas. J. Hefei Univ. Technol. (Nat. Sci. Ed.) 2023, 46, 1314–1321+1330. [Google Scholar]
- Xie, L.H.; Huang, Q.Y.; Cao, H.J.; Ni, H.W. Species diversity of vascular plants in Wudalianchi Neogene lava terrace. Acta Bot. Boreal.-Occid. Sin. 2017, 37, 790–796. [Google Scholar]
- Khan, N. Application of Plant Growth Promoting Microorganism and Plant Growth Regulators in Agricultural Production and Research. Agronomy 2021, 11, 524. [Google Scholar] [CrossRef]
- Chang, J.; Yao, X.H.; Yang, S.P.; Wang, K.L. Effects of Different Cions on Root Growth of Pecan (Carya illinoensis). J. Southwest Univ. (Nat. Sci. Ed.) 2007, 10, 104–108. [Google Scholar]
- Weidner, S.; Koller, R.; Latz, E.; Kowalchuk, G.; Bonkowski, M.; Scheu, S.; Jousset, A.; Schweitzer, J. Bacterial diversity amplifies nutrient-based plant–soil feedbacks. Funct. Ecol. 2015, 29, 1341–1349. [Google Scholar] [CrossRef]
- Niu, K.C.; Liu, Z.N.; Sheng, Z.H.; He, F.L.; Fang, J.Y. Neutral and Ecological Niche Theories of Community Construction. Biodiversity 2009, 17, 579–593. [Google Scholar]
- Bai, X.X.; Shi, R.J.; You, Y.M.; Sheng, H.F.; Han, S.Q.; Zhang, Y. Bacterial community structure and diversity in forest soils of different forest ages and forest types in Baotianman, Henan Province. J. Appl. Ecol. 2015, 26, 2273–2281. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S.J.; Liu, X.M.; Huang, T.Z.; Li, Y. Characteristics and changes of soil bacterial community structure in the karst region of Guizhou. Earth Environ. 2015, 43, 490–497. [Google Scholar] [CrossRef]
- Barnard, R.L.; Osborne, C.A.; Firestone, M.K. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J. 2013, 7, 2229–2241. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Li, L.S.; Yang, H.Q. Characteristics of soil fungal communities at the upper and lower boundaries of the altitude of the distribution area of Pingbian hollow bamboo. Chin. J. Plant Ecol. 2022, 46, 823–833. [Google Scholar] [CrossRef]
- Hou, J.Q.; Wang, X.; Chen, Y.H.; Liu, Y.Q.; Shang, Q.X.; Zhang, W.Y.; Menghe, B. Effects of lactic acid bacteria composite preparation on saline soil improvement and soil microbial community. J. South. Agric. 2019, 50, 710–718. [Google Scholar]
- Navarrete, P.; Mardones, P.; Opazo, R.; Espejo, R.; Romero, J. Oxytetracycline treatment reduces bacterial of Intestinal Microbiota of Atlantic Salmon. J. Aquat. Anim. Health 2008, 20, 177–183. [Google Scholar] [CrossRef]
- Huang, Q.Y.; Yang, F.; Xie, L.H.; Cao, H.J.; Luo, C.Y.; Wang, J.F.; Yan, Z.Y.; Ni, H.W. Bacterial diversity and community structure of volcanic soil in Wudalianchi. Acta Ecol. Sin. 2021, 41, 8276–8284. [Google Scholar]
- Huang, R.L.; Li, W.Z.; Niu, M.T.; Hu, B. Organic Farming to Improve Soil Quality and the Functional Structure of Soil Microbial Communities. Agriculture 2025, 15, 1381. [Google Scholar] [CrossRef]
