Metagenomic Insight into Cecal Microbiota Shifts in Broiler Chicks Following Eimeria spp. Vaccination
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Facilities, Biosecurity, and Ethics
2.2. Experimental Design
2.3. Feed
2.4. Challenge Protocol
2.5. Performance Evaluation
2.6. Gross Lesion Scoring (LS)
2.6.1. Coccidiosis LS
2.6.2. Dysbiosis LS
2.7. Harvesting of Caeca
2.8. DNA Extraction and 16S rRNA Oxford Nanopore Sequencing
2.9. Statistical Analysis
3. Results
3.1. Performance Evaluation
3.2. Gross Lesion Scoring (LS)
3.2.1. Coccidiosis LS
3.2.2. Dysbiosis LS
3.3. 16S rDNA Sequencing Read Characteristics
3.4. Bacterial Diversity
3.5. Microbial Community Composition
3.6. Predictive Functional Abundance Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blake, D.P.; Knox, J.; Dehaeck, B.; Huntington, B.; Rathinam, T.; Ravipati, V.; Ayoade, S.; Gilbert, W.; Adebambo, A.O.; Jatau, I.D.; et al. Re-calculating the cost of coccidiosis in chickens. Vet. Res. 2020, 51, 115. [Google Scholar] [CrossRef] [PubMed]
- Diaz Carrasco, J.M.; Casanova, N.A.; Fernández Miyakawa, M.E. Microbiota, gut health and chicken productivity: What is the connection? Microorganisms 2019, 7, 374. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Kim, W. Interactions of microbiota and mucosal immunity in the ceca of broiler chickens infected with Eimeria tenella. Vaccines 2022, 10, 1941. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Ko, H.; Tompkins, Y.H.; Teng, P.Y.; Lourenco, J.M.; Callaway, T.R.; Kim, W.K. Effects of Eimeria tenella infection on key parameters for feed efficiency in broiler chickens. Animals 2021, 11, 3428. [Google Scholar] [CrossRef]
- Campos, P.M.; Miska, K.B.; Kahl, S.; Jenkins, M.C.; Shao, J.; Proszkowiec-Weglarz, M. Effects of Eimeria tenella on cecal luminal and mucosal microbiota in broiler chickens. Avian Dis. 2022, 66, 39–52. [Google Scholar] [CrossRef]
- Graham, D.; Petrone-Garcia, V.M.; Hernandez-Velasco, X.; Coles, M.E.; Juarez-Estrada, M.A.; Latorre, J.D.; Tellez-Isaias, G. Assessing the effects of a mixed Eimeria spp. challenge on performance, intestinal integrity, and the gut microbiome of broiler chickens. Front. Vet. Sci. 2023, 10, 1224647. [Google Scholar] [CrossRef]
- Jebessa, E.; Guo, L.; Chen, X.; Bello, S.F.; Cai, B.; Girma, M.; Zhang, X.; Nie, Q. Influence of Eimeria maxima coccidia infection on gut microbiome diversity and composition of the jejunum and cecum of indigenous chicken. Front. Immunol. 2022, 13, 994224. [Google Scholar] [CrossRef]
- Ahmad, M.T.; Aiman, U.E.; Khan, T.S.; Aslam, A.; Shahzad, M.; Tipu, M.Y. Development of in vitro 3dintestinal-chip for ethical assessment of anticoccidial nanoparticles in poultry. In Complementary and Alternative Medicine: Nanotechnology-I; Rubio, V.G.G., Khan, A., Altaf, S., Saeed, Z., Qamar, W., Eds.; Unique Scientific Publishers: Faisalabad, Pakistan, 2024; pp. 69–75. [Google Scholar] [CrossRef]
- Campos, P.M.; Miska, K.B.; Jenkins, M.C.; Kahl, S.; Proszkowiec-Weglarz, M. Effects of Eimeria acervulina infection on the luminal and mucosal microbiota of the cecum and ileum in broiler chickens. Sci. Rep. 2024, 14, 10702. [Google Scholar] [CrossRef]
- Reid, A.J.; Blake, D.P.; Ansari, H.R.; Billington, K.; Browne, H.P.; Bryant, J.; Dunn, M.; Hung, S.S.; Kawahara, F.; Miranda-Saavedra, D.; et al. Genomic analysis of the causative agents of coccidiosis in domestic chickens. Genome Res. 2014, 24, 1676–1685. [Google Scholar] [CrossRef]
