Endophytic Diversity in Sicilian Olive Trees: Identifying Optimal Conditions for a Functional Microbial Collection
Abstract
1. Introduction
2. Materials and Methods
2.1. Orchard Site and Sampling
2.2. Endophyte Isolation
2.3. Identification of Bacterial and Fungal Endophytes
2.4. Determination of Plant Growth Promotion Properties and Enzymatic Activities of Bacterial Isolates
2.5. Dual Culture Plate Screening for Antagonistic Activity of Endophytic Members of Consortia
2.6. Data Analysis
3. Results
3.1. Culturable Endophyte Occurrence in Sicilian Olive Cultivars and Wild Accessions
3.2. Diversity of Culturable Endophytes
3.3. Characterization of Endophytic Bacteria from Olive Leaves and Twigs
3.3.1. Plant Growth-Promotion Properties and Enzymatic Activities
3.3.2. Antagonistic Activities
3.4. Trophic Mode of Endophytic Fungi
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mesny, F.; Hacquard, S.; Thomma, B.P. Co-evolution within the Plant Holobiont Drives Host Performance. EMBO Rep. 2023, 24, e57455. [Google Scholar] [CrossRef] [PubMed]
- Medison, R.G.; Tan, L.; Medison, M.B.; Chiwina, K.E. Use of Beneficial Bacterial Endophytes: A Practical Strategy to Achieve Sustainable Agriculture. AIMS Microbiol. 2022, 8, 624–643. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A.; Ahmed, T.; Ibrahim, E.; Rizwan, M.; Chong, K.P.; Yong, J.W.H. A Review on Mechanisms and Prospects of Endophytic Bacteria in Biocontrol of Plant Pathogenic Fungi and Their Plant Growth-Promoting Activities. Heliyon 2024, 10, e31573. [Google Scholar] [CrossRef]
- Glick, B.R. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica 2012, 2012, 963401. [Google Scholar] [CrossRef]
- Timmusk, S.; Behers, L.; Muthoni, J.; Muraya, A.; Aronsson, A.C. Perspectives and Challenges of Microbial Application for Crop Improvement. Front. Plant Sci. 2017, 8, 49. [Google Scholar] [CrossRef]
- Müller, D.B.; Vogel, C.; Bai, Y.; Vorholt, J.A. The Plant Microbiota: Systems-Level Insights and Perspectives. Annu. Rev. Genet. 2016, 50, 211–234. [Google Scholar] [CrossRef]
- Pacifico, D.; Squartini, A.; Crucitti, D.; Barizza, E.; Lo Schiavo, F.; Muresu, R.; Carimi, F.; Zottini, M. The Role of the Endophytic Microbiome in the Grapevine Response to Environmental Triggers. Front. Plant Sci. 2019, 10, 1256. [Google Scholar] [CrossRef]
- Dastogeer, K.M.G.; Tumpa, F.H.; Sultana, A.; Akter, M.A.; Chakraborty, A. Plant Microbiome–an Account of the Factors That Shape Community Composition and Diversity. Curr. Plant Biol. 2020, 23, 100161. [Google Scholar] [CrossRef]
- Cardoni, M.; Mercado-Blanco, J. Confronting Stresses Affecting Olive Cultivation from the Holobiont Perspective. Front. Plant Sci. 2023, 14, 1261754. [Google Scholar] [CrossRef]
- FAO. FAOSTAT Crops and Livestock Products Database. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 3 January 2025).
- Marchese, A.; Bonanno, F.; Marra, F.P.; Trippa, D.A.; Zelasco, S.; Rizzo, S.; Giovino, A.; Imperiale, V.; Ioppolo, A.; Sala, G.; et al. Recovery and Genotyping Ancient Sicilian Monumental Olive Trees. Front. Conserv. Sci. 2023, 4, 1206832. [Google Scholar] [CrossRef]
- Ferraro, V.; Conigliaro, G.; Torta, L.; Burruano, S.; Moschetti, G. Preliminary Investigation on the Endophytic Communities in Olea europaea L. in Sicily. In Proceedings of the 7th International Conference on Integrated Fruit Production, Avignon, France, 27–30 October 2008; pp. 459–463. [Google Scholar]
- Gomes, T.; Pereira, J.A.; Benhadi, J.; Lino-Neto, T.; Baptista, P. Endophytic and Epiphytic Phyllosphere Fungal Communities Are Shaped by Different Environmental Factors in a Mediterranean Ecosystem. Microb. Ecol. 2018, 76, 668–679. [Google Scholar] [CrossRef] [PubMed]
- Mina, D.; Pereira, J.A.; Lino-Neto, T.; Baptista, P. Epiphytic and Endophytic Bacteria on Olive Tree Phyllosphere: Exploring Tissue and Cultivar Effect. Microb. Ecol. 2020, 80, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Crucitti, D.; Barone, S.; Carimi, F.; Caruso, T.; Pacifico, D. Host and Environmental Factors Shape the Endophytic Diversity and Composition of Sicilian Phyllosphere Olive Trees [Conference Presentation]. In Proceedings of the V Convegno AISSA #UNDER40, Firenze, Italy, 26 June 2024; p. 193. [Google Scholar]
- Manici, L.M.; Caputo, F.; Castellini, M.; Saccà, M.L. Binucleate Rhizoctonia Sp. AG-A, Indigenous Plant-Growth Promoting Fungus in Semi-Arid Mediterranean Soils. Plant Soil 2023, 483, 379–393. [Google Scholar] [CrossRef]
- Porter, S.S.; Sachs, J.L. Agriculture and the Disruption of Plant–Microbial Symbiosis. Trends Ecol. Evol. 2020, 35, 426–439. [Google Scholar] [CrossRef]
- Wentzien, N.M.; Fernández-González, A.J.; Villadas, P.J.; Valverde-Corredor, A.; Mercado-Blanco, J.; Fernández-López, M. Thriving beneath Olive Trees: The Influence of Organic Farming on Microbial Communities. Comput. Struct. Biotechnol. J. 2023, 21, 3575–3589. [Google Scholar] [CrossRef]
- Wilson, K. Preparation of Genomic DNA from Bacteria. Curr. Protoc. Mol. Bio 2001, 56, 2.4.1–2.4.5. [Google Scholar] [CrossRef]
- Lane, D.J. 16S/23S RRNA Sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley and Sons: New York, NY, USA, 1991. [Google Scholar]
- Doyle, J.J.; Doyle, J.L. A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Accademic Press Inc.: Cambridge, MA, USA, 1990; pp. 315–322. [Google Scholar]
- Stackebrandt, E.; Mondotte, J.A.; Fazio, L.L.; Jetten, M. Authors Need to Be Prudent When Assigning Names to Microbial Isolates. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2022, 115, 1–5. [Google Scholar] [CrossRef]
- Gordon, S.A.; Weber, R.P. Colorimetric Estimation of Indoleacetic Acid. Plant Physiol. 1951, 26, 192–195. [Google Scholar] [CrossRef]
- Schwyn, B.; Neilands, J.B. Universal Chemical Assay for the Detection and Determination of Siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef]
- Nautiyal, C.S. An Efficient Microbiological Growth Medium for Screening Phosphate Solubilizing Microorganisms. FEMS Microbiol. Lett. 1999, 170, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Döebereiner, J. Isolation and Identification of Aerobic Nitrogen-Fixing Bacteria from Soil and Plants. In Methods in Applied Soil Microbiology and Biochemistry; Alef, K., Nannipieri, P., Eds.; Academic Press: London, UK, 1995; pp. 134–141. [Google Scholar]