- Zhong, Y.M.; Zhang, A.; Wang, Z.Y.; Qin, X.W.; Liao, L.; Ji, X.Z.; Yu, H. Effects of intercropping betel nut with shungrove on soil bacterial community structure and diversity. Southwest China J. Agric. Sci. 2022, 35, 915–923. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Ding, M.J.; Zhang, H.; Wang, N.Y.; Xiao, F.; Yu, Z.P.; Huang, P.; Zou, F. Variations and Mutual Relations of Vegetation–Soil–Microbes of Alpine Meadow in the Qinghai-Tibet Plateau under Degradation and Cultivation. Land 2022, 11, 396. [Google Scholar] [CrossRef]
- Dai, Y.T.; Yan, Z.J.; Xie, J.H.; Wu, H.X.; Xu, L.B.; Hou, X.Y.; Gao, L.; Cui, Y.W. Study on inter-root soil bacterial diversity of two vegetation restoration types based on high-throughput sequencing. Acta Pedol. Sin. 2017, 54, 735–748. [Google Scholar]
- Fierer, N.; Lauber, L.C.; Ramirez, S.K.; al, e. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 2012, 6, 1007–1017. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.Z.; Huang, R.Z.; Zhu, L.Q.; Wang, J.P.; Ji, S.H.; Lin, L.J. Differences in soil microbial communities in different ecologically restored forest stands in the red soil zone. J. For. Environ. 2023, 43, 177–184. [Google Scholar] [CrossRef]
- Tang, T.T.; Hu, Z.D.; Liu, X.L.; Cai, L.; Wang, Y.H.; Xiao, J.J.; Feng, Q.H.; Luo, M.X. Characteristics of soil microbial diversity changes in three kinds of natural secondary forests in subalpine mountains of western Sichuan. Acta Ecol. Sin. 2023, 43, 7422–7434. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, H.Z.; Yang, R.Z.; Hu, L.H. Effects of mixed poplar-alder forests and their apoplastic litter on soil nitrogen mineralisation. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2020, 44, 191–196. [Google Scholar]
- Wu, J.Z.; Peng, X.Y.; Lin, W.S. Biodiversity evaluation index system and model construction of mixed coniferous and broad forests. J. Beijing For. Univ. 2015, 37, 8–18. [Google Scholar] [CrossRef]
- Xiang, C.H.; Luan, J.W.; Luo, Z.S.; Gong, Y.B. Distribution of soil active organic carbon in typical vegetation types along an altitudinal gradient in western Sichuan. Acta Ecol. Sin. 2010, 30, 1025–1034. [Google Scholar] [CrossRef]
- Gomes, N.C.M.; Fagbola, O.; Costa, R.; Rumjanek, N.G.; Buchner, A.; Mendona-Hagler, L.; Smalla, K. Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Appl. Environ. Microbiol. 2003, 69, 3758–3766. [Google Scholar] [CrossRef]
- Tong, X.D.; Yang, N.; Qin, J.F.; Liu, C.X.; Ai, N.; lIU, C.H. Prediction of Soil Bacterial Community Structure and Function in Sea Buckthorn Plantation Forests with Different Restoration Years in Coal Mine Reclamation Area. Sci. Technol. Eng. 2023, 23, 13747–13757. [Google Scholar]
- Liu, Z.; Nan, Z.W.; Lin, S.M.; Meng, X.W.; Yu, H.Q.; Xie, L.Y.; Zhang, Z.; Wan, F.B. Soil Bacterial Community Structure and Function Prediction of Millet/Peanut Intercropping Farmland in the Lower Yellow River. Huan Jing Ke Xue 2023, 44, 4575–4584. [Google Scholar] [CrossRef]
- Wei, Y.X.; Chen, L.J.; Feng, Q.; Xiao, H.Y.; Guo, R.; Zhang, C.Q. Progress of research on microbiological characteristics of saline soils in arid areas and their influencing factors. J. Desert Res. 2024, 44, 18–30. [Google Scholar]