- Sun, X.M.; Pang, W.; Jia, T.; Yan, W.C.; He, G.; Hao, L.L.; Suo, X. Prevalence of Eimeria species in broilers with subclinical signs from fifty farms. Avian Dis. 2009, 53, 301–305. [Google Scholar] [CrossRef]
- Gao, Y.; Sun, P.; Hu, D.; Tang, X.; Zhang, S.; Shi, F.; Yan, X.; Yan, W.; Shi, T.; Wang, S.; et al. Advancements in understanding chicken coccidiosis: From Eimeria biology to innovative control strategies. One Health Adv. 2024, 2, 6. [Google Scholar] [CrossRef]
- Sun, H.; Su, X.; Fu, Y.; Hao, L.; Zhou, W.; Zhou, Z.; Huang, J.; Wang, Y.; Shi, T. Pathogenicity and drug resistance of the Eimeria tenella isolate from Yiwu, Zhejiang province, eastern China. Poult. Sci. 2023, 102, 102845. [Google Scholar] [CrossRef] [PubMed]
- Arabkhazaeli, F.; Modrisanei, M.; Nabian, S.; Mansoori, B.; Madani, A. Evaluating the resistance of Eimeria spp. field isolates to anticoccidial drugs using three different indices. Iran. J. Parasitol. 2013, 8, 234–241. [Google Scholar] [PubMed]
- Flores, R.A.; Nguyen, B.T.; Cammayo, P.L.T.; Võ, T.C.; Naw, H.; Kim, S.; Kim, W.H.; Na, B.-K.; Min, W. Epidemiological investigation and drug resistance of Eimeria species in Korean chicken farms. BMC Vet. Res. 2022, 18, 277. [Google Scholar] [CrossRef]
- Gautier, A.E.; Latorre, J.D.; Matsler, P.L.; Rochell, S.J. Longitudinal characterization of coccidiosis control methods on live performance and nutrient utilization in broilers. Front. Vet. Sci. 2020, 6, 468. [Google Scholar] [CrossRef]
- Mesa-Pineda, C.; Navarro-Ruíz, J.L.; López-Osorio, S.; Chaparro-Gutiérrez, J.J.; Gómez-Osorio, L.M. Chicken coccidiosis: From the parasite lifecycle to control of the disease. Front. Vet. Sci. 2021, 8, 787653. [Google Scholar] [CrossRef]
- Noack, S.; Chapman, H.D.; Selzer, P.M. Anticoccidial drugs of the livestock industry. Parasitol. Res. 2019, 118, 2009–2026. [Google Scholar] [CrossRef]
- Bafundo, K.W.; Gomez, L.; Lumpkins, B.; Mathis, G.F.; McNaughton, J.L.; Duerr, I. Concurrent use of saponins and live coccidiosis vaccines: The influence of a Quillaja and Yucca combination on anticoccidial effects and performance results of coccidia-vaccinated broilers. Poult. Sci. 2021, 100, 100905. [Google Scholar] [CrossRef]
- Liu, J.; Tuo, W.; Wu, X.; Xiong, J.; Yu, E.; Yin, C.; Ma, Z.; Liu, L. Immunoproteomic and mass spectrometric analysis of Eimeria acervulina antigens recognized by antisera from chickens infected with E. acervulina, E. tenella or E. necatrix. Parasites Vectors 2020, 13, 93. [Google Scholar] [CrossRef]
- Sander, V.A.; Corigliano, M.G.; Clemente, M. Promising plant-derived adjuvants in the development of coccidial vaccines. Front. Vet. Sci. 2019, 6, 20. [Google Scholar] [CrossRef]