- del Castillo, I.; Hernández, P.; Lafuente, A.; Rodríguez-Llorente, I.D.; Caviedes, M.A.; Pajuelo, E. Self-Bioremediation of Cork-Processing Wastewaters by (Chloro) Phenol-Degrading Bacteria Immobilised onto Residual Cork Particles. Water Res. 2012, 46, 1723–1734. [Google Scholar] [CrossRef] [PubMed]
- Penrose, D.M.; Glick, B.R. Methods for Isolating and Characterizing ACC Deaminase-Containing Plant Growth-Promoting Rhizobacteria. Physiol. Plant 2003, 118, 10–15. [Google Scholar] [CrossRef]
- Harley, J.P.; Prescott, L.M. Laboratory Exercises in Microbiology, 5th ed.; The McGraw-Hill Companies: New York, NY, USA, 2002. [Google Scholar]
- Elbeltagy, A.; Nishioka, K.; Suzuki, H.; Sato, T.; Sato, Y.I.; Morisaki, H.; Mitsui, H.; Minamisawa, K. Isolation and Characterization of Endophytic Bacteria from Wild and Traditionally Cultivated Rice Varieties. Soil Sci. Plant Nutr. 2000, 46, 617–629. [Google Scholar] [CrossRef]
- Mesa, J.; Mateos-Naranjo, E.; Caviedes, M.A.; Redondo-Gómez, S.; Pajuelo, E.; Rodríguez-Llorente, I.D. Scouting Contaminated Estuaries: Heavy Metal Resistant and Plant Growth Promoting Rhizobacteria in the Native Metal Rhizoaccumulator Spartina Maritima. Mar. Pollut. Bull. 2015, 90, 150–159. [Google Scholar] [CrossRef]
- Yao, X.; Guo, H.; Zhang, K.; Zhao, M.; Ruan, J.; Chen, J. Trichoderma and Its Role in Biological Control of Plant Fungal and Nematode Disease. Front. Microbiol. 2023, 14, 1160551. [Google Scholar] [CrossRef]
- Chen, P.H.; Chen, R.Y.; Chou, J.Y. Screening and Evaluation of Yeast Antagonists for Biological Control of Botrytis cinerea on Strawberry Fruits. Mycobiology 2018, 46, 33–46. [Google Scholar] [CrossRef]
- Maluleke, E.; Jolly, N.P.; Patterton, H.G.; Setati, M.E. Antifungal Activity of Non-Conventional Yeasts against Botrytis cinerea and Non-Botrytis Grape Bunch Rot Fungi. Front. Microbiol. 2022, 13, 986229. [Google Scholar] [CrossRef]
- Higgins, J.J. Introduction to Modern Nonparametric Statistics; Crockett, C., Ed.; Brooks/Cole-Thomson Learning: Pacific Grove, CA, USA, 2004; ISBN 0-534-38775-6. [Google Scholar]
- Minitab LLC. Minitab. 2021. Available online: https://www.minitab.com (accessed on 3 January 2025).
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Nguyen, N.H.; Song, Z.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An Open Annotation Tool for Parsing Fungal Community Datasets by Ecological Guild. Fungal. Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- Lemanceau, P.; Blouin, M.; Muller, D.; Moënne-Loccoz, Y. Let the Core Microbiota Be Functional. Trends Plant Sci. 2017, 22, 583–595. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.; Fernandes, T.; Martins, F.; Pereira, J.A.; Tavares, R.M.; Santos, P.M.; Baptista, P.; Lino-Neto, T. Illuminating Olea europaea, L. Endophyte Fungal Community. Microbiol. Res. 2021, 245, 126693. [Google Scholar] [CrossRef] [PubMed]
- Bulgari, D.; Casati, P.; Brusetti, L.; Quaglino, F.; Brasca, M.; Daffonchio, D.; Bianco, P.A. Endophytic Bacterial Diversity in Grapevine (Vitis Vinifera L.) Leaves Described by 16S RRNA Gene Sequence Analysis and Length Heterogeneity-PCR. J. Microbiol. 2009, 47, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Materatski, P.; Varanda, C.; Carvalho, T.; Dias, A.B.; Campos, M.D.; Rei, F.; do Rosário Félix, M. Spatial and Temporal Variation of Fungal Endophytic Richness and Diversity Associated to the Phyllosphere of Olive Cultivars. Fungal Biol. 2019, 123, 66–76. [Google Scholar] [CrossRef]
- Sadeghi, F.; Samsampour, D.; Seyahooei, M.A.; Bagheri, A.; Soltani, J. Diversity and Spatiotemporal Distribution of Fungal Endophytes Associated with Citrus reticulata cv. Siyahoo. Curr. Microbiol. 2019, 76, 279–289. [Google Scholar] [CrossRef]
- Yarte, M.E.; Gismondi, M.I.; Llorente, B.E.; Larraburu, E.E. Isolation of Endophytic Bacteria from the Medicinal, Forestal and Ornamental Tree Handroanthus impetiginosus. Environ. Technol. 2022, 43, 1129–1139. [Google Scholar] [CrossRef]
- Hanani, A.; Valentini, F.; Sanzani, S.M.; Santoro, F.; Minutillo, S.A.; Gallo, M.; Cavallo, G.; Mourou, M.; El Moujabber, M.; D’onghia, A.M.; et al. Community Analysis of Culturable Sapwood Endophytes from Apulian Olive Varieties with Different Susceptibility to Xylella fastidiosa. Agronomy 2022, 12, 9. [Google Scholar] [CrossRef]
- Vaghari Souran, S.E.; Shekariesfahlan, A.; Ashrafi, F.; Naeimi, S.; Ghasemi, A. Isolation and Identification of Grapevine Endophytic Bacteria with Antagonistic Potential against Fomitiporia mediterranea, a Pathogen Involved in Grapevine Trunk Disease. J. Plant Dis. Prot. 2023, 130, 1371–1384. [Google Scholar] [CrossRef]
- Esmaeili, M.; Shahryari, F.; Sarikhani, S. Unveiling the Potential of Endophytic Bacteria in Combatting Walnut Bacterial Canker Disease. J. Plant Pathol. 2025, 107, 551–563. [Google Scholar] [CrossRef]
- Eevers, N.; Gielen, M.; Sánchez-López, A.; Jaspers, S.; White, J.C.; Vangronsveld, J.; Weyens, N. Optimization of Isolation and Cultivation of Bacterial Endophytes through Addition of Plant Extract to Nutrient Media. Microb. Biotechnol. 2015, 8, 707–715. [Google Scholar] [CrossRef]
- Rungjindamai, N.; Jones, E.B.G. Why Are There So Few Basidiomycota and Basal Fungi as Endophytes? A Review. J. Fungi 2024, 10, 67. [Google Scholar] [CrossRef] [PubMed]
- Neri, F.; Crucitti, D.; Negrini, F.; Pacifico, D.; Ceredi, G.; Carimi, F.; Lolas, M.A.; Collina, M.; Baraldi, E. New Insight into Morphological and Genetic Diversity of Phlyctema vagabunda and Neofabraea kienholzii Causing Bull’s Eye Rot on Apple and Pear. Plant Pathol. 2023, 72, 268–289. [Google Scholar] [CrossRef]
- Rashmi, M.; Kushveer, J.S.; Sarma, V.V. A Worldwide List of Endophytic Fungi with Notes on Ecology and Diversity. Mycosphere 2019, 10, 798–1079. [Google Scholar] [CrossRef]
- Bizos, G.; Papatheodorou, E.M.; Chatzistathis, T.; Ntalli, N.; Aschonitis, V.G.; Monokrousos, N. The Role of Microbial Inoculants on Plant Protection, Growth Stimulation, and Crop Productivity of the Olive Tree (Olea europea L.). Plants 2020, 9, 743. [Google Scholar] [CrossRef]
- Nicoletti, R.; Di Vaio, C.; Cirillo, C. Endophytic Fungi of Olive Tree. Microorganisms 2020, 8, 1321. [Google Scholar] [CrossRef]
- de Oliveira, A.A.; de Oliveira Ramalho, M.; Moreau, C.S.; de Carvalho Campos, A.E.; Harakava, R.; Bueno, O.C. Exploring the Diversity and Potential Interactions of Bacterial and Fungal Endophytes Associated with Different Cultivars of Olive (Olea europaea) in Brazil. Microbiol. Res. 2022, 263, 127128. [Google Scholar] [CrossRef]
- Girsowicz, R.; Moroenyane, I.; Steinberger, Y. Bacterial Seed Endophyte Community of Annual Plants Modulated by Plant Photosynthetic Pathways. Microbiol. Res. 2019, 223, 58–62. [Google Scholar] [CrossRef]
- Anguita-Maeso, M.; Olivares-García, C.; Haro, C.; Imperial, J.; Navas-Cortés, J.A.; Landa, B.B. Culture-Dependent and Culture-Independent Characterization of the Olive Xylem Microbiota: Effect of Sap Extraction Methods. Front. Plant Sci. 2020, 10, 1708. [Google Scholar] [CrossRef]
- Müller, H.; Berg, C.; Landa, B.B.; Auerbach, A.; Moissl-Eichinger, C.; Berg, G. Plant Genotype-Specific Archaeal and Bacterial Endophytes but Similar Bacillus Antagonists Colonize Mediterranean Olive Trees. Front. Microbiol. 2015, 6, 138. [Google Scholar] [CrossRef]
- Martins, F.; Pereira, J.A.; Bota, P.; Bento, A.; Baptista, P. Fungal Endophyte Communities in Above- and Belowground Olive Tree Organs and the Effect of Season and Geographic Location on Their Structures. Fungal Ecol. 2016, 20, 193–201. [Google Scholar] [CrossRef]
- Hanif, M.S.; Tayyab, M.; Baillo, E.H.; Islam, M.M.; Islam, W.; Li, X. Plant Microbiome Technology for Sustainable Agriculture. Front. Microbiol. 2024, 15, 1500260. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Schlaeppi, K.; van der Heijden, M.G.A. Keystone Taxa as Drivers of Microbiome Structure and Functioning. Nat. Rev. Microbiol. 2018, 16, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Jousset, A.; Bienhold, C.; Chatzinotas, A.; Gallien, L.; Gobet, A.; Kurm, V.; Küsel, K.; Rillig, M.C.; Rivett, D.W.; Salles, J.F.; et al. Where Less May Be More: How the Rare Biosphere Pulls Ecosystems Strings. ISME J. 2017, 11, 853–862. [Google Scholar] [CrossRef]
- Harrison, J.G.; Griffin, E.A. The Diversity and Distribution of Endophytes across Biomes, Plant Phylogeny and Host Tissues: How Far Have We Come and Where Do We Go from Here? Environ. Microbiol. 2020, 22, 2107–2123. [Google Scholar] [CrossRef]
- Petrini, O.; Sieber, T.N.; Toti, L.; Viret, O. Ecology, Metabolite Production, and Substrate Utilization in Endophytic Fungi. Nat. Toxins 1992, 1, 185–196. [Google Scholar] [CrossRef]
- Abdelfattah, A.; Li Destri Nicosia, M.G.; Cacciola, S.O.; Droby, S.; Schena, L. Metabarcoding Analysis of Fungal Diversity in the Phyllosphere and Carposphere of Olive (Olea europaea). PLoS ONE 2015, 10, e0131069. [Google Scholar] [CrossRef]
- Bhutani, N.; Maheshwari, R.; Negi, M.; Suneja, P. Optimization of IAA Production by Endophytic Bacillus Spp. from Vigna radiata for Their Potential Use as Plant Growth Promoters. Isr. J. Plant Sci. 2018, 65, 83–96. [Google Scholar] [CrossRef]
- Stavridou, E.; Karamichali, I.; Lagiotis, G.; Patsea, E.; Osathanunkul, M.; Madesis, P. Seasonal Shifts in Soil Microbiome Structure Are Associated with the Cultivation of the Local Runner Bean Variety around the Lake Mikri Prespa. Biology 2022, 11, 1595. [Google Scholar] [CrossRef]
- Vishwakarma, S.K.; Ilyas, T.; Shahid, M.; Malviya, D.; Kumar, S.; Singh, S.; Johri, P.; Singh, U.B.; Singh, H.V. Bacillus Spp.: Nature’s Gift to Agriculture and Humankind. In Applications of Bacillus and Bacillus Derived Genera in Agriculture, Biotechnology and Beyond; Mageshwaran, V., Singh, U.B., Saxena, A.K., Singh, H.B., Eds.; Springer: Singapore, 2024; Volume 51, pp. 1–36. ISBN 978-981-99-8195-3. [Google Scholar]
- Cesaro, P.; Gamalero, E.; Zhang, J.; Pivato, B. Editorial: The Plant Holobiont Volume I: Microbiota as Part of the Holobiont; Challenges for Agriculture. Front. Plant Sci. 2021, 12, 799168. [Google Scholar] [CrossRef]
- Sofo, A.; Ciarfaglia, A.; Scopa, A.; Camele, I.; Curci, M.; Crecchio, C.; Xiloyannis, C.; Palese, A.M. Soil Microbial Diversity and Activity in a Mediterranean Olive Orchard Using Sustainable Agricultural Practices. Soil Use Manag. 2014, 30, 160–167. [Google Scholar] [CrossRef]
- Dias, M.C.; Silva, S.; Galhano, C.; Lorenzo, P. Olive Tree Belowground Microbiota: Plant Growth-Promoting Bacteria and Fungi. Plants 2024, 13, 1848. [Google Scholar] [CrossRef] [PubMed]
- Melloni, R.; Cardoso, E.J.B.N. Microbiome Associated with Olive Cultivation: A Review. Plants 2023, 12, 897. [Google Scholar] [CrossRef]
- Aranda, S.; Montes-Borrego, M.; Jiménez-Díaz, R.M.; Landa, B.B. Microbial Communities Associated with the Root System of Wild Olives (Olea europaea L. subsp. suropaea var. sylvestris) Are Good Reservoirs of Bacteria with Antagonistic Potential against Verticillium dahliae. Plant Soil 2011, 343, 329–345. [Google Scholar] [CrossRef]
- Ahmed, E.; Holmström, S.J.M. Siderophores in Environmental Research: Roles and Applications. Microb. Biotechnol. 2014, 7, 196–208. [Google Scholar] [CrossRef]
- Ning, X.; Lin, M.; Huang, G.; Mao, J.; Gao, Z.; Wang, X. Research Progress on Iron Absorption, Transport, and Molecular Regulation Strategy in Plants. Front. Plant Sci. 2023, 14, 1190768. [Google Scholar] [CrossRef]
- Miethke, M.; Marahiel, M.A. Siderophore-Based Iron Acquisition and Pathogen Control. Microbiol. Mol. Biol. Rev. 2007, 71, 413–451. [Google Scholar] [CrossRef]
- Asaf, S.; Numan, M.; Khan, A.L.; Al-Harrasi, A. Sphingomonas: From Diversity and Genomics to Functional Role in Environmental Remediation and Plant Growth. Crit. Rev. Biotechnol. 2020, 40, 138–152. [Google Scholar] [CrossRef]
- Bouremani, N.; Cherif-Silini, H.; Silini, A.; Rabhi, N.E.H.; Bouket, A.C.; Belbahri, L. Osmotolerant Plant Growth Promoting Bacteria Mitigate Adverse Effects of Drought Stress on Wheat Growth. AIMS Microbiol. 2024, 10, 507–541. [Google Scholar] [CrossRef]
- Li, Y.; Narayanan, M.; Shi, X.; Chen, X.; Li, Z.; Ma, Y. Biofilms Formation in Plant Growth-Promoting Bacteria for Alleviating Agro-Environmental Stress. Sci. Total Environ. 2024, 907, 167774. [Google Scholar] [CrossRef]
- Zhou, L. Discovery of Natural Products from Bacilli and Pseudomonas for Biocontrol of Plant Diseases. Ph.D. Thesis, University of Groningen, Groningen, The Netherlands, 2021. [Google Scholar]
- Abdelwahed, S.; Trabelsi, E.; Saadouli, I.; Kouidhi, S.; Masmoudi, A.S.; Cherif, A.; Mnif, W.; Mosbah, A. A New Pioneer Colorimetric Micro-Plate Method for the Estimation of Ammonia Production by Plant Growth Promoting Rhizobacteria (PGPR). Main Group Chem. 2022, 21, 55–68. [Google Scholar] [CrossRef]
- Shukla, A.; Gupta, A.; Srivastava, S. Bacterial Consortium (Priestia endophytica NDAS01F, Bacillus licheniformis NDSA24R, and Priestia flexa NDAS28R) and Thiourea Mediated Amelioration of Arsenic Stress and Growth Improvement of Oryza sativa L. Plant Physiol. Biochem. 2023, 195, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Gowtham, H.G.; Duraivadivel, P.; Ayusman, S.; Sayani, D.; Gholap, S.L.; Niranjana, S.R.; Hariprasad, P. ABA Analogue Produced by Bacillus marisflavi Modulates the Physiological Response of Brassica juncea L. under Drought Stress. Appl. Soil Ecol. 2021, 159, 103845. [Google Scholar] [CrossRef]
- Panpatte, D.G. Providencia vermicola AAU PR1- A New Bioinoculant for Agriculture with Multiple Utility. Indian J. Pure Appl. Biosci. 2020, 8, 185–194. [Google Scholar] [CrossRef]
- Aish, A.A.; Sulaiman, M.M.; Youssef, S.A.; Massoud, S.I. Providencia vermicola Mediated Growth Alteration and Inhibited Gall Formation on Tomato Plants Infected with the Root Knot Nematode Meloidogyne javancia. Plant Arch. 2019, 19, 3865–3873. [Google Scholar]
- Liba, C.M.; Ferrara, F.I.S.; Manfio, G.P.; Fantinatti-Garboggini, F.; Albuquerque, R.C.; Pavan, C.; Ramos, P.L.; Moreira-Filho, C.A.; Barbosa, H.R. Nitrogen-Fixing Chemo-Organotrophic Bacteria Isolated from Cyanobacteria-Deprived Lichens and Their Ability to Solubilize Phosphate and to Release Amino Acids and Phytohormones. J. Appl. Microbiol. 2006, 101, 1076–1086. [Google Scholar] [CrossRef]
- Shahid, M.; Ahmed, T.; Noman, M.; Javed, M.T.; Javed, M.R.; Tahir, M.; Shah, S.M. Non-Pathogenic Staphylococcus Strains Augmented the Maize Growth through Oxidative Stress Management and Nutrient Supply under Induced Salt Stress. Ann. Microbiol. 2019, 69, 727–739. [Google Scholar] [CrossRef]
- Jain, S.; Varma, A.; Choudhary, D.K. Perspectives on Nitrogen-Fixing Bacillus Species. In Soil Nitrogen Ecology-Soil Biology; Cruz, C., Choudhary, D.K., Vishwakarma, K., Varma, A., Eds.; Springer: Cham, Switzerland, 2021; Volume 62, pp. 359–369. [Google Scholar]
- Sharma, K.; Sharma, S.; Vaishnav, A.; Jain, R.; Singh, D.; Singh, H.B.; Goel, A.; Singh, S. Salt-Tolerant PGPR Strain Priestia endophytica SK1 Promotes Fenugreek Growth under Salt Stress by Inducing Nitrogen Assimilation and Secondary Metabolites. J Appl. Microbiol. 2022, 133, 2802–2813. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Hashem, A.; Abd Allah, E.F. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments. Front. Physiol. 2017, 8, 106911. [Google Scholar] [CrossRef] [PubMed]
- Ajuna, H.B.; Lim, H.I.; Moon, J.H.; Won, S.J.; Choub, V.; Choi, S.I.; Yun, J.Y.; Ahn, Y.S. The Prospect of Hydrolytic Enzymes from Bacillus Species in the Biological Control of Pests and Diseases in Forest and Fruit Tree Production. Int. J. Mol. Sci. 2023, 24, 16889. [Google Scholar] [CrossRef]
- Ji, Z.; Ling, Z.; Zhang, Q.; Xu, J.; Chen, X.; Tong, Y. Study on the Inhibition of Bacillus licheniformis on Botryosphaeria berengeriana f. sp. piricola and Glomerella cingulata and Biocontrol Efficacy on Postharvest Apple Diseases. J. Fruit Sci. 2008, 25, 209–214. [Google Scholar]
- Liu, Z.Z.; Zhu, J.P.; Li, M.; Xue, Q.Q.; Zeng, Y.; Wang, Z.P. Effects of Freshwater Bacterial Siderophore on Microcystis and Anabaena. Biol. Control 2014, 78, 42–48. [Google Scholar] [CrossRef]
- Sulochana, M.B.; Jayachandra, S.Y.; Kumar, S.K.A. Antifungal Attributes of Siderophore Produced by the Pseudomonas aeruginosa JAS-25. J. Basic Microbiol. 2014, 54, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Chowdappa, S.; Jagannath, S.; Konappa, N.; Udayashankar, A.C.; Jogaiah, S. Detection and Characterization of Antibacterial Siderophores Secreted by Endophytic Fungi from Cymbidium aloifolium. Biomolecules 2020, 10, 1412. [Google Scholar] [CrossRef]
- Khan, A.; Singh, P.; Kumar, R.; Das, S.; Singh, R.K.; Mina, U.; Agrawal, G.K.; Rakwal, R.; Sarkar, A.; Srivastava, A. Antifungal Activity of Siderophore Isolated From Escherichia coli Against Aspergillus nidulans via Iron-Mediated Oxidative Stress. Front. Microbiol. 2021, 12, 729032. [Google Scholar] [CrossRef]
- Suleimanova, A.D.; Sokolnikova, L.V.; Egorova, E.A.; Berkutova, E.S.; Pudova, D.S.; Khilyas, I.V.; Sharipova, M.R. Antifungal Activity of Siderophore Isolated from Pantoea brenneri Against Fusarium oxysporum. Russ. J. Plant Physiol. 2023, 70, 199. [Google Scholar] [CrossRef]
- Nigris, S.; Baldan, E.; Tondello, A.; Zanella, F.; Vitulo, N.; Favaro, G.; Guidolin, V.; Bordin, N.; Telatin, A.; Barizza, E.; et al. Biocontrol Traits of Bacillus licheniformis GL174, a Culturable Endophyte of Vitis vinifera cv. Glera. BMC Microbiol. 2018, 18, 1–16. [Google Scholar] [CrossRef]
- Medison, R.G.; Jiang, J.; Medison, M.B.; Tan, L.T.; Kayange, C.D.M.; Sun, Z.; Zhou, Y. Evaluating the Potential of Bacillus licheniformis YZCUO202005 Isolated from Lichens in Maize Growth Promotion and Biocontrol. Heliyon 2023, 9, e20204. [Google Scholar] [CrossRef]
Olive Tree ID | Olive Host | Olive Yards | GPS Coordinates | Farming System |
---|---|---|---|---|
GIAL01 GIAL02 GIAL03 | NB | Castelvetrano (Trapani, South-West Sicily) | N 37°41′56.1″; E 12°47′33.1″ | Organic |
GIAL04 GIAL05 GIAL06 | NB | Castelvetrano (Trapani, South-West Sicily) | N 37°41′49.2″; E 12°48′21.9″ | Conventional |
NEB01 NEB02 NEB03 | NE | Motta Sant’Anastasia (Catania, North-East Sicily) | N 37°31′15.8″; E 14°56′21.1″ | Organic |
NEC04 NEC05 NEC06 | NE | Adrano (Catania, North-East Sicily) | N 37°41′21.6″; E 14°50′25.1″ | Conventional |
NMB01 NMB02 NMB03 | NM | Motta Sant’Anastasia (Catania, North-East Sicily) | N 37°31′15.8″; E 14°56′21.1″ | Organic |
NMC01 NMC02 NMC03 | NM | Modica (South-East Sicily) | N 36°50′04.4″; E 14°46′57.4″ | Conventional |
SYLV01 SYLV02 SYLV03 | SYLV | Pisano forest (Buccheri, East Sicily) | N 37°10′58.9″; E 14°52′28.4″ | None |
SYLV04 SYLV05 SYLV06 | SYLV | Pisano forest (Buccheri, East Sicily) | N 37°10′76.2″; E 14°52′28.2″ | None |
Diversity Indexes | NB-L | NB-T | NE-L | NE-T | NM-L | NM-T | SYLV-L | SYLV-T |
---|---|---|---|---|---|---|---|---|
Taxa (genera) | 7 | 10 | 6 | 10 | 5 | 21 | 9 | 15 |
Individuals | 33 | 398 | 1204 | 2002 | 397 | 853 | 16 | 19 |
Dominance | 0.428 | 0.592 | 0.621 | 0.590 | 0.633 | 0.662 | 0.108 | 0.029 |
Simpson (1-D) | 0.572 | 0.408 | 0.380 | 0.410 | 0.367 | 0.338 | 0.892 | 0.971 |
Shannon | 1.282 | 0.963 | 0.589 | 0.796 | 0.605 | 0.935 | 2.243 | 2.993 |
Equitability | 0.659 | 0.418 | 0.329 | 0.346 | 0.376 | 0.307 | 1.021 | 1.105 |
Chao-1 | 9.91 | 10.50 | 12 | 20 | 6.99 | 36.98 | 16.03 | 35.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crucitti, D.; Barone, S.; Navarro-Torre, S.; Quatrini, P.; Carimi, F.; Caruso, T.; Pacifico, D. Endophytic Diversity in Sicilian Olive Trees: Identifying Optimal Conditions for a Functional Microbial Collection. Microorganisms 2025, 13, 1502. https://doi.org/10.3390/microorganisms13071502
Crucitti D, Barone S, Navarro-Torre S, Quatrini P, Carimi F, Caruso T, Pacifico D. Endophytic Diversity in Sicilian Olive Trees: Identifying Optimal Conditions for a Functional Microbial Collection. Microorganisms. 2025; 13(7):1502. https://doi.org/10.3390/microorganisms13071502
Chicago/Turabian StyleCrucitti, Dalila, Stefano Barone, Salvadora Navarro-Torre, Paola Quatrini, Francesco Carimi, Tiziano Caruso, and Davide Pacifico. 2025. "Endophytic Diversity in Sicilian Olive Trees: Identifying Optimal Conditions for a Functional Microbial Collection" Microorganisms 13, no. 7: 1502. https://doi.org/10.3390/microorganisms13071502
APA StyleCrucitti, D., Barone, S., Navarro-Torre, S., Quatrini, P., Carimi, F., Caruso, T., & Pacifico, D. (2025). Endophytic Diversity in Sicilian Olive Trees: Identifying Optimal Conditions for a Functional Microbial Collection. Microorganisms, 13(7), 1502. https://doi.org/10.3390/microorganisms13071502