Genome Mining of Terpene Synthases from Fourteen Streptomyces Strains
Abstract
1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. Isolation and Identification of Streptomyces Strains
2.3. Genomic DNA Extraction, Sequencing, and Annotation
2.4. Polygenetic Tree Analysis
2.5. Gene Cloning and Expression
2.6. Protein Purification and Biochemical Assays
2.7. Quantum Chemistry Calculations
3. Results
3.1. Genome Mining for TPSs in the Draft Genomes of Fourteen Streptomyces Strains
3.2. Polygenetic Analysis of TPSs
3.3. Characterization of TPSs
4. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, X.; Ning, W.; McCadden, C.A.; Alsup, T.A.; Li, Z.; Lomowska-Keehner, D.P.; Nafie, J.; Qu, T.; Opoku, M.O.; Gillia, G.R.; et al. Exploring and expanding the natural chemical space of bacterial diterpenes. Nat. Commun. 2025, 16, 3721. [Google Scholar] [CrossRef] [PubMed]
- Zeng, T.; Chen, Y.; Jian, Y.; Zhang, F.; Wu, R. Chemotaxonomic investigation of plant terpenoids with an established database (TeroMOL). New Phytol. 2022, 235, 662–673. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Xu, H.; Wang, Y.; Wang, H.; Li, Z.; Liu, X.; Shu, Y.; Li, G.; Liu, W.; Ying, J. OsABF1 represses gibberellin biosynthesis to regulate plant height and seed germination in rice (Oryza sativa L.). Int. J. Mol. Sci. 2021, 22, 12220. [Google Scholar] [CrossRef]
- Crupi, P.; Faienza, M.F.; Naeem, M.Y.; Corbo, F.; Clodoveo, M.L.; Muraglia, M. Overview of the potential beneficial effects of carotenoids on consumer health and well-being. Antioxidants 2023, 12, 1069. [Google Scholar] [CrossRef]
- Yang, W.; Chen, X.; Li, Y.; Guo, S.; Wang, Z.; Yu, X. Advances in Pharmacological Activities of Terpenoids. Nat. Prod. Commun. 2020, 15, 1934578X20903555. [Google Scholar] [CrossRef]
- Singla, A.K.; Garg, A.; Aggarwal, D. Paclitaxel and its formulations. Int. J. Pharm. 2002, 235, 179–192. [Google Scholar] [CrossRef]
- Kamatou, G.P.P.; Vermaak, I.; Viljoen, A.M.; Lawrence, B.M. Menthol: A simple monoterpene with remarkable biological properties. Phytochemistry 2013, 96, 15–25. [Google Scholar] [CrossRef]
- Schempp, F.M.; Drummond, L.; Buchhaupt, M.; Schrader, J. Microbial Cell Factories for the Production of Terpenoid Flavor and Fragrance Compounds. J. Agric. Food Chem. 2018, 66, 2247–2258. [Google Scholar] [CrossRef]
- Peralta-Yahya, P.P.; Ouellet, M.; Chan, R.; Mukhopadhyay, A.; Keasling, J.D.; Lee, T.S. Identification and microbial production of a terpene-based advanced biofuel. Nat. Commun. 2011, 2, 483. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Cui, Z.; Qi, Q.; Hou, J. Progress and perspectives for microbial production of farnesene. Bioresour. Technol. 2022, 347, 126682. [Google Scholar] [CrossRef]
- Ludwiczuk, A.; Skalicka-Woźniak, K.; Georgiev, M.I. Terpenoids. In Pharmacognosy; Badal, S., Delgoda, R., Eds.; Academic Press: Boston, MA, USA, 2017; pp. 233–266. [Google Scholar]
- Whitehead, J.N.; Leferink, N.G.H.; Johannissen, L.O.; Hay, S.; Scrutton, N.S. Decoding Catalysis by Terpene Synthases. ACS Catal. 2023, 13, 12774–12802. [Google Scholar] [CrossRef]
- Christianson, D.W. Structural and Chemical Biology of Terpenoid Cyclases. Chem. Rev. 2017, 117, 11570–11648. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Lauterbach, L.; Bian, G.; Chen, R.; Hou, A.; Mori, T.; Cheng, S.; Hu, B.; Lu, L.; Mu, X.; et al. Discovery of non-squalene triterpenes. Nature 2022, 606, 414–419. [Google Scholar] [CrossRef]
- Hou, A.; Dickschat, J.S. The Biosynthetic Gene Cluster for Sestermobaraenes—Discovery of a Geranylfarnesyl Diphosphate Synthase and a Multiproduct Sesterterpene Synthase from Streptomyces mobaraensis. Angew. Chem. Int. Ed. 2020, 59, 19961–19965. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.T.; Koutsaviti, A.; Harizani, M.; Ignea, C.; Roussis, V.; Zhao, Y.; Ioannou, E.; Kampranis, S.C. Widespread biosynthesis of 16-carbon terpenoids in bacteria. Nat. Chem. Biol. 2023, 19, 1532–1539. [Google Scholar] [CrossRef] [PubMed]
- Dickschat, J.S. Bacterial terpene cyclases. Nat. Prod. Rep. 2016, 33, 87–110. [Google Scholar] [CrossRef]
- Satam, H.; Joshi, K.; Mangrolia, U.; Waghoo, S.; Zaidi, G.; Rawool, S.; Thakare, R.P.; Banday, S.; Mishra, A.K.; Das, G.; et al. Next-Generation Sequencing Technology: Current Trends and Advancements. Biology 2023, 12, 997. [Google Scholar] [CrossRef]
- Zhu, F.; Zhong, X.; Hu, M.; Lu, L.; Deng, Z.; Liu, T. In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli. Biotechnol. Bioeng. 2014, 111, 1396–1405. [Google Scholar] [CrossRef]
- Bian, G.; Han, Y.; Hou, A.; Yuan, Y.; Liu, X.; Deng, Z.; Liu, T. Releasing the potential power of terpene synthases by a robust precursor supply platform. Metab. Eng. 2017, 42, 1–8. [Google Scholar] [CrossRef]
- Hou, A.; Goldfuss, B.; Dickschat, J.S. Functional Switch and Ethyl Group Formation in the Bacterial Polytrichastrene Synthase from Chryseobacterium polytrichastri. Angew. Chem. Int. Ed. 2021, 60, 20781–20785. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Rev. C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Finn, R.D.; Clements, J.; Eddy, S.R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 2011, 39, W29–W37. [Google Scholar] [CrossRef]
- Yamada, Y.; Kuzuyama, T.; Komatsu, M.; Shin-Ya, K.; Omura, S.; Cane, D.E.; Ikeda, H. Terpene synthases are widely distributed in bacteria. Proc. Natl. Acad. Sci. USA 2015, 112, 857–862. [Google Scholar] [CrossRef] [PubMed]
- Baer, P.; Rabe, P.; Citron, C.A.; de Oliveira Mann, C.C.; Kaufmann, N.; Groll, M.; Dickschat, J.S. Hedycaryol Synthase in Complex with Nerolidol Reveals Terpene Cyclase Mechanism. ChemBioChem 2014, 15, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Dickschat, J.S. Bacterial Diterpene Biosynthesis. Angew. Chem. Int. Ed. 2019, 58, 15964–15976. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; He, X.; Cane, D.E. Biosynthesis of the earthy odorant geosmin by a bifunctional Streptomyces coelicolor enzyme. Nat. Chem. Biol. 2007, 3, 711–715. [Google Scholar] [CrossRef]
- Wang, C.-M.; Cane, D.E. Biochemistry and Molecular Genetics of the Biosynthesis of the Earthy Odorant Methylisoborneol in Streptomyces coelicolor. J. Am. Chem. Soc. 2008, 130, 8908–8909. [Google Scholar] [CrossRef]
- Aaron, J.A.; Lin, X.; Cane, D.E.; Christianson, D.W. Structure of Epi-Isozizaene Synthase from Streptomyces coelicolor A3(2), a Platform for New Terpenoid Cyclization Templates. Biochemistry 2010, 49, 1787–1797. [Google Scholar] [CrossRef]
- Xu, H.; Rinkel, J.; Dickschat, J.S. Isoishwarane synthase from Streptomyces lincolnensis. Org. Chem. Front. 2021, 8, 1177–1184. [Google Scholar] [CrossRef]
- Rabe, P.; Dickschat, J.S. Rapid chemical characterization of bacterial terpene synthases. Angew. Chem. Int. Ed. 2013, 52, 1810–1812. [Google Scholar] [CrossRef]
- Kawasaki, T.; Kuzuyama, T.; Kuwamori, Y.; Matsuura, N.; Itoh, N.; Furihata, K.; Seto, H.; Dairi, T. Presence of copalyl diphosphate synthase gene in an actinomycete possessing the mevalonate pathway. J. Antibiot. 2004, 57, 739–747. [Google Scholar] [CrossRef]
- Ikeda, C.; Hayashi, Y.; Itoh, N.; Seto, H.; Dairi, T. Functional analysis of eubacterial ent-copalyl diphosphate synthase and pimara-9(11),15-diene synthase with unique primary sequences. J. Biochem. 2007, 141, 37–45. [Google Scholar] [CrossRef]
- Skoula, M.; Gotsiou, P.; Naxakis, G.; Johnson, C.B. A chemosystematic investigation on the mono- and sesquiterpenoids in the genus Origanum (Labiatae). Phytochemistry 1999, 52, 649–657. [Google Scholar] [CrossRef]
- Ohloff, G.; Strickler, H.; Willhalm, B.; Borer, C.; Hinder, M. Über En-synthesen mit Singulett-Sauerstoff [1] II. Die Farbstoff-sensibilisierte Photooxygenierung von (—)-Thujopsen und die Stereochemie der dargestellten Thujopsanole. Helv. Chim. Acta. 1970, 53, 623–637. [Google Scholar] [CrossRef]
- McCann, D.; Stephens, P. Determination of absolute configuration using density functional theory calculations of optical rotation and electronic circular dichroism: Chiral alkenes. J. Org. Chem. 2006, 71, 6074–6098. [Google Scholar] [CrossRef]
- Sacchetti, G.; Maietti, S.; Muzzoli, M.; Scaglianti, M.; Manfredini, S.; Radice, M.; Bruni, R. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem. 2005, 91, 621–632. [Google Scholar] [CrossRef]
- Dickschat, J.S.; Brock, N.L.; Citron, C.A.; Tudzynski, B. Biosynthesis of sesquiterpenes by the fungus Fusarium verticillioides. ChemBioChem 2011, 12, 2088–2095. [Google Scholar] [CrossRef] [PubMed]
- Tokiwano, T.; Endo, T.; Tsukagoshi, T.; Goto, H.; Fukushi, E.; Oikawa, H. Proposed mechanism for diterpene synthases in the formation of phomactatriene and taxadiene. Org. Biomol. Chem. 2005, 3, 2713–2722. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, S.; Yin, X.; Guo, A.; Xie, K.; Chen, D.; Sui, S.; Han, Y.; Liu, J.; Chen, R.; et al. Functional Characterization and Cyclization Mechanism of a Diterpene Synthase Catalyzing the Skeleton Formation of Cephalotane-Type Diterpenoids. Angew. Chem. Int. Ed. 2023, 62, e202306020. [Google Scholar] [CrossRef]
- Hou, A.; Lauterbach, L.; Dickschat, J.S. Enzymatic Synthesis of Methylated Terpene Analogues Using the Plasticity of Bacterial Terpene Synthases. Chem. Eur. J. 2020, 26, 2178–2182. [Google Scholar] [CrossRef]
- Kato, T.; Suzuki, M.; Nakazima, Y.; Shimizu, K.; Kitahara, Y. Cyclization of polyenes xxiv. effective construction of albocerol skeleton by intramolecular acylation of geranylfarnesic acid chloride. Chem. Lett. 1977, 6, 705–708. [Google Scholar] [CrossRef]
- Gomes, L.C.; Rana, A.; Berglund, M.; Wiklund, P.; Ottosson, H. Light-driven (cross-) dimerization of terpenes as a route to renewable C 15–C 30 crudes for fuel and lubricant oil applications. Sustain. Energy Fuels 2023, 7, 868–882. [Google Scholar] [CrossRef]
Primer Name | Sequence (5′ to 3′) |
---|---|
2999-F | CTGGTGCCGCGCGGCAGCCATATGATGAGCAGCACATCAGGT |
2999-R | GGTGCTCGAGTGCGGCCGCAAGCTTTCAGCAGTGGTCCCAC |
7078-F | GCCGCGCGGCAGCCATATGATGCCGATCGATGTGGACT |
7078-R | TCGAGTGCGGCCGCAAGCTTTCAACGGGCTTCTCCGATCT |
0554-F | GCCGCGCGGCAGCCATATGATGCGAGAAGGGGCG |
0554-R | TCGAGTGCGGCCGCAAGCTTGCGGCTGCCGCAC |
2367-F | CTGGTGCCGCGCGGCAGCCAATGGAGTTGATGCTGCCG |
2367-R | TGGTGCTCGAGTGCGGCCGCATGATCGAGGCAGGTCTCA |
6116-F | GCCGCGCGGCAGCCATATGATGAGGGACGACCGCTACTACCAC |
6116-R | TCGAGTGCGGCCGCAAGCTTTCAAGCTTGTTCCAGCCGG |
2999-F2 | CTTTAAGAAGGAGATATACATATGAGCAGCACATCAGG |
2999-R2 | GCATTAGTATCCCCCTTAGATGCTTAGTTTGAGCTCGAATTCGGATCCTCAGCAGTGGTCCCACC |
7078-F2 | TAAAACTAAGCATCTAAGGGGGATACTAATGCCGATCGATGTGGACT |
7078-R2 | GTGGTGGTGCTCGAGTGCGGCCGCATCAACGGGCTTCTCCGAT |
6116-F2 | GCATCTAAGGGGGATACTAATGAGGGACGACCGCTA |
6116-R2 | GTTAGCAGCCGGATCTCAAGCTTGTTCCAGCC |
GFPPS-2999-F | GCTGAGGATCCGAATTCGAGCTCAAACTAAGCATCTAAGGGGGATACTAATGCCCGTAAAAGTCCACG |
GFPPS-2999-R | CTCGAGTGCGGCCGCAAGCTTTACAGGTTCTCTCCAGCATATCC |
GGPPS-7078-F | CGCTACTGCTCACCTCATTTAAGGAGGTTTTTTATGTCTACTGAAACG |
GGPPS-7078-R | AACAGAAAAATCTGGATTTGATACAAAGTCTACCTCAACACCAAC |
FPPS-6116-F | CTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGATGGATTTTCCCCAACAGCT |
FPPS-6116-R | CCCTTAGATGCTTAGTTTTACTCTAAGCTTATTTATTACGTTGGATGATGTAGT |
No. 1 | 5 | 6 | ||
---|---|---|---|---|
δC 2 | δH 2 | δC 2 | δH 2 | |
1 | 33.63 | 2.25 (m, 1H); 2.07 (m, 1H) | 129.28 | - |
2 | 124.79 | 5.33 (m, 1H) | 128.68 | - |
3 | 134.82 | - | 41.64 | 2.06 (m, 1H); 1.84 (m, 1H) |
4 | 39.40 | 2.17 (m, 2H) | 35.67 | - |
5 | 25.35 | 2.27 (m, 1H); 2.15 (m, 1H) | 34.60 | 1.49 (m, 1H); 1.40 (m, 1H) |
6 | 126.51 | 5.09 (td, J = 5.8, 2.7 Hz, 1H) | 27.49 | 2.18 (m, 1H); 2.05 (m, 1H) |
7 | 133.43 | - | 32.05 | 2.85 (t, J = 6.2 Hz, 2H) |
8 | 39.90 | 2.11 (m, 2H) | 123.98 | 5.26 (m, 1H) |
9 | 24.20 | 2.17 (m, 2H) | 135.17 | - |
10 | 122.30 | 5.27 (m, 1H) | 40.27 | 2.10 (m, 2H) |
11 | 133.88 | - | 27.15 | 2.18 (m, 2H) |
12 | 34.58 | 2.07 (m, 1H); 2.00 (m, 1H) | 124.91 | 5.22 (m, 1H) |
13 | 29.25 | 1.87 (m, 1H); 1.53 (m, 1H) | 131.22 | - |
14 | 45.39 | 2.24 (m, 1H) | 25.90 | 1.67 (s, 3H) |
15 | 153.52 | - | 17.76 | 1.55 (s, 3H) |
16 | 34.82 | 2.12 (m, 2H) | 16.21 | 1.65 (s, 3H) |
17 | 27.26 | 2.26 (m, 2H) | 33.96 | 2.17 (m, 2H) |
18 | 125.03 | 5.26 (m, 1H) | 27.68 | 2.18 (m, 2H) |
19 | 131.31 | - | 125.22 | 5.28 (m, 1H) |
20 | 25.85 | 1.68 (s, 3H) | 131.17 | - |
21 | 17.76 | 1.70 (s, 3H) | 25.91 | 1.69 (s, 3H) |
22 | 108.85 | 4.94 (m, 2H) | 17.77 | 1.60 (s, 3H) |
23 | 18.22 | 1.61 (s, 3H) | 25.80 | 1.03 (s, 3H) |
24 | 15.37 | 1.55 (s, 3H) | 148.02 | 5.87 (dd, J = 17.5, 10.8 Hz, 1H) |
25 | 15.61 | 1.56 (s, 3H) | 110.55 | 5.03 (dd, J = 17.5, 1.5 Hz, 1H); 4.99 (dd, J = 10.8, 1.5 Hz, 1H) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Xiang, X.; Ren, Z.; Wang, R.; Xie, M.; Li, G.; Yan, X.; Zhao, Z.; Deng, Z.; Xu, M.; et al. Genome Mining of Terpene Synthases from Fourteen Streptomyces Strains. Microorganisms 2025, 13, 1479. https://doi.org/10.3390/microorganisms13071479
Li Y, Xiang X, Ren Z, Wang R, Xie M, Li G, Yan X, Zhao Z, Deng Z, Xu M, et al. Genome Mining of Terpene Synthases from Fourteen Streptomyces Strains. Microorganisms. 2025; 13(7):1479. https://doi.org/10.3390/microorganisms13071479
Chicago/Turabian StyleLi, Yuanyuan, Xi Xiang, Zhiyuan Ren, Rui Wang, Minghui Xie, Gen Li, Xiaohui Yan, Zhilong Zhao, Zixin Deng, Min Xu, and et al. 2025. "Genome Mining of Terpene Synthases from Fourteen Streptomyces Strains" Microorganisms 13, no. 7: 1479. https://doi.org/10.3390/microorganisms13071479
APA StyleLi, Y., Xiang, X., Ren, Z., Wang, R., Xie, M., Li, G., Yan, X., Zhao, Z., Deng, Z., Xu, M., & Hou, A. (2025). Genome Mining of Terpene Synthases from Fourteen Streptomyces Strains. Microorganisms, 13(7), 1479. https://doi.org/10.3390/microorganisms13071479