- Zaheer, T.; Abbas, R.Z.; Imran, M.; Abbas, A.; Butt, A.; Aslam, S.; Ahmad, J. Vaccines against chicken coccidiosis with particular reference to previous decade: Progress, challenges, and opportunities. Parasitol Res. 2022, 121, 2749–2763. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Liao, S.; Li, J.; Liu, Q.; Luo, S.; Lv, M.; Lin, X.; Hu, J.; Zhang, J.; Qi, N.; et al. Single and combined effects of Clostridium butyricum and coccidiosis vaccine on growth performance and the intestinal microbiome of broiler chickens. Front. Microbiol. 2022, 13, 811428. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Luo, S.; Liu, Q.; Zhou, Q.; Yan, Z.; Kang, Z.; Liao, S.; Li, J.; Lv, M.; Lin, X.; et al. Effects of a complex probiotic preparation, Fengqiang Shengtai, and coccidiosis vaccine on the performance and intestinal microbiota of broilers challenged with Eimeria spp. Parasites Vectors 2023, 16, 253. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Luo, S.; Zhou, Q.; Yan, Z.; Liu, Q.; Kang, Z.; Liao, S.; Li, J.; Lv, M.; Lin, X.; et al. Effects of Bacillus subtilis and coccidiosis vaccine on growth indices and intestinal microbiota of broilers. Poult. Sci. 2022, 101, 101747. [Google Scholar] [CrossRef]
- Das, Q.; Shay, J.; Gauthier, M.; Yin, X.; Hasted, T.-L.; Ross, K.; Julien, C.; Yacini, H.; Martel Kennes, Y.; Warriner, K.; et al. Effects of vaccination against coccidiosis on gut microbiota and immunity in broilers fed bacitracin and berry pomace. Front. Immunol. 2021, 12, 621803. [Google Scholar] [CrossRef]
- Kogut, M.H. Understanding gut function in poultry: The role of commensals, metabolites, inflammation and dysbiosis in intestinal immune function and dysfunction. In Improving Gut Health in Poultry; Burleigh Dodds Science Publishing: Cambridge, UK, 2019; pp. 143–162. [Google Scholar] [CrossRef]
- Wickramasuriya, S.S.; Park, I.; Lee, K.; Lee, Y.; Kim, W.H.; Nam, H.; Lillehoj, H.S. Role of physiology, immunity, microbiota, and infectious diseases in the gut health of poultry. Vaccines 2022, 10, 172. [Google Scholar] [CrossRef]
- Clavijo, V.; Flórez, M.J.V. The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poult. Sci. 2018, 97, 1006–1021. [Google Scholar] [CrossRef]
- Eeckhaut, V.; Wang, J.; Van Parys, A.; Haesebrouck, F.; Joossens, M.; Falony, G.; Schaub, M.; Heres, L.; Ducatelle, R.; Van Immerseel, F. The probiotic Butyricicoccus pullicaecorum reduces feed conversion and protects from potentially harmful intestinal microorganisms and necrotic enteritis in broilers. Front. Microbiol. 2016, 7, 1416. [Google Scholar] [CrossRef]
- Madlala, T.; Okpeku, M.; Adeleke, M.A. Understanding the interactions between Eimeria infection and gut microbiota, towards the control of chicken coccidiosis: A review. Parasite 2021, 28, 48. [Google Scholar] [CrossRef]
- Tomal, F.; Sadrin, G.; Gaboriaud, P.; Guitton, E.; Sedano, L.; Lallier, N.; Rossignol, C.; Larcher, T.; Rouille, E.; Ledevin, M.; et al. The caecal microbiota promotes the acute inflammatory response and the loss of the intestinal barrier integrity during severe Eimeria tenella infection. Front. Cell. Infect. Microbiol. 2023, 13, 1250080. [Google Scholar] [CrossRef]
- Qiao, Y.; Feng, Q.; Wang, Q.; Zhao, Q.; Zhu, S.; Zhao, F.; Wang, Z.; Zhang, R.; Wang, J.; Yu, Y.; et al. Alteration in the Gut Microbiota of Chickens Resistant to Eimeria tenella Infection. Microorganisms 2024, 12, 2218. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.L.; Zhao, X.Y.; Zhao, G.X.; Huang, H.B.; Li, H.R.; Shi, C.W.; Yang, W.T.; Jiang, Y.L.; Wang, J.Z.; Ye, L.P.; et al. Dissection of the cecal microbial community in chickens after Eimeria tenella infection. Parasites Vectors 2020, 13, 56. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.-Y.; Liaw, J.; Soutter, F.; Jaramillo Ortiz, J.; Tomley, F.M.; Werling, D.; Gundogdu, O.; Blake, D.P.; Xia, D. Multi-Omics Analysis Reveals Regime Shifts in the Gastrointestinal Ecosystem in Chickens Following Anticoccidial Vaccination and Eimeria tenella Challenge. mSystems 2024, 9, e00947-24. [Google Scholar] [CrossRef]
