Microbiota—A Rescuing Modulator in Children Struggling with Functional Constipation
Abstract
1. Introduction
2. Materials and Methods
3. Microbiota Explains Impaired Intestinal Motility
4. Probiotics and Constipation—Why, What, and When?
4.1. Bifidobacterium spp. in Children with Constipation
4.2. Lactobacillus spp. in Children with Constipation
4.3. Other Aspects of the Gut Microbiome and Constipation—‘Show Must Go on…’
5. Prebiotics, Postbiotics, Synbiotics, and Constipation in Children
6. Fecal Microbiota Transplantation in Children with Constipation
7. Future Directions and Study Limitations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FC | Functional constipation |
SCFA | Short-chain fatty acid |
References
- Ceresola, E.R.; Ferrarese, R.; Preti, A.; Canducci, F. Targeting Patients’ Microbiota with Probiotics and Natural Fibers in Adults and Children with Constipation. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 7045–7057. [Google Scholar] [CrossRef] [PubMed]
- Mugie, S.; Benninga, M.A.; Di Lorenzo, C. Epidemiology of Constipation in Children and Adults: A Systematic Review—ScienceDirect. Best. Pract. Res. Clin. Gastroenterol. 2011, 25, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Steutel, N.F.; Zeevenhooven, J.; Scarpato, E.; Vandenplas, Y.; Tabbers, M.M.; Staiano, A.; Benninga, M.A. Prevalence of Functional Gastrointestinal Disorders in European Infants and Toddlers. J. Pediatr. 2020, 221, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Rajindrajith, S.; Devanarayana, N.M.; Crispus Perera, B.J.; Benninga, M.A. Childhood Constipation as an Emerging Public Health Problem. World J. Gastroenterol. 2016, 22, 6864–6875. [Google Scholar] [CrossRef]
- Kwiatkowska, M.; Krogulska, A. The Significance of the Gut Microbiome in Children with Functional Constipation. Adv. Clin. Exp. Med. Off. Organ. Wroclaw Med. Univ. 2021, 30, 471–480. [Google Scholar] [CrossRef]
- De Meij, T.G.J.; De Groot, E.F.J.; Eck, A.; Budding, A.E.; Kneepkens, C.M.F.; Benninga, M.A.; Van Bodegraven, A.A.; Savelkoul, P.H.M. Characterization of Microbiota in Children with Chronic Functional Constipation. PLoS ONE 2016, 11, e0164731. [Google Scholar] [CrossRef]
- van Mill, M.J.; Koppen, I.J.N.; Benninga, M.A. Controversies in the Management of Functional Constipation in Children. Curr. Gastroenterol. Rep. 2019, 21, 23. [Google Scholar] [CrossRef]
- Amendola, S.; De Angelis, P.; Dall’oglio, L.; Di Abriola, G.F.; Di Lorenzo, M. Combined Approach to Functional Constipation in Children. J. Pediatr. Surg. 2003, 38, 819–823. [Google Scholar] [CrossRef]
- Ohkusa, T.; Koido, S.; Nishikawa, Y.; Sato, N. Gut Microbiota and Chronic Constipation: A Review and Update. Front. Med. 2019, 6, 19. [Google Scholar] [CrossRef]
- Baaleman, D.F.; Di Lorenzo, C.; Benninga, M.A.; Saps, M. The Effects of the Rome IV Criteria on Pediatric Gastrointestinal Practice. Curr. Gastroenterol. Rep. 2020, 22, 21. [Google Scholar] [CrossRef]
- Lee, Y.J.; Park, K.S. Understanding the Changes in Diagnostic Criteria for Functional Constipation in Pediatric Patients: From Rome III to Rome IV. J. Neurogastroenterol. Motil. 2019, 25, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Saps, M.; Velasco-Benitez, C.A.; Fernandez Valdes, L.; Mejia, J.; Villamarin, E.; Moreno, J.; Ramirez, C.; González, M.J.; Vallenilla, I.; Falcon, A.C.; et al. The Impact of Incorporating Toilet-Training Status in the Pediatric Rome IV Criteria for Functional Constipation in Infant and Toddlers. Neurogastroenterol. Motil. 2020, 32, e13912. [Google Scholar] [CrossRef] [PubMed]
- de Geus, A.; Koppen, I.J.N.; Flint, R.B.; Benninga, M.A.; Tabbers, M.M. An Update of Pharmacological Management in Children with Functional Constipation. Paediatr. Drugs 2023, 25, 343–358. [Google Scholar] [CrossRef]
- Leung, A.K.; Hon, K.L. Paediatrics: How to Manage Functional Constipation. Drugs Context 2021, 10, 2020-11–2020-12. [Google Scholar] [CrossRef]
- Khan, L. Constipation Management in Pediatric Primary Care. Pediatr. Ann. 2018, 47, e180–e184. [Google Scholar] [CrossRef]
- Chowdhury, K.; Sinha, S.; Kumar, S.; Haque, M.; Ahmad, R. Constipation: A Pristine Universal Pediatric Health Delinquent. Cureus 2024, 16, e52551. [Google Scholar] [CrossRef]
- Derish, P.A.; Annesley, T.M. How to Write a Rave Review. Clin. Chem. 2011, 57, 388–391. [Google Scholar] [CrossRef]
- Ohman, L.; Simrén, M. Intestinal Microbiota and Its Role in Irritable Bowel Syndrome (IBS). Curr. Gastroenterol. Rep. 2013, 15, 323. [Google Scholar] [CrossRef]
- Simrén, M.; Barbara, G.; Flint, H.J.; Spiegel, B.M.R.; Spiller, R.C.; Vanner, S.; Verdu, E.F.; Whorwell, P.J.; Zoetendal, E.G. Rome Foundation Committee Intestinal Microbiota in Functional Bowel Disorders: A Rome Foundation Report. Gut 2013, 62, 159–176. [Google Scholar] [CrossRef]
- Khalif, I.L.; Quigley, E.M.M.; Konovitch, E.A.; Maximova, I.D. Alterations in the Colonic Flora and Intestinal Permeability and Evidence of Immune Activation in Chronic Constipation. Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver 2005, 37, 838–849. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, Y.-B. Intestinal Microbiota and Chronic Constipation. SpringerPlus 2016, 5, 1130. [Google Scholar] [CrossRef] [PubMed]
- Nourrisson, C.; Scanzi, J.; Pereira, B.; NkoudMongo, C.; Wawrzyniak, I.; Cian, A.; Viscogliosi, E.; Livrelli, V.; Delbac, F.; Dapoigny, M.; et al. Blastocystis Is Associated with Decrease of Fecal Microbiota Protective Bacteria: Comparative Analysis between Patients with Irritable Bowel Syndrome and Control Subjects. PLoS ONE 2014, 9, e111868. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Liu, W.; Alkhouri, R.; Baker, R.D.; Bard, J.E.; Quigley, E.M.; Baker, S.S. Structural Changes in the Gut Microbiome of Constipated Patients. Physiol. Genom. 2014, 46, 679–686. [Google Scholar] [CrossRef]
- Di Stefano, M.; Corazza, G.R. Methanogenic Flora and Constipation: Many Doubts for a Pathogenetic Link. Am. J. Gastroenterol. 2010, 105, 2304–2305. [Google Scholar] [CrossRef]
- Attaluri, A.; Jackson, M.; Valestin, J.; Rao, S.S.C. Methanogenic Flora Is Associated with Altered Colonic Transit but Not Stool Characteristics in Constipation without IBS. Am. J. Gastroenterol. 2010, 105, 1407–1411. [Google Scholar] [CrossRef]
- Viggiano, D.; Ianiro, G.; Vanella, G.; Bibbò, S.; Bruno, G.; Simeone, G.; Mele, G. Gut Barrier in Health and Disease: Focus on Childhood. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 1077–1085. [Google Scholar]
- Cao, H.; Liu, X.; An, Y.; Zhou, G.; Liu, Y.; Xu, M.; Dong, W.; Wang, S.; Yan, F.; Jiang, K.; et al. Dysbiosis Contributes to Chronic Constipation Development via Regulation of Serotonin Transporter in the Intestine. Sci. Rep. 2017, 7, 10322. [Google Scholar] [CrossRef]
- Caenepeel, P.; Janssens, J.; Vantrappen, G.; Eyssen, H.; Coremans, G. Interdigestive Myoelectric Complex in Germ-Free Rats. Dig. Dis. Sci. 1989, 34, 1180–1184. [Google Scholar] [CrossRef]
- Husebye, E.; Hellström, P.M.; Sundler, F.; Chen, J.; Midtvedt, T. Influence of Microbial Species on Small Intestinal Myoelectric Activity and Transit in Germ-Free Rats. Am. J. Physiol. Gastrointest. Liver Physiol. 2001, 280, G368–G380. [Google Scholar] [CrossRef]
- Wong, J.M.W.; de Souza, R.; Kendall, C.W.C.; Emam, A.; Jenkins, D.J.A. Colonic Health: Fermentation and Short Chain Fatty Acids. J. Clin. Gastroenterol. 2006, 40, 235–243. [Google Scholar] [CrossRef]
- Barbara, G.; Stanghellini, V.; Brandi, G.; Cremon, C.; Di Nardo, G.; De Giorgio, R.; Corinaldesi, R. Interactions between Commensal Bacteria and Gut Sensorimotor Function in Health and Disease. Am. J. Gastroenterol. 2005, 100, 2560–2568. [Google Scholar] [CrossRef] [PubMed]
- Jennings, A.; Davies, G.J.; Costarelli, V.; Dettmar, P.W. Dietary Fibre, Fluids and Physical Activity in Relation to Constipation Symptoms in Pre-Adolescent Children. J. Child. Health Care Prof. Work. Child. Hosp. Community 2009, 13, 116–127. [Google Scholar] [CrossRef]
- Sokol, H.; Pigneur, B.; Watterlot, L.; Lakhdari, O.; Bermúdez-Humarán, L.G.; Gratadoux, J.-J.; Blugeon, S.; Bridonneau, C.; Furet, J.-P.; Corthier, G.; et al. Faecalibacterium Prausnitzii Is an Anti-Inflammatory Commensal Bacterium Identified by Gut Microbiota Analysis of Crohn Disease Patients. Proc. Natl. Acad. Sci. USA 2008, 105, 16731–16736. [Google Scholar] [CrossRef] [PubMed]
- Baxter, N.T.; Zackular, J.P.; Chen, G.Y.; Schloss, P.D. Structure of the Gut Microbiome Following Colonization with Human Feces Determines Colonic Tumor Burden. Microbiome 2014, 2, 20. [Google Scholar] [CrossRef] [PubMed]
- Canani, R.B.; Costanzo, M.D.; Leone, L.; Pedata, M.; Meli, R.; Calignano, A. Potential Beneficial Effects of Butyrate in Intestinal and Extraintestinal Diseases. World J. Gastroenterol. 2011, 17, 1519–1528. [Google Scholar] [CrossRef]
- Begley, M.; Hill, C.; Gahan, C.G.M. Bile Salt Hydrolase Activity in Probiotics. Appl. Environ. Microbiol. 2006, 72, 1729–1738. [Google Scholar] [CrossRef]
- Hofmann, A.F.; Eckmann, L. How Bile Acids Confer Gut Mucosal Protection against Bacteria. Proc. Natl. Acad. Sci. USA 2006, 103, 4333–4334. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert Consensus Document. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Chmielewska, A.; Szajewska, H. Systematic Review of Randomised Controlled Trials: Probiotics for Functional Constipation. World J. Gastroenterol. WJG 2010, 16, 69–75. [Google Scholar] [CrossRef]
- Rousseaux, C.; Thuru, X.; Gelot, A.; Barnich, N.; Neut, C.; Dubuquoy, L.; Dubuquoy, C.; Merour, E.; Geboes, K.; Chamaillard, M.; et al. Lactobacillus Acidophilus Modulates Intestinal Pain and Induces Opioid and Cannabinoid Receptors. Nat. Med. 2007, 13, 35–37. [Google Scholar] [CrossRef]
- Picard, C.; Fioramonti, J.; Francois, A.; Robinson, T.; Neant, F.; Matuchansky, C. Review Article: Bifidobacteria as Probiotic Agents—Physiological Effects and Clinical Benefits. Aliment. Pharmacol. Ther. 2005, 22, 495–512. [Google Scholar] [CrossRef] [PubMed]
- Szajewska, H.; Setty, M.; Mrukowicz, J.; Guandalini, S. Probiotics in Gastrointestinal Diseases in Children: Hard and Not-so-Hard Evidence of Efficacy. J. Pediatr. Gastroenterol. Nutr. 2006, 42, 454–475. [Google Scholar] [CrossRef] [PubMed]
- Tabbers, M.M.; de Milliano, I.; Roseboom, M.G.; Benninga, M.A. Is Bifidobacterium Breve Effective in the Treatment of Childhood Constipation? Results from a Pilot Study. Nutr. J. 2011, 10, 19. [Google Scholar] [CrossRef] [PubMed]
- Pijpers, M.A.M.; Bongers, M.E.J.; Benninga, M.A.; Berger, M.Y. Functional Constipation in Children: A Systematic Review on Prognosis and Predictive Factors. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 256–268. [Google Scholar] [CrossRef]
- Bongers, M.E.J.; van Wijk, M.P.; Reitsma, J.B.; Benninga, M.A. Long-Term Prognosis for Childhood Constipation: Clinical Outcomes in Adulthood. Pediatrics 2010, 126, e156–e162. [Google Scholar] [CrossRef]
- Voskuijl, W.; de Lorijn, F.; Verwijs, W.; Hogeman, P.; Heijmans, J.; Mäkel, W.; Taminiau, J.; Benninga, M. PEG 3350 (Transipeg) versus Lactulose in the Treatment of Childhood Functional Constipation: A Double Blind, Randomised, Controlled, Multicentre Trial. Gut 2004, 53, 1590–1594. [Google Scholar] [CrossRef]
- Tanaka, R.; Shimosaka, K. Investigation of the stool frequency in elderly who are bed ridden and its improvements by ingesting bifidus yogurt. Nihon Ronen Igakkai Zasshi Jpn. J. Geriatr. 1982, 19, 577–582. [Google Scholar]
- Kitajima, H.; Sumida, Y.; Tanaka, R.; Yuki, N.; Takayama, H.; Fujimura, M. Early Administration of Bifidobacterium Breve to Preterm Infants: Randomised Controlled Trial. Arch. Dis. Child. Fetal Neonatal Ed. 1997, 76, F101–F107. [Google Scholar] [CrossRef]
- Pärtty, A.; Rautava, S.; Kalliomäki, M. Probiotics on Pediatric Functional Gastrointestinal Disorders. Nutrients 2018, 10, 1836. [Google Scholar] [CrossRef]
- Mukhtar, K.; Nawaz, H.; Abid, S. Functional Gastrointestinal Disorders and Gut-Brain Axis: What Does the Future Hold? World J. Gastroenterol. 2019, 25, 552–566. [Google Scholar] [CrossRef]
- de Weerth, C.; Fuentes, S.; Puylaert, P.; de Vos, W.M. Intestinal Microbiota of Infants with Colic: Development and Specific Signatures. Pediatrics 2013, 131, e550–e558. [Google Scholar] [CrossRef] [PubMed]
- Savino, F.; Quartieri, A.; De Marco, A.; Garro, M.; Amaretti, A.; Raimondi, S.; Simone, M.; Rossi, M. Comparison of Formula-Fed Infants with and without Colic Revealed Significant Differences in Total Bacteria, Enterobacteriaceae and Faecal Ammonia. Acta Paediatr. Oslo Nor. 1992 2017, 106, 573–578. [Google Scholar] [CrossRef]
- Rhoads, J.M.; Collins, J.; Fatheree, N.Y.; Hashmi, S.S.; Taylor, C.M.; Luo, M.; Hoang, T.K.; Gleason, W.A.; Van Arsdall, M.R.; Navarro, F.; et al. Infant Colic Represents Gut Inflammation and Dysbiosis. J. Pediatr. 2018, 203, 55–61.e3. [Google Scholar] [CrossRef]
- Zoppi, G.; Cinquetti, M.; Luciano, A.; Benini, A.; Muner, A.; Bertazzoni Minelli, E. The Intestinal Ecosystem in Chronic Functional Constipation. Acta Paediatr. Oslo Nor. 1992 1998, 87, 836–841. [Google Scholar] [CrossRef]
- Moro, G.; Minoli, I.; Mosca, M.; Fanaro, S.; Jelinek, J.; Stahl, B.; Boehm, G. Dosage-Related Bifidogenic Effects of Galacto- and Fructooligosaccharides in Formula-Fed Term Infants. J. Pediatr. Gastroenterol. Nutr. 2002, 34, 291–295. [Google Scholar] [CrossRef]
- Bongers, M.E.J.; de Lorijn, F.; Reitsma, J.B.; Groeneweg, M.; Taminiau, J.A.J.M.; Benninga, M.A. The Clinical Effect of a New Infant Formula in Term Infants with Constipation: A Double-Blind, Randomized Cross-over Trial. Nutr. J. 2007, 6, 8. [Google Scholar] [CrossRef]
- McCarthy, J.; O’Mahony, L.; O’Callaghan, L.; Sheil, B.; Vaughan, E.E.; Fitzsimons, N.; Fitzgibbon, J.; O’Sullivan, G.C.; Kiely, B.; Collins, J.K.; et al. Double Blind, Placebo Controlled Trial of Two Probiotic Strains in Interleukin 10 Knockout Mice and Mechanistic Link with Cytokine Balance. Gut 2003, 52, 975–980. [Google Scholar] [CrossRef]
- Makizaki, Y.; Maeda, A.; Oikawa, Y.; Tamura, S.; Tanaka, Y.; Nakajima, S.; Yamamura, H. Alleviation of Low-Fiber Diet-Induced Constipation by Probiotic Bifidobacterium Bifidum G9-1 Is Based on Correction of Gut Microbiota Dysbiosis. Biosci. Microbiota Food Health 2019, 38, 49–53. [Google Scholar] [CrossRef]
- Guerra, P.V.; Lima, L.N.; Souza, T.C.; Mazochi, V.; Penna, F.J.; Silva, A.M.; Nicoli, J.R.; Guimarães, E.V. Pediatric Functional Constipation Treatment with Bifidobacterium-Containing Yogurt: A Crossover, Double-Blind, Controlled Trial. World J. Gastroenterol. WJG 2011, 17, 3916–3921. [Google Scholar] [CrossRef]
- Astó, E.; Huedo, P.; Altadill, T.; Aguiló García, M.; Sticco, M.; Perez, M.; Espadaler-Mazo, J. Probiotic Properties of Bifidobacterium Longum KABP042 and Pediococcus Pentosaceus KABP041 Show Potential to Counteract Functional Gastrointestinal Disorders in an Observational Pilot Trial in Infants. Front. Microbiol. 2022, 12, 741391. [Google Scholar] [CrossRef]
- Cortese, F.; Scicchitano, P.; Gesualdo, M.; Filaninno, A.; De Giorgi, E.; Schettini, F.; Laforgia, N.; Ciccone, M.M. Early and Late Infections in Newborns: Where Do We Stand? A Review. Pediatr. Neonatol. 2016, 57, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Liu, C.; Li, H.; Lei, Y.; Zeng, C.; Xu, S.; Li, J.; Savino, F. Infantile Colic Treated With Bifidobacterium Longum CECT7894 and Pediococcus Pentosaceus CECT8330: A Randomized, Double-Blind, Placebo-Controlled Trial. Front. Pediatr. 2021, 9, 635176. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Zhou, Z.; Nie, Y.; Cao, Y.; Yang, P.; Zhang, Y.; Xu, P.; Yu, Q.; Shen, Y.; Ma, W.; et al. Adjunctive Efficacy of Bifidobacterium Animalis Subsp. Lactis XLTG11 for Functional Constipation in Children. Braz. J. Microbiol. 2024, 55, 1317–1330. [Google Scholar] [CrossRef] [PubMed]
- Bekkali, N.-L.-H.; Bongers, M.E.; Van den Berg, M.M.; Liem, O.; Benninga, M.A. The Role of a Probiotics Mixture in the Treatment of Childhood Constipation: A Pilot Study. Nutr. J. 2007, 6, 17. [Google Scholar] [CrossRef]
- Dimidi, E.; Christodoulides, S.; Scott, S.M.; Whelan, K. Mechanisms of Action of Probiotics and the Gastrointestinal Microbiota on Gut Motility and Constipation. Adv. Nutr. Bethesda Md. 2017, 8, 484–494. [Google Scholar] [CrossRef]
- Bär, F.; Von Koschitzky, H.; Roblick, U.; Bruch, H.P.; Schulze, L.; Sonnenborn, U.; Böttner, M.; Wedel, T. Cell-Free Supernatants of Escherichia Coli Nissle 1917 Modulate Human Colonic Motility: Evidence from an in Vitro Organ Bath Study. Neurogastroenterol. Motil. 2009, 21, 559–566. [Google Scholar] [CrossRef]
- Heeney, D.D.; Gareau, M.G.; Marco, M.L. Intestinal Lactobacillus in Health and Disease, a Driver or Just along for the Ride? Curr. Opin. Biotechnol. 2018, 49, 140–147. [Google Scholar] [CrossRef]
- Jomehzadeh, N.; Amin, M.; Javaherizadeh, H.; Rashno, M. Molecular Assessment of Fecal Lactobacilli Populations in Children with Functional Constipation. Arq. Gastroenterol. 2022, 59, 244–250. [Google Scholar] [CrossRef]
- Rossi, M.; Martínez-Martínez, D.; Amaretti, A.; Ulrici, A.; Raimondi, S.; Moya, A. Mining Metagenomic Whole Genome Sequences Revealed Subdominant but Constant Lactobacillus Population in the Human Gut Microbiota. Environ. Microbiol. Rep. 2016, 8, 399–406. [Google Scholar] [CrossRef]
- Mitsuoka, T. The Human Gastrointestinal Tract. In The Lactic Acid Bacteria Volume 1: The Lactic Acid Bacteria in Health and Disease; Wood, B.J.B., Ed.; Springer US: Boston, MA, USA, 1992; pp. 69–114. ISBN 978-1-4615-3522-5. [Google Scholar]
- Mikelsaar, M.; Annuk, H.; Shchepetova, J.; Mändar, R.; Sepp, E.; Björkstén, B. Intestinal Lactobacilli of Estonian and Swedish Children. Microb. Ecol. Health Dis. 2002, 14, 75–80. [Google Scholar]
- Ahrné, S.; Lönnermark, E.; Wold, A.E.; Aberg, N.; Hesselmar, B.; Saalman, R.; Strannegård, I.-L.; Molin, G.; Adlerberth, I. Lactobacilli in the Intestinal Microbiota of Swedish Infants. Microbes Infect. 2005, 7, 1256–1262. [Google Scholar] [CrossRef]
- Jomehzadeh, N.; Javaherizadeh, H.; Amin, M.; Rashno, M.; Teimoori, A. Quantification of Intestinal Lactobacillus Species in Children with Functional Constipation by Quantitative Real-Time PCR. Clin. Exp. Gastroenterol. 2020, 13, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.Y.; Pasyk, M.; Wang, B.; Forsythe, P.; Bienenstock, J.; Mao, Y.-K.; Sharma, P.; Stanisz, A.M.; Kunze, W.A. Spatiotemporal Maps Reveal Regional Differences in the Effects on Gut Motility for Lactobacillus Reuteri and Rhamnosus Strains. Neurogastroenterol. Motil. 2013, 25, e205–e214. [Google Scholar] [CrossRef] [PubMed]
- Kunze, W.A.; Mao, Y.-K.; Wang, B.; Huizinga, J.D.; Ma, X.; Forsythe, P.; Bienenstock, J. Lactobacillus Reuteri Enhances Excitability of Colonic AH Neurons by Inhibiting Calcium-Dependent Potassium Channel Opening. J. Cell. Mol. Med. 2009, 13, 2261–2270. [Google Scholar] [CrossRef]
- Wang, B.; Mao, Y.-K.; Diorio, C.; Wang, L.; Huizinga, J.D.; Bienenstock, J.; Kunze, W. Lactobacillus Reuteri Ingestion and IK(Ca) Channel Blockade Have Similar Effects on Rat Colon Motility and Myenteric Neurones. Neurogastroenterol. Motil. 2010, 22, 98–107. [Google Scholar] [CrossRef]
- García Contreras, A.A.; Vásquez Garibay, E.M.; Sánchez Ramírez, C.A.; Fafutis Morris, M.; Delgado Rizo, V. Lactobacillus Reuteri DSM 17938 and Agave Inulin in Children with Cerebral Palsy and Chronic Constipation: A Double-Blind Randomized Placebo Controlled Clinical Trial. Nutrients 2020, 12, 2971. [Google Scholar] [CrossRef]
- Kubota, M.; Ito, K.; Tomimoto, K.; Kanazaki, M.; Tsukiyama, K.; Kubota, A.; Kuroki, H.; Fujita, M.; Vandenplas, Y. Lactobacillus Reuteri DSM 17938 and Magnesium Oxide in Children with Functional Chronic Constipation: A Double-Blind and Randomized Clinical Trial. Nutrients 2020, 12, 225. [Google Scholar] [CrossRef]
- Coccorullo, P.; Strisciuglio, C.; Martinelli, M.; Miele, E.; Greco, L.; Staiano, A. Lactobacillus Reuteri (DSM 17938) in Infants with Functional Chronic Constipation: A Double-Blind, Randomized, Placebo-Controlled Study. J. Pediatr. 2010, 157, 598–602. [Google Scholar] [CrossRef]
- Saviano, A.; Brigida, M.; Migneco, A.; Gunawardena, G.; Zanza, C.; Candelli, M.; Franceschi, F.; Ojetti, V. Lactobacillus Reuteri DSM 17938 (Limosilactobacillus Reuteri) in Diarrhea and Constipation: Two Sides of the Same Coin? Medicina 2021, 57, 643. [Google Scholar] [CrossRef]
- Indrio, F.; Di Mauro, A.; Riezzo, G.; Civardi, E.; Intini, C.; Corvaglia, L.; Ballardini, E.; Bisceglia, M.; Cinquetti, M.; Brazzoduro, E.; et al. Prophylactic Use of a Probiotic in the Prevention of Colic, Regurgitation, and Functional Constipation: A Randomized Clinical Trial. JAMA Pediatr. 2014, 168, 228–233. [Google Scholar] [CrossRef]
- Riezzo, G.; Chimienti, G.; Orlando, A.; D’Attoma, B.; Clemente, C.; Russo, F. Effects of Long-Term Administration of Lactobacillus Reuteri DSM-17938 on Circulating Levels of 5-HT and BDNF in Adults with Functional Constipation. Benef. Microbes 2019, 10, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Dimidi, E.; Mark Scott, S.; Whelan, K. Probiotics and Constipation: Mechanisms of Action, Evidence for Effectiveness and Utilisation by Patients and Healthcare Professionals. Proc. Nutr. Soc. 2020, 79, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Jadrešin, O.; Sila, S.; Trivić, I.; Mišak, Z.; Hojsak, I.; Kolaček, S. Lack of Benefit of Lactobacillus Reuteri DSM 17938 as an Addition to the Treatment of Functional Constipation. J. Pediatr. Gastroenterol. Nutr. 2018, 67, 763–766. [Google Scholar] [CrossRef]
- Gomes, D.O.V.S.; de Morais, M.B. Gut microbiota and the use of probiotics in constipation in children and adolescents: Systematic review. Rev. Paul. Pediatr. Orgao Soc. Pediatr. Sao Paulo 2020, 38, e2018123. [Google Scholar] [CrossRef]
- Tian, H.; Ge, X.; Nie, Y.; Yang, L.; Ding, C.; McFarland, L.V.; Zhang, X.; Chen, Q.; Gong, J.; Li, N. Fecal Microbiota Transplantation in Patients with Slow-Transit Constipation: A Randomized, Clinical Trial. PLoS ONE 2017, 12, e0171308. [Google Scholar] [CrossRef]
- Berni Canani, R.; Cucchiara, S.; Cuomo, R.; Pace, F.; Papale, F. Saccharomyces Boulardii: A Summary of the Evidence for Gastroenterology Clinical Practice in Adults and Children. Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 809–822. [Google Scholar]
- Szajewska, H.; Kleinman, R.E.; Sanderson, I.R.; Goulet, O. Prebiotics, Synbiotics, and Fermented Products. In Walker’s Pediatric Gastrointestinal Disease; BC Decker: Hamilton, ON, Canada, 2008; pp. 399–409. [Google Scholar]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef]
- Swanson, K.S.; Gibson, G.R.; Hutkins, R.; Reimer, R.A.; Reid, G.; Verbeke, K.; Scott, K.P.; Holscher, H.D.; Azad, M.B.; Delzenne, N.M.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Synbiotics. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 687–701. [Google Scholar] [CrossRef]
- Baştürk, A.; Artan, R.; Atalay, A.; Yılmaz, A. Investigation of the Efficacy of Synbiotics in the Treatment of Functional Constipation in Children: A Randomized Double-Blind Placebo-Controlled Study. Turk. J. Gastroenterol. Off. J. Turk. Soc. Gastroenterol. 2017, 28, 388–393. [Google Scholar] [CrossRef]
- Khodadad, A.; Sabbaghian, M. Role of Synbiotics in the Treatment of Childhood Constipation: A Double-Blind Randomized Placebo Controlled Trial. Iran. J. Pediatr. 2010, 20, 387–392. [Google Scholar]
- Mugambi, M.N.; Musekiwa, A.; Lombard, M.; Young, T.; Blaauw, R. Synbiotics, Probiotics or Prebiotics in Infant Formula for Full Term Infants: A Systematic Review. Nutr. J. 2012, 11, 81. [Google Scholar] [CrossRef] [PubMed]
- Gomez Quintero, D.F.; Kok, C.R.; Hutkins, R. The Future of Synbiotics: Rational Formulation and Design. Front. Microbiol. 2022, 13, 919725. [Google Scholar] [CrossRef]
- Nataraj, B.H.; Ali, S.A.; Behare, P.V.; Yadav, H. Postbiotics-Parabiotics: The New Horizons in Microbial Biotherapy and Functional Foods. Microb. Cell Factories 2020, 19, 168. [Google Scholar] [CrossRef] [PubMed]
- Mosca, A.; Abreu YAbreu, A.T.; Gwee, K.A.; Ianiro, G.; Tack, J.; Nguyen, T.V.H.; Hill, C. The Clinical Evidence for Postbiotics as Microbial Therapeutics. Gut Microbes 2022, 14, 2117508. [Google Scholar] [CrossRef] [PubMed]
- Okada, K.; Takami, D.; Makizaki, Y.; Tanaka, Y.; Nakajima, S.; Ohno, H.; Sagami, T. Effects of Bifidobacterium Longum CLA8013 on Bowel Movement Improvement: A Placebo-Controlled, Randomized, Double-Blind Study. Biosci. Microbiota Food Health 2023, 42, 213–221. [Google Scholar] [CrossRef]
- Wei, Y.; Huang, N.; Ye, X.; Liu, M.; Wei, M.; Huang, Y. The Postbiotic of Hawthorn-Probiotic Ameliorating Constipation Caused by Loperamide in Elderly Mice by Regulating Intestinal Microecology. Front. Nutr. 2023, 10, 1103463. [Google Scholar] [CrossRef]
- Andresen, V.; Gschossmann, J.; Layer, P. Heat-Inactivated Bifidobacterium Bifidum MIMBb75 (SYN-HI-001) in the Treatment of Irritable Bowel Syndrome: A Multicentre, Randomised, Double-Blind, Placebo-Controlled Clinical Trial. Lancet Gastroenterol. Hepatol. 2020, 5, 658–666. [Google Scholar] [CrossRef]
- Ma, T.; Li, Y.; Yang, N.; Wang, H.; Shi, X.; Liu, Y.; Jin, H.; Kwok, L.-Y.; Sun, Z.; Zhang, H. Efficacy of a Postbiotic and Its Components in Promoting Colonic Transit and Alleviating Chronic Constipation in Humans and Mice. Cell Rep. Med. 2025, 6, 102093. [Google Scholar] [CrossRef]
- Feng, C.; Peng, C.; Zhang, W.; Zhang, T.; He, Q.; Kwok, L.-Y.; Zhang, H. Postbiotic Administration Ameliorates Colitis and Inflammation in Rats Possibly through Gut Microbiota Modulation. J. Agric. Food Chem. 2024, 72, 9054–9066. [Google Scholar] [CrossRef]
- Liu, Q.; Ma, T.; Feng, C.; Li, Y.; Jin, H.; Shi, X.; Kwok, L.-Y.; Shi, Y.; Chen, T.; Zhang, H. Adjuvant Postbiotic Administration Improves Dental Caries Prognosis by Restoring the Oral Microbiota. Food Sci. Hum. Wellness 2024, 13, 2690–2702. [Google Scholar] [CrossRef]
- Campeotto, F.; Suau, A.; Kapel, N.; Magne, F.; Viallon, V.; Ferraris, L.; Waligora-Dupriet, A.-J.; Soulaines, P.; Leroux, B.; Kalach, N.; et al. A Fermented Formula in Pre-Term Infants: Clinical Tolerance, Gut Microbiota, down-Regulation of Faecal Calprotectin and up-Regulation of Faecal Secretory IgA. Br. J. Nutr. 2011, 105, 1843–1851. [Google Scholar] [CrossRef] [PubMed]
- Morisset, M.; Aubert-Jacquin, C.; Soulaines, P.; Moneret-Vautrin, D.-A.; Dupont, C. A Non-Hydrolyzed, Fermented Milk Formula Reduces Digestive and Respiratory Events in Infants at High Risk of Allergy. Eur. J. Clin. Nutr. 2011, 65, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Indrio, F.; Ladisa, G.; Mautone, A.; Montagna, O. Effect of a Fermented Formula on Thymus Size and Stool pH in Healthy Term Infants. Pediatr. Res. 2007, 62, 98–100. [Google Scholar] [CrossRef]
- Thibault, H.; Aubert-Jacquin, C.; Goulet, O. Effects of Long-Term Consumption of a Fermented Infant Formula (with Bifidobacterium Breve C50 and Streptococcus Thermophilus 065) on Acute Diarrhea in Healthy Infants. J. Pediatr. Gastroenterol. Nutr. 2004, 39, 147–152. [Google Scholar] [CrossRef]
- Mullié, C.; Yazourh, A.; Thibault, H.; Odou, M.-F.; Singer, E.; Kalach, N.; Kremp, O.; Romond, M.-B. Increased Poliovirus-Specific Intestinal Antibody Response Coincides with Promotion of Bifidobacterium Longum-Infantis and Bifidobacterium Breve in Infants: A Randomized, Double-Blind, Placebo-Controlled Trial. Pediatr. Res. 2004, 56, 791–795. [Google Scholar] [CrossRef]
- Wegh, C.A.M.; Geerlings, S.Y.; Knol, J.; Roeselers, G.; Belzer, C. Postbiotics and Their Potential Applications in Early Life Nutrition and Beyond. Int. J. Mol. Sci. 2019, 20, 4673. [Google Scholar] [CrossRef]
- Kelly, C.R.; Kahn, S.; Kashyap, P.; Laine, L.; Rubin, D.; Atreja, A.; Moore, T.; Wu, G. Update on Fecal Microbiota Transplantation 2015: Indications, Methodologies, Mechanisms, and Outlook. Gastroenterology 2015, 149, 223–237. [Google Scholar] [CrossRef]
- Bakken, J.S.; Borody, T.; Brandt, L.J.; Brill, J.V.; Demarco, D.C.; Franzos, M.A.; Kelly, C.; Khoruts, A.; Louie, T.; Martinelli, L.P.; et al. Treating Clostridium Difficile Infection with Fecal Microbiota Transplantation. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2011, 9, 1044–1049. [Google Scholar] [CrossRef]
- Fang, S.; Wu, S.; Ji, L.; Fan, Y.; Wang, X.; Yang, K. The Combined Therapy of Fecal Microbiota Transplantation and Laxatives for Functional Constipation in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Medicine 2021, 100, e25390. [Google Scholar] [CrossRef]
- Yang, C.; Hu, T.; Xue, X.; Su, X.; Zhang, X.; Fan, Y.; Shen, X.; Dong, X. Multi-Omics Analysis of Fecal Microbiota Transplantation’s Impact on Functional Constipation and Comorbid Depression and Anxiety. BMC Microbiol. 2023, 23, 389. [Google Scholar] [CrossRef]
Reference (Author, Year) | Mechanisms | Effects |
---|---|---|
Kwiatkowska et al., 2021 [5] | Changes in pH in the intestine Regulation of butyric acid (BA) concentration Production of methane in the intestinal lumen Neuroendocrine factors Bile acid metabolism | Abnormal pH prevents the development of Lactobacillus and Bifidobacterium. Facilitates smooth muscle contraction in the colon. Excessive BA inhibits mucin secretion, decreased stool volume, decrease of Prevotella species Intestinal distension, smooth muscle contractility ↓, slowing peristalsis. Lactococcus, Streptococcus, Escherichia, and Candida increase the concentration of serotonins, Lactobacillus and Bifidobacterium increase gamma-aminobutyric acid, and Bacillus spp., Escherichia spp., and Saccharomyces spp. increase norepinephrine. Deconjugation and dehydroxylation of primary bile acids. |
Simrén et al., 2013 [19] | Abnormal microbiota activates mucosal innate immune responses, consequently increasing epithelial permeability, dysregulating the enteric nervous system, and activating nociceptive sensory pathways Gastric acid secretion, fluid, anticommensal sIgA, antimicrobial peptide production, and gastrointestinal (GI) motility affect gut microbiota composition Antibiotics, dietary modifications | Increased abundance of Bacteroidetes and Enterobacteriaceae. |
Khalif et al., 2009 [20] | Changes in systemic immunity, the fecal flora, and intestinal permeability | Decreased Bifidobacterium and Lactobacillus. Higher serum ovalbumin concentrations. Elevated titers of antibodies to Escherichia coli and S. aureus. |
Zhao et al., 2016 [21] | Short-chain fatty acids (SCFAs) stimulate ileal propulsive contractions | Increased peristalsis. Decrease in obligate bacteria (e.g., Lactobacillus, Bifidobacterium, and Bacteroides spp.) and increase in potentially pathogenic microorganisms (e.g., Pseudomonas aeruginosa and Campylobacter jejuni). Increase in butyrate-producing genera (Coprococcus, Roseburia, Faecalibacterium). |
Khan et al., 2018 [15] | Bacterial endotoxin lipopolysaccharide synthetized by Gram-negative bacteria (e.g., Enterobacteria) | Delay in gastric emptying and sphincter dysfunction, leading to decreased bowel movements. |
Husebye et al., 2001 [29] | Bifidobacteria and Lactobacillus spp. augment the release of serotonin Micrococcus luteus and Escherichia coli strains | Pro-motility effects by reducing the migrating myoelectric complex period and subsequent acceleration of small gut transit. Inhibitory effect on bowel transit. |
Wong et al., 2006 [30] | Short-chain fatty acids (SCFAs), including acetate, butyrate, and propionate, produced in anaerobic conditions during fermentation. | Butyrate nourishing the colonic mucosa, promoting cell differentiation, cell-cycle arrest, and apoptosis of transformed colonocytes. |
Barbara et al., 2005 [31] | Clostridia, Bifidobacteria, and Faecalibacterium prausnitzii stimulate the enteric cholinergic reflex | Stimulating the release of GLP-1 or polypeptide YY from gut mucosal cells. |
Jennings et al., 2009 [32] | SCFAs—serotonin release from enterochromaffin cells via vagal sensory fibers’ promotion | Acceleration of bowel transit. |
Canani et al., 2011 [35] | Butyrate | Increased concentrations—increasing bowel transit. Normal concentrations—inducing constipation due to colonic electrolyte and water absorption and lowering colonic mucin secretion. |
Begley et al., 2006 [36] | Gut microbes secreting enzymes that hydrolyze bile acids into non-reabsorbable secondary bile acids | Binding to receptors and forming the G-protein-coupled bile acid receptor, and enabling enterochromaffin cells and intrinsic primary afferent neurons to release serotonin- and calcitonin-generated peptides, acting as a trigger for the bowel’s peristaltic reflex. |
Reference (Author, Year) | Type of Study | Study Population | Objectives | Prebiotic, Probiotic, Synbiotic | Conclusions/Outcomes |
---|---|---|---|---|---|
Kitajima et al., 1997 [48] | Prospective randomized clinical study | VLBW Age: preterm infants | Colonization of the bowels with Bifidobacterium breve YIT4010 | Bifidobacterium breve YIT4010, 0.5 × 109 CFU, 28 days | Less gas accumulation within the stomach, improved weight gain, no side effects |
Tabbers et al., 2011 [43] | Non-randomized, non-placebo-controlled pilot study | n = 20 Age: 3 to 16 years FC | Evaluation of defecation frequency and stool consistency | Bifidobacterium breve 108–1010 CFU, 4 weeks | Increasing stool frequency, positive effect on stool consistency, decreasing the number of fecal incontinence episodes, diminishing abdominal pain |
Zoppi et al., 1998 [54] | Randomized, double-blind, placebo-controlled | n = 42 Age: 5–14 years FC | Evaluation of composition of the intestinal ecosystem in chronic FC; calcium polycarbophil effect on constipation | Calcium polycarbophil (0.62 g/twice daily) or placebo | Greater abundance of the genera Bifidobacteria and Clostridia No generalized overgrowth |
Moro et al., 2002 [55] | Randomized, placebo-controlled trial | n = 90 Age: term infants | Day 1 and day 28, the fecal species, colony-forming units (cfu), and pH were measured, along with stool characteristics, growth, and side effects | 0.4 g/dL or 0.8 g/dL oligosaccharides added to test formulae | Mixture of galacto- and fructooligosaccharides stimulating growth of Bifidobacteria and Lactobacilli Softer stool |
Bongers et al., 2007 [56] | Double-blind, randomized, crossover trial | n = 38 Age: 3–20 weeks FC | Effect of high concentration of sn-2 palmitic acid, a mixture of prebiotic oligosaccharides, and partially hydrolyzed whey protein on stool characteristics | sn-2 palmitic acid, prebiotic oligosaccharides, and partially hydrolyzed whey protein | Softer stools No effect on defecation frequency |
McCarthy et al., 2003 [57] | Double-blind, placebo-controlled trial | Interleukin-10-knockout mice | Effects of Lactobacillus salivarius subspecies salivarius 433118 and Bifidobacterium infantis 35624 against placebo on enterocolitis and the intestinal microflora; compare the systemic immunological response | Lactobacillus salivarius 433118, 10(9) CFU/mL Bifidobacterium infantis 35624, 10(8) CFU/mL and unmodified milk | Significantly attenuated colitis Reduced pro-inflammatory cytokine production |
Makizaki et al., 2019 [58] | Crossover control trial | Six-week-old male Sprague Dawley rats | Effectiveness of BBG9-1 in constipation and its influence on intestinal flora using a constipation model that reflects constipation caused by insufficient dietary fiber | Low-fiber diet and Bifidobacterium bifidum G9-1 for 14 days | Increased defecation frequency Increased fecal weight Alleviation of dysbiosis Increase in butyric acid |
Guerra et al., 2011 [59] | Crossover, double-blind, controlled trial | n = 59 Age: 5–15 years FC | Effect of goat yogurt with Bifidobacterium longum on FC | 109 CFU/mL Bifidobacterium longum (B. longum) containing yogurt | Improved defecation frequency, alleviated defecation and abdominal pain |
Astó et al., 2022 [60] | Observational pilot trial | n = 36 Age: 1–10 month FC and/or infant colic (IC) | Probiotic potential of Bifidobacterium longum KABP042 and Pediococcus pentosaceus KABP041 in FC and IC | Bifidobacterium longum KABP042 and Pediococcus pentosaceus KABP041 | Improved symptoms Positive anti-infectious effect by antagonizing enteropathogens |
Chen et al., 2021 [62] | Randomized, double-blind, placebo-controlled trial | n = 112 Age < 2 months IC | Efficacy of Bifidobacterium longum CECT7894 (KABP042) and Pediococcus pentosaceus CECT8330 (KABP041) in IC | Bifidobacterium longum CECT7894 and Pediococcus pentosaceus CECT8330 (1 × 109 colony-forming units) | Shorter crying time and decreased crying episodes Improving fecal consistency |
Chen et al., 2024 [63] | Randomized, double-blinded, placebo-controlled | n = 131 Age: 0–6 years FC | Efficacy and safety of Bifidobacterium animalis subsp. lactis XLTG11 | Bifidobacterium animalis subsp. lactis XLTG11 1 × 1010 CFU/sachet | Increase in defecation frequency Upregulating short-chain fatty acid-related genes Downregulating those related to methane metabolism |
Bekkali et al., 2007 [64] | Observational pilot study | n = 20 Age: 4–16 years FC | Effects of Bifidobacterium infantis, Bifidobacterium longum, Bifidobacterium bifidum, Lactobacillus plantarum, Lactobacillus rhamnosus, and Lactobacillus casei on frequency of bowel movements (BMs), stool consistency, and number of fecal incontinence episodes | Mix of Bifidobacterium infantis, Bifidobacterium longum, Bifidobacterium bifidum, Lactobacillus plantarum, Lactobacillus rhamnosus, and Lactobacillus casei, 4 × 109 CFU, 4 weeks | Increased defecation frequency Fecal consistency improvement Reduction in fecal incontinence episodes |
Reference (Author, Year) | Type of Study | Study Population | Objectives | Prebiotic, Probiotic, Synbiotic | Conclusions/Outcomes |
---|---|---|---|---|---|
Jomehzadeh et al. 2020 [73] | Case–control study | n = 40 FC n = 40 healthy volunteers Age: 4–18 years | To compare Lactobacillus species in FC vs. healthy volunteers with quantitative real-time polymerase chain reaction (qPCR) | Lactobacillus strains | Decrease in Lactobacillus reuteri and Lactobacillus fermentum in FC |
Jomehzadeh et al. 2022 [68] | Case–control study | n = 40 FC n = 40 healthy volunteers (HV) Age: 4–18 years | To compare the prevalence and quantity of Lactobacillus species in FC vs. healthy volunteers with species-specific PCR and qPCR | Lactobacillus strains | No significant differences in the prevalence of Lactobacillus species in HV and FC. L. paracasei and L. planetarium species were predominant FC had a smaller quantity of total lactobacilli per milligram of stool The presence of Lactobacilli in the gut is insufficient for preventing functional constipation Quantity is essential for fulfilling their function |
Mikelsaar et al. 2002 [71] | Parallel-group trial | n = 71 Estonian n = 65 Swedish Age: 1–2 years | To compare the predominant Lactobacilli in Estonian and Swedish, children with a low and high prevalence of allergy | Lactobacillus strains | Fermentation types were similar L. plantarum strains were encountered only from Estonian children Region-specific differences in colonization with particular Lactobacilli |
Contreras et al. 2020 [77] | Double-blind, randomized, placebo-controlled clinical trial | n = 37 cerebral palsy and constipation Age: 14 to 60 months | Efficacy of a probiotic (Lactobacillus reuteri DSM 17938), a prebiotic (agave inulin), and a synbiotic on the stool characteristics in children with cerebral palsy and chronic constipation. | L. reuteri DSM 17938 plus placebo Inulin plus placebo L. reuteri DSM 17938 plus agave inulin Two placebos 28 days | Stool pH decreased in the probiotic group Prebiotic group: improvement in stool consistency L. reuteri and/or agave: excessive stool retention and painful defecation episodes decreased |
Kubota et al. 2020 [78] | Prospective, double-blind, placebo-controlled, randomized, and parallel-group trial | n = 60, FC Age: 6 months–6 years | To evaluate the efficacy of the probiotic L. reuteri DSM 17938 and the laxative magnesium oxide (MgO) in chronic FC | L. reuteri DSM 17938 plus placebo L reuteri DSM 17938 plus MgO | L. reuteri DSM 17938 and MgO present positive effects on defecation frequency MgO was associated with decreased stool consistency and reduction in the genus Dialister |
Coccorullo et al. 2010 [79] | Double-blind, randomized, placebo-controlled trial | n = 44, FC Age: 6–11 months | To evaluate the beneficial effects of Lactobacillus reuteri (DSM 17938) in infants with FC (frequency of bowel movements per week, stool consistency, presence of inconsolable crying episodes) | Group A: probiotic L. reuteri (DSM 17938) Group B: placebo | L. reuteri improved bowel movements and defecation frequency |
Indrio et al. 2014 [81] | Prospective, multicenter, double-masked, placebo-controlled, randomized clinical trial | n = 589 Age: < 1 week, term infants | Lactobacillus reuteri DSM 17938 to reduce the onset of colic, gastroesophageal reflux, and constipation | Lactobacillus reuteri DSM 17938, three months | Prophylactic use of L. reuteri DSM 17938 reduced the crying time and the regurgitations per day, and increased the number of evacuations |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomșa, N.A.; Meliț, L.E.; Popescu, T.; Najjar, K.; Văsieșiu, A.M.; Pop, A.V.; Borka-Balas, R. Microbiota—A Rescuing Modulator in Children Struggling with Functional Constipation. Microorganisms 2025, 13, 1504. https://doi.org/10.3390/microorganisms13071504
Tomșa NA, Meliț LE, Popescu T, Najjar K, Văsieșiu AM, Pop AV, Borka-Balas R. Microbiota—A Rescuing Modulator in Children Struggling with Functional Constipation. Microorganisms. 2025; 13(7):1504. https://doi.org/10.3390/microorganisms13071504
Chicago/Turabian StyleTomșa, Nicoleta Ana, Lorena Elena Meliț, Teodora Popescu, Karina Najjar, Anca Meda Văsieșiu, Adrian Vlad Pop, and Reka Borka-Balas. 2025. "Microbiota—A Rescuing Modulator in Children Struggling with Functional Constipation" Microorganisms 13, no. 7: 1504. https://doi.org/10.3390/microorganisms13071504
APA StyleTomșa, N. A., Meliț, L. E., Popescu, T., Najjar, K., Văsieșiu, A. M., Pop, A. V., & Borka-Balas, R. (2025). Microbiota—A Rescuing Modulator in Children Struggling with Functional Constipation. Microorganisms, 13(7), 1504. https://doi.org/10.3390/microorganisms13071504