- Zhao, F.Z.; Wang, J.Y.; Li, Y.; Xu, X.F.; He, L.Y.; Wang, J.; Ren, C.J.; Guo, Y.X. Microbial functional genes driving the positive priming effect in forest soils along an elevation gradient. Soil Biol. Biochem. 2022, 165, 108498. [Google Scholar] [CrossRef]
- Yang, P.; Zhai, Y.P.; Zhao, X.; Wang, S.M.; Liu, H.L.; Zhang, X. Influence of interactions between Rhizobium and Mycorrhizal fungi on the structure of alfalfa inter-root soil bacterial community and analysis of PICRUSt function prediction. Microbiology 2020, 47, 3868–3879. [Google Scholar] [CrossRef]
- Fu, H.; Zeng, X.H.; Song, Z.L.; Lan, S.R.; Huang, W.C. Characteristics of soil microbial community structure of bamboo in three urban landscapes. Soil 2022, 54, 1165–1174. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhang, D.; Cao, M.; Li, Y.; Liang, Q.; Liu, F.; Dong, Y. Response of microbial community composition and function to land use in mining soils of Xikuang Mountain in Hunan. PLoS ONE 2024, 19, e0299550. [Google Scholar]
- Zhao, D.; Hou, H.P.; Liu, H.Y.; Wang, C.; Ding, Z.Y.; Xiong, J.T. Microbial community structure and predictive functional analysis in reclaimed soil with different vegetation types: The example of the Xiaoyi Mine Waste Dump in Shanxi. Land 2023, 12, 456. [Google Scholar] [CrossRef]
- Chang, J. Research on Root Growth Pattern of American Hickory Seedlings. Bachelor’s Thesis, Southwest University, Chongqing, China, 2008. [Google Scholar]
- Zhang, J.; Xu, M. Characteristics of Soil Bacterial Community Diversity in Different Vegetation Types of Loess Hilly Areas. J. Ecol. Rural. Environ. 2022, 38, 225–235. [Google Scholar] [CrossRef]
- Wang, R.B.; Wang, Z.M.; Wang, Y.H.; Yu, J.L. Terrestrial Distribution and Correlation of Soil Stability Organic Carbon Fractions with Dominant Bacterial Phyla. J. Microbiol. 2022, 62, 2389–2402. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Fang, X.; Wang, L.F.; al, e. Regulation of soil phosphorus availability and composition during forest succession in subtropics. For. Ecol. Manag. 2021, 502, 119706. [Google Scholar] [CrossRef]
Vegetation Types | Longitude and Latitude | Dominant Species |
---|---|---|
GL | 128°94′79″ E–44°06′58″ N | Artemisia annua, Carex duriuscula, Potentilla chinensis, Galium verum |
128°95′03″ E–44°06′83″ N | ||
128°94′64″ E–44°06′58″ N | ||
SL | 128°94′76″ E–44°07′18″ N | Lespedeza davurica, Lonicera japonica, Rhamnus davurica, Acer tataricum subsp. ginnala |
128°94′80″ E–44°07′41″ N | ||
128°94′81″ E–44°07′29″ N | ||
DB | 128°96′10″ E–44°04′21″ N | Quercus mongolica, Populus davidiana, Albizia kalkora, Prunus mandshurica, Betula platyphylla |
128°96′47″ E–44°04′20″ N | ||
128°96′28″ E–44°04′20″ N | ||
CB | 128°99′02″ E–44°04′75″ N | Pinus koraiensis, Abies nephrolepis, Tilia amurensis, Quercus mongolica |
128°98′71″ E–44°04′725″ N | ||
128°98′83″ E–44°04′73″ N | ||
CF | 128°98′68″ E–44°03′79″ N | Larix gmelinii, Abies nephrolepis, Picea koraiensis, Picea jezoensis |
128°98′96″ E–44°03′90″ N | ||
128°98′87″ E–44°03′78″ N |
Sample | GL | SL | DB | CB | CF |
---|---|---|---|---|---|
BD (g·cm−3) | 1.92 ± 0.06 b | 2.33 ± 0.24 a | 1.88 ± 0.11 b | 1.49 ± 0.18 c | 1.01 ± 0.11 d |
SWC (%) | 35.57 ± 1.40 c | 23.22 ± 2.50 d | 52.12 ± 4.26 b | 53.97 ± 3.45 b | 66.75 ± 3.56 a |
pH | 6.74 ± 0.21 a | 6.50 ± 0.22 ab | 6.34 ± 0.35 ab | 6.31 ± 0.19 ab | 6.23 ± 0.30 b |
EC (μs·cm−1) | 101.21 ± 4.20 c | 95.57 ± 2.08 d | 102.58 ± 1.76 c | 122.30 ± 3.81 b | 133.84 ± 1.40 a |
SOM (g·kg−1) | 185.41 ± 2.22 d | 188.17 ± 2.57 d | 225.55 ± 2.57 c | 246.20 ± 2.52 b | 253.01 ± 2.21 a |
TN (g·kg−1) | 5.73 ± 0.16 c | 5.88 ± 0.06 c | 7.58 ± 0.21 b | 7.66 ± 0.15 b | 8.49 ± 0.39 a |
TP (g·kg−1) | 0.86 ± 0.11 b | 0.96 ± 0.14 ab | 1.04 ± 0.05 ab | 1.13 ± 0.22 ab | 1.25 ± 0.19 a |
TK (g·kg−1) | 10.37 ± 0.15 b | 10.57 ± 0.06 b | 10.63 ± 0.21 b | 11.53 ± 0.31 a | 11.77 ± 0.32 a |
AN (mg·kg−1) | 219.39 ± 4.69 e | 330.75 ± 4.83 d | 474.72 ± 5.98 a | 362.28 ± 5.28 c | 440.91 ± 7.15 b |
AP (mg·kg−1) | 20.18 ± 1.44 ab | 17.25 ± 1.74 b | 23.39 ± 2.29 a | 19.37 ± 1.89 b | 20.28 ± 1.09 ab |
AK (mg·kg−1) | 126.36 ± 4.12 c | 125.42 ± 3.25 c | 175.38 ± 6.29 a | 145.51 ± 7.08 b | 142.18 ± 1.95 b |
Observed OTUs | Shannon | Chao1 | Pielou-e | Coverage | |
---|---|---|---|---|---|
GL | 2568.67 ± 54.90 b | 10.36 ± 0.17 b | 2612.18 ± 71.93 bc | 0.92 ± 0.01 a | 0.97 ± 0.01 a |
SL | 2269.33 ± 7.57 c | 10.28 ± 0.04 b | 2274.20 ± 8.73 d | 0.92 ± 0.01 a | 0.98 ± 0.01 a |
CF | 3013.00 ± 128.27 a | 10.84 ± 0.24 a | 3001.61 ± 81.28 a | 0.93 ± 0.01 a | 0.97 ± 0.03 a |
CB | 2628.33 ± 60.58 b | 10.47 ± 0.09 b | 2712.88 ± 49.35 b | 0.92 ± 0.01 a | 0.97 ± 0.01 a |
DB | 2548.67 ± 2.08 b | 10.32 ± 0.23 b | 2517.81 ± 57.91 c | 0.92 ± 0.01 a | 0.98 ± 0.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Huang, J.; Xue, J.; Zhang, K.; Chen, X.; Jia, J.; Huang, Q. Characterization of Soil Bacterial Communities in Different Vegetation Types on the Lava Plateau of Jingpo Lake. Microorganisms 2025, 13, 1648. https://doi.org/10.3390/microorganisms13071648
Zhang Y, Huang J, Xue J, Zhang K, Chen X, Jia J, Huang Q. Characterization of Soil Bacterial Communities in Different Vegetation Types on the Lava Plateau of Jingpo Lake. Microorganisms. 2025; 13(7):1648. https://doi.org/10.3390/microorganisms13071648
Chicago/Turabian StyleZhang, Yanli, Jiaxing Huang, Jiaxin Xue, Kaining Zhang, Xintong Chen, Jianhui Jia, and Qingyang Huang. 2025. "Characterization of Soil Bacterial Communities in Different Vegetation Types on the Lava Plateau of Jingpo Lake" Microorganisms 13, no. 7: 1648. https://doi.org/10.3390/microorganisms13071648
APA StyleZhang, Y., Huang, J., Xue, J., Zhang, K., Chen, X., Jia, J., & Huang, Q. (2025). Characterization of Soil Bacterial Communities in Different Vegetation Types on the Lava Plateau of Jingpo Lake. Microorganisms, 13(7), 1648. https://doi.org/10.3390/microorganisms13071648