- Zhou, B.; Jia, L.; Wei, S.; Ding, H.; Yang, J.; Wang, H. Effects of Eimeria tenella Infection on the Barrier Damage and Microbiota Diversity of Chicken Cecum. Poult. Sci. 2020, 99, 1297–1305. [Google Scholar] [CrossRef]
- Du, S.; Song, Z.; Cen, Y.; Fan, J.; Li, P.; Si, H.; Hu, D. Susceptibility and Cecal Microbiota Alteration to Eimeria-Infection in Yellow-Feathered Broilers, Arbor Acres Broilers and Lohmann Pink Layers. Poult. Sci. 2024, 103, 103824. [Google Scholar] [CrossRef]
- Badri, M.; Olfatifar, M.; Hayati, A.; Bijani, B.; Samimi, R.; Abdoli, A.; Nowak, O.; Diaz, D.; Eslahi, A.V. The Global Prevalence and Associated Risk Factors of Eimeria Infection in Domestic Chickens: A Systematic Review and Meta-Analysis. Vet. Med. Sci. 2024, 10, e1469. [Google Scholar] [CrossRef]
- Prakashbabu, C.; Thenmozhi, V.; Limon, G.; Kundu, K.; Kumar, S.; Garg, R.; Clark, E.L.; Srinivasa Rao, A.S.; Raj, D.G.; Raman, M.; et al. Eimeria Species Occurrence Varies between Geographic Regions and Poultry Production Systems and May Influence Parasite Genetic Diversity. Vet. Parasitol. 2017, 233, 62–72. [Google Scholar] [CrossRef]
- Rysman, K.; Eeckhaut, V.; Croubels, S.; Maertens, B.; Van Immerseel, F. Iohexol is an intestinal permeability marker in broilers under coccidiosis challenge. Poult. Sci. 2023, 102, 102690. [Google Scholar] [CrossRef]
- Johnson, J.; Reid, W.M. Anticoccidial drugs: Lesion scoring techniques in battery and floor-pen experiments with chickens. Exp. Parasitol. 1970, 28, 30–36. [Google Scholar] [CrossRef]
- Mantzios, T.; Tsiouris, V.; Papadopoulos, G.A.; Economou, V.; Petridou, E.; Brellou, G.D.; Giannenas, I.; Biliaderis, C.G.; Kiskinis, K.; Fortomaris, P. Investigation of the effect of three commercial water acidifiers on the performance, gut health, and Campylobacter jejuni colonization in experimentally challenged broiler chicks. Animals 2023, 13, 2037. [Google Scholar] [CrossRef]
- Schacksen, P.S.; Østergaard, S.K.; Eskildsen, M.H.; Nielsen, J.L. Complete pipeline for Oxford Nanopore Technology amplicon sequencing (ONT-AmpSeq): From pre-processing to creating an operational taxonomic unit table. FEBS Open Bio 2024, 14, 1779–1787. [Google Scholar] [CrossRef] [PubMed]
- De Coster, W.; Rademakers, R. NanoPack2: Population-scale evaluation of long-read sequencing data. Bioinformatics 2023, 39, btad311. [Google Scholar] [CrossRef] [PubMed]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C.; Flyvbjerg, H. Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 2015, 31, 3476–3482. [Google Scholar] [CrossRef]
- Vaser, R.; Sović, I.; Nagarajan, N.; Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017, 27, 737–746. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016, 44, D733–D745. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package (Version 2.6-8). CRAN. 2024. Available online: https://CRAN.R-project.org/package=vegan (accessed on 15 February 2025).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; Available online: https://ggplot2.tidyverse.org/ (accessed on 15 February 2025).
- Segata, N.; Izard, J.; Walron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef]
- Yang, C.; Mai, J.; Cao, X.; Burberry, A.; Cominelli, F.; Zhang, L. ggpicrust2: An R package for PICRUSt2 predicted functional profile analysis and visualization. Bioinformatics 2023, 39, btad470. [Google Scholar] [CrossRef] [PubMed]
- Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Fong, I.W. Animals and Mechanisms of Disease Transmission. In Emerging Zoonoses. Emerging Infectious Diseases of the 21st Century; Fong, I.W., Ed.; Springer: Cham, Switzerland, 2017; pp. 15–41. [Google Scholar] [CrossRef]
- Razavi, S.M.; Soltan, M.S.; Abbasian, K.; Karami, A.; Nazifi, S. Acute phase response and oxidative stress in coccidiosis: A review in domestic animals. Vet. Parasitol. 2024, 331, 110286. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.; Walk, C.; Misiura, M.; Sorbara, J.B.; Giannenas, I.; Kyriazakis, I. Quantifying the effect of coccidiosis on broiler performance and infection outcomes in the presence and absence of control methods. Poult. Sci. 2022, 101, 101746. [Google Scholar] [CrossRef]
- Swinkels, W.J.; Post, J.; Cornelissen, J.B.; Engel, B.; Boersma, W.J.; Rebel, J.M. Immune responses to an Eimeria acervulina infection in different broiler lines. Vet. Immunol. Immunopathol. 2007, 117, 26–34. [Google Scholar] [CrossRef]
- Wu, S.H.; Shu, X.O.; Milne, G.; Xiang, Y.B.; Zhang, X.; Cai, Q.; Fazio, S.; Linton, M.F.; Chen, H.; Purdue, M.; et al. Uric acid correlates to oxidation and inflammation in opposite directions in women. Biomarkers 2015, 20, 225–231. [Google Scholar] [CrossRef]
- Gryaznova, M.V.; Dvoretskaya, Y.D.; Syromyatnikov, M.Y.; Shabunin, S.V.; Parshin, P.A.; Mikhaylov, E.V.; Popov, V.N. Changes in the microbiome profile in different parts of the intestine in piglets with diarrhea. Animals 2022, 12, 320. [Google Scholar] [CrossRef]
- Wu, S.B.; Stanley, D.; Rodgers, N.; Swick, R.A.; Moore, R.J. Two necrotic enteritis predisposing factors, dietary fishmeal and Eimeria infection, induce large changes in the caecal microbiota of broiler chickens. Vet. Microbiol. 2014, 169, 188–197. [Google Scholar] [CrossRef]
- Su, L.; Huang, S.; Huang, Y.; Bai, X.; Zhang, R.; Lei, Y.; Wang, X. Effects of Eimeria challenge on growth performance, intestine integrity, and cecal microbial diversity and composition of yellow broilers. Poult. Sci. 2024, 103, 104470. [Google Scholar] [CrossRef]
- Vrba, V.; Pakandl, M. Host specificity of turkey and chicken Eimeria: Controlled cross-transmission studies and a phylogenetic view. Vet. Parasitol. 2015, 208, 118–124. [Google Scholar] [CrossRef]
- Lee, N.; Sharma, M.K.; Paneru, D.; Ward, E.D.; Kim, W.K.; Suh, J.H. Metabolomic analysis reveals altered amino acid metabolism and mechanisms underlying Eimeria infection in laying hens. Poult. Sci. 2024, 103, 104244. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Zeng, Z.X.; Cheng, Z.X.; Wang, Y.L.; Yuan, L.J.; Zhai, Z.Y.; Gong, W. Common pathogenic bacteria-induced reprogramming of the host proteinogenic amino acids metabolism. Amino Acids 2023, 55, 1487–1499. [Google Scholar] [CrossRef] [PubMed]
- Muranaka, Y.; Matsue, M.; Mizutani, A.; Kobayashi, M.; Sato, K.; Kondo, A.; Nishiyama, Y.; Ohata, S.; Nishi, K.; Yamazaki, K.; et al. Evaluation of L-alanine metabolism in bacteria and whole-body distribution with bacterial infection model mice. Int. J. Mol. Sci. 2023, 24, 4775. [Google Scholar] [CrossRef]
- Wu, G. Functional amino acids in growth, reproduction, and health. Adv. Nutr. 2010, 1, 31–37. [Google Scholar] [CrossRef]
- Lee, Y.; Lu, M.; Lillehoj, H.S. Coccidiosis: Recent progress in host immunity and alternatives to antibiotic strategies. Vaccines 2022, 10, 215. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, M.; Pu, Z.; Xu, G.; Li, X. Relationship between oxidative stress and inflammation in hyperuricemia: Analysis based on asymptomatic young patients with primary hyperuricemia. Medicine 2018, 97, e13108. [Google Scholar] [CrossRef]
- Cloft, S.E.; Miska, K.B.; Jenkins, M.; Proszkowiec-Weglarz, M.; Kahl, S.; Wong, E.A. Temporal changes of genes associated with intestinal homeostasis in broiler chickens following a single infection with Eimeria acervulina. Poult. Sci. 2023, 102, 102537. [Google Scholar] [CrossRef]
- Jia, M.; Lei, J.; Dong, Y.; Guo, Y.; Zhang, B. The interactive effects of nutrient density and breed on growth performance and gut microbiota in broilers. Animals 2024, 14, 3528. [Google Scholar] [CrossRef]
- Liu, J.; Stewart, S.N.; Robinson, K.; Yang, Q.; Lyu, W.; Whitmore, M.A.; Zhang, G. Linkage between the intestinal microbiota and residual feed intake in broiler chickens. J. Anim. Sci. Biotechnol. 2021, 12, 22. [Google Scholar] [CrossRef]
- Wang, B.; Du, P.; Huang, S.; He, D.; Chen, J.; Wen, X.; Yang, J.; Xian, S.; Cheng, Z. Comparison of the caecal microbial community structure and physiological indicators of healthy and infection Eimeria tenella chickens during peak of oocyst shedding. Avian Pathol. 2022, 52, 51–61. [Google Scholar] [CrossRef]
- Macdonald, S.E.; Nolan, M.J.; Harman, K.; Boulton, K.; Hume, D.A.; Tomley, F.M.; Blake, D.P.; Smith, A.L. Effects of Eimeria tenella infection on chicken caecal microbiome diversity, exploring variation associated with severity of pathology. PLoS ONE 2017, 12, e0184890. [Google Scholar] [CrossRef] [PubMed]
- Gerner, R.R.; Klepsch, V.; Macheiner, S.; Arnhard, K.; Adolph, T.E.; Grander, C.; Wieser, V.; Pfister, A.; Moser, P.; Hermann-Kleiter, N.; et al. NAD metabolism fuels human and mouse intestinal inflammation. Gut 2018, 67, 1813–1823. [Google Scholar] [CrossRef] [PubMed]
- Otten, A.T.; Bourgonje, A.R.; Peters, V.; Alizadeh, B.Z.; Dijkstra, G.; Harmsen, H.J. Vitamin C supplementation in healthy individuals leads to shifts of bacterial populations in the gut-a pilot study. Antioxidants 2021, 10, 1278. [Google Scholar] [CrossRef] [PubMed]
- Pham, V.T.; Fehlbaum, S.; Seifert, N.; Richard, N.; Bruins, M.J.; Sybesma, W.; Steinert, R.E. Effects of colon-targeted vitamins on the composition and metabolic activity of the human gut microbiome—A pilot study. Gut Microbes 2021, 13, 1875774. [Google Scholar] [CrossRef]
- Tsiouris, V.; Mantzios, T.; Kiskinis, K.; Fortomaris, P. Feed additives to combat intestinal diseases in antibiotic-free poultry farming. In Sustainable Use of Feed Additives in Livestock; Arsenos, G., Giannenas, I., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Sakamoto, M.; Sakurai, N.; Tanno, H.; Iino, T.; Ohkuma, M.; Endo, A. Genome-Based, Phenotypic and Chemotaxonomic Classification of Faecalibacterium Strains: Proposal of Three Novel Species Faecalibacterium duncaniae sp. nov., Faecalibacterium hattorii sp. nov. and Faecalibacterium gallinarum sp. nov. Int. J. Syst. Evol. Microbiol. 2022, 72, 005421. [Google Scholar] [CrossRef]
- Miquel, S.; Martín, R.; Rossi, O.; Bermúdez-Humarán, L.G.; Chatel, J.M.; Sokol, H.; Thomas, M.; Wells, J.M.; Langella, P. Faecalibacterium prausