Gut Microbiota Diversity in 16 Stingless Bee Species (Hymenoptera: Apidae: Meliponini)
Abstract
1. Introduction
2. Materials and Methods
2.1. Stingless Bee Collection and Identification
2.2. Gut Collection
2.3. DNA Extraction and Sequencing
2.4. Bioinformatic Analysis
3. Results
Bacteria Marker Analysis of Bacterial Communities in Melipona and Trigona
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heard, T.A. The role of stingless bees in crop pollination. Annu. Rev. Entomol. 1999, 44, 183–206. [Google Scholar] [CrossRef]
- Rasmussen, C.; Cameron, S.A. Global stingless bee phylogeny supports ancient divergence, vicariance, and long-distance dispersal. Biol. J. Linn. Soc. 2010, 99, 206–232. [Google Scholar] [CrossRef]
- Engel, M.S. A monograph of the Baltic amber bees and evolution of the Apoidea (Hymenoptera). Bull. Am. Mus. Nat. Hist. 2001, 259, 1–192. [Google Scholar] [CrossRef]
- Vit, P.; Medina, M.; Enriquez, M.E. Quality standards for medicinal uses of meliponinae honey in Guatemala, Mexico and Venezuela. Bee World 2004, 85, 2–5. [Google Scholar] [CrossRef]
- Brown, J.C.; Albrecht, C. The effect of tropical deforestation on stingless bees in Central America and Brazil. Biol. Conserv. 2001, 97, 83–89. [Google Scholar] [CrossRef]
- Roubik, D.W. Stingless bee nesting biology. Apidologie 2006, 37, 124–143. [Google Scholar] [CrossRef]
- Slaa, E.J.; Sánchez Chaves, L.A.; Malagodi-Braga, K.S.; Hofstede, F.E. Stingless bees in applied pollination: Practice and perspectives. Apidologie 2006, 37, 293–315. [Google Scholar] [CrossRef]
- Brosi, B.J.; Daily, G.C.; Ehrlich, P.R. Bee community shifts with landscape context in a tropical countryside. Ecol. Appl. 2008, 18, 1821–1832. [Google Scholar] [CrossRef]
- Elliott, B.; Wildon, R.; Shapcott, A.; Keller, A.; Newis, R.; Cannizarro, C.; Burwell, C.; Smith, T.; Leonhardt, S.D.; Kämper, W.; et al. Pollen diets and niche overlap of honey bees and native bees in protected areas. Basic Appl. Ecol. 2021, 50, 169–180. [Google Scholar] [CrossRef]
- Heard, T.A.; Dollin, A.E. Stingless bee keeping in Australia: Snapshot of an infant industry. Bee World 2000, 81, 116–125. [Google Scholar] [CrossRef]
- Bonilla-Rosso, G.; Engel, P. Functional roles and metabolic niches in the honey bee gut microbiota. Curr. Opin. Microbiol. 2018, 43, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Moran, N.A. Genomics of the honey bee microbiome. Curr. Opin. Insect Sci. 2015, 10, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Powell, E.; Ratnayeke, N.; Moran, N.A. Strain diversity and host specificity in a specialized gut symbiont of honeybees and bumblebees. Mol. Ecol. 2016, 25, 4461–4471. [Google Scholar] [CrossRef] [PubMed]
- Romero, S.; Nastasa, A.; Chapman, A.; Kwong, W.K.; Foster, L.J. The honey bee gut microbiota: Strategies for study and characterization. Insect Mol. Biol. 2019, 28, 455–472. [Google Scholar] [CrossRef]
- Tang, Q.H.; Miao, C.H.; Chen, Y.F.; Dong, Z.X.; Cao, Z.; Liao, S.Q.; Wang, J.X.; Wang, Z.W.; Guo, J. The composition of bacteria in gut and beebread of stingless bees (Apidae: Meliponini) from tropics Yunnan, China. Antonie Leeuwenhoek 2021, 114, 1293–1305. [Google Scholar] [CrossRef]
- Leonhardt, S.D.; Kaltenpoth, M. Microbial communities of three sympatric Australian stingless bee species. PLoS ONE 2014, 9, e105718. [Google Scholar] [CrossRef]
- Torres-Moreno, R.; Humberto, S.H.S.; Méndez-Tenorio, A.; Palmeros-Sánchez, B.; Melgar-Lalanne, G. Characterization and identification of lactic acid bacteria from Mexican stingless bees (Apidae: Meliponini). IOP Conf. Ser. Earth Environ. Sci. 2021, 858, 012010. [Google Scholar] [CrossRef]
- Ayala, R. Revisión de las abejas sin Aguijón de México (Hymenoptera: Apidae: Meliponini). Folia Entomol. Mex. 1999, 106, 1–123. [Google Scholar]
- Ayala-Barajas, R. Las abejas del género Plebeia Schwarz (Apidae: Meliponini) de México. Entomol. Mex. 2016, 3, 937–942. [Google Scholar]
- Arnold, N.; Zepeda, R.; Vásquez, V.D.; Maya, E.M.A. Las Abejas sin Aguijón y su Cultivo en Oaxaca; ECOSUR El Colegio de la Frontera Sur: San Cristóbal de Las Casas, Chiapas, Mexico, 2019; pp. 1–193. [Google Scholar]
- Gómez-Govea, M.A.; Ramírez-Ahuja, M.D.L.; Contreras-Perera, Y.; Jiménez-Camacho, A.J.; Ruiz-Ayma, G.; Villanueva-Segura, O.K.; Trujillo-Rodríguez, G.J.; Delgado-Enciso, I.; Martínez-Fierro, M.L.; Manrique-Saide, P.; et al. Suppression of midgut microbiota impact pyrethroid susceptibility in Aedes aegypti. Front. Microbiol. 2022, 13, 761459. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Blighe, K.; Rana, S.; Lewis, M. EnhancedVolcano: Publication-Ready Volcano Plots with Enhanced Colouring and Labeling. R Package Version 1.26.0. 2025. Available online: https://bioconductor.org/packages/EnhancedVolcano (accessed on 30 May 2024).
- Larios Serrato, V.; Meza, B.; Gonzalez-Torres, C.; Gaytan-Cervantes, J.; González Ibarra, J.; Santacruz Tinoco, C.E.; Torres, J. Diversity, composition, and networking of saliva microbiota distinguish the severity of COVID-19 episodes as revealed by an analysis of 16S rRNA variable V1–V3 region sequences. mSystems 2023, 8, e01062-22. [Google Scholar] [CrossRef]
- Raymann, K.; Moran, N.A. The role of the gut microbiome in health and disease of adult honey bee workers. Curr. Opin. Insect Sci. 2018, 26, 97–104. [Google Scholar] [CrossRef]
- Botina, L.L.; Vélez, M.; Barbosa, W.F.; Mendonça, A.C.; Pylro, V.S.; Tótola, M.R.; Martins, G.F. Behavior and gut bacteria of Partamona helleri under sublethal exposure to a bioinsecticide and a leaf fertilizer. Chemosphere 2019, 234, 187–195. [Google Scholar] [CrossRef]
- Cerqueira, A.E.S.; Hammer, T.J.; Moran, N.A.; Santana, W.C.; Kasuya, M.C.M.; da Silva, C.C. Extinction of anciently associated gut bacterial symbionts in a clade of stingless bees. ISME J. 2021, 15, 2813–2816. [Google Scholar] [CrossRef]
- Cerqueira, A.E.S.; Lima, H.S.; Silva, L.C.F.; Veloso, T.G.R.; de Paula, S.O.; Santana, W.C.; da Silva, C.C. Melipona stingless bees and honey microbiota reveal the diversity, composition, and modes of symbionts transmission. FEMS Microbiol. Ecol. 2024, 100, fiae063. [Google Scholar] [CrossRef]
- Hall, M.A.; Brettell, L.E.; Liu, H.; Nacko, S.; Spooner-Hart, R.; Riegler, M.; Cook, J.M. Temporal changes in the microbiome of stingless bee foragers following colony relocation. FEMS Microbiol. Ecol. 2021, 97, fiaa236. [Google Scholar] [CrossRef]
- Sarton-Lohéac, G.; Nunes da Silva, C.G.; Mazel, F.; Baud, G.; de Bakker, V.; Das, S.; El Chazli, Y.; Ellegaard, K.; Garcia-Garcera, M.; Glover, N.; et al. Deep divergence and genomic diversification of gut symbionts of neotropical stingless bees. mBio 2023, 14, e03538-22. [Google Scholar] [CrossRef]
- Machado, J.O. Symbiosis between Brazilian social bees (Meliponinae) and a species of bacteria. Ciênc. Cult. 1971, 23, 625–633. [Google Scholar]
- Kwong, W.K.; Medina, L.A.; Koch, H.; Sing, K.W.; Soh, E.J.Y.; Ascher, J.S.; Jaffe, R.; Moran, N.A. Dynamic microbiome evolution in social bees. Sci. Adv. 2017, 3, e1600513. [Google Scholar] [CrossRef] [PubMed]
- Nogueira-Neto, P. Vida e Criação de Abelhas Indígenas Sem Ferrão; Nogueirapis: São Paulo, Brazil, 1997; p. 446. [Google Scholar]
- Cruz-Landim, C.D.; Silva-de-Moraes, R.L.M.; Serrão, J.E. Ultrastructural aspects of epithelial renewal in the midgut of adult worker bees (Hymenoptera, Apidae). J. Comp. Biol. 1996, 1, 29–40. [Google Scholar]
- Morais, P.B.; Calaça, P.S.S.T.; Rosa, C.A. Microorganisms associated with stingless bees. In Pot-Honey: A Legacy of Stingless Bees; Springer: New York, NY, USA, 2012; pp. 173–186. [Google Scholar]
- Lee, F.J.; Miller, K.I.; McKinlay, J.B.; Newton, I.L. Differential carbohydrate utilization and organic acid production by honey bee symbionts. FEMS Microbiol. Ecol. 2018, 94, fiy113. [Google Scholar] [CrossRef] [PubMed]
- Thakur, M.; Nanda, V. Composition and functionality of bee pollen: A review. Trends Food Sci. Technol. 2020, 98, 82–106. [Google Scholar] [CrossRef]
- Ngalimat, M.S.; Rahman, R.N.Z.R.A.; Yusof, M.T.; Syahir, A.; Sabri, S. Characterisation of bacteria isolated from the stingless bee, Heterotrigona itama, honey, bee bread and propolis. PeerJ 2019, 7, e7478. [Google Scholar] [CrossRef]
- Li, L.; Praet, J.; Borremans, W.; Nunes, O.C.; Manaia, C.M.; Cleenwerck, I.; Vandamme, P. Bombella intestini gen. nov., sp. nov., an acetic acid bacterium isolated from bumble bee crop. Int. J. Syst. Evol. Microbiol. 2015, 65, 267–273. [Google Scholar] [CrossRef]
- Tamarit, D.; Ellegaard, K.M.; Wikander, J.; Olofsson, T.; Vasquez, A.; Andersson, S.G. Functionally structured genomes in Lactobacillus kunkeei colonizing the honey crop and food products of honeybees and stingless bees. Genome Biol. Evol. 2015, 7, 1455–1473. [Google Scholar] [CrossRef]
- Paludo, C.R.; Ruzzini, A.C.; Silva-Junior, E.A.; Pishchany, G.; Currie, C.R.; Nascimento, F.S.; Pupo, M.T. Whole-genome sequence of Bacillus sp. SDLI1, isolated from the social bee Scaptotrigona depilis. Genome Announc. 2016, 4, 174-16. [Google Scholar] [CrossRef]
- Díaz, S.; de Souza Urbano, S.; Caesar, L.; Blochtein, B.; Sattler, A.; Zuge, V.; Haag, K.L. Report on the microbiota of Melipona quadrifasciata affected by a recurrent disease. J. Invertebr. Pathol. 2017, 143, 35–39. [Google Scholar] [CrossRef]
- Figueroa, L.L.; Maccaro, J.J.; Krichilsky, E.; Yanega, D.; McFrederick, Q.S. Why did the bee eat the chicken? Symbiont gain, loss, and retention in the vulture bee microbiome. mBio 2021, 12, e0231721. [Google Scholar] [CrossRef]
- Maccaro, J.J.; Figueroa, L.L.; McFrederick, Q.S. From pollen to putrid: Comparative metagenomics reveals how microbiomes support dietary specialization in vulture bees. Mol. Ecol. 2024, 33, e17421. [Google Scholar] [CrossRef] [PubMed]
- Goullet, P.; Picard, B. An epidemiological study of Serratia marcescens isolates from nosocomial infections by enzyme electrophoresis. J. Med. Microbiol. 1997, 46, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.P.; Sevjahova, L.; Gorman, R.; White, S. The emergence of the genus as important opportunistic pathogens. Pathogens 2022, 11, 1032. [Google Scholar] [CrossRef]
- Theocharidi, N.A.; Balta, I.; Houhoula, D.; Tsantes, A.G.; Lalliotis, G.P.; Polydera, A.C.; Stamatis, H.; Halvatsiotis, P. High prevalence in Greek meat products: Detection of virulence and anti-microbial resistance genes by molecular techniques. Foods 2022, 11, 708. [Google Scholar] [CrossRef]
- Ntougias, S.; Lapidus, A.; Copeland, A.; Reddy, T.B.K.; Pati, A.; Ivanova, N.N.; Zervakis, G.I. High-quality permanent draft genome sequence of the extremely osmotolerant diphenol degrading bacterium Halotalea alkalilenta AW-7T, and emended description of the genus Halotalea. Stand. Genom. Sci. 2015, 10, 52. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Ahuja, M.d.L.; Peña-Carrillo, K.I.; Gómez-Govea, M.A.; Jiménez-Martínez, M.L.; Trujillo-Rodríguez, G.d.J.; Espinoza-Ruiz, M.; Guzmán Velasco, A.; Flores, A.E.; González-Rojas, J.I.; Reséndez-Pérez, D.; et al. Gut Microbiota Diversity in 16 Stingless Bee Species (Hymenoptera: Apidae: Meliponini). Microorganisms 2025, 13, 1645. https://doi.org/10.3390/microorganisms13071645
Ramírez-Ahuja MdL, Peña-Carrillo KI, Gómez-Govea MA, Jiménez-Martínez ML, Trujillo-Rodríguez GdJ, Espinoza-Ruiz M, Guzmán Velasco A, Flores AE, González-Rojas JI, Reséndez-Pérez D, et al. Gut Microbiota Diversity in 16 Stingless Bee Species (Hymenoptera: Apidae: Meliponini). Microorganisms. 2025; 13(7):1645. https://doi.org/10.3390/microorganisms13071645
Chicago/Turabian StyleRamírez-Ahuja, María de Lourdes, Kenzy I. Peña-Carrillo, Mayra A. Gómez-Govea, Mariana Lizbeth Jiménez-Martínez, Gerardo de Jesús Trujillo-Rodríguez, Marisol Espinoza-Ruiz, Antonio Guzmán Velasco, Adriana E. Flores, José Ignacio González-Rojas, Diana Reséndez-Pérez, and et al. 2025. "Gut Microbiota Diversity in 16 Stingless Bee Species (Hymenoptera: Apidae: Meliponini)" Microorganisms 13, no. 7: 1645. https://doi.org/10.3390/microorganisms13071645
APA StyleRamírez-Ahuja, M. d. L., Peña-Carrillo, K. I., Gómez-Govea, M. A., Jiménez-Martínez, M. L., Trujillo-Rodríguez, G. d. J., Espinoza-Ruiz, M., Guzmán Velasco, A., Flores, A. E., González-Rojas, J. I., Reséndez-Pérez, D., & Rodríguez-Sánchez, I. P. (2025). Gut Microbiota Diversity in 16 Stingless Bee Species (Hymenoptera: Apidae: Meliponini). Microorganisms, 13(7), 1645. https://doi.org/10.3390/microorganisms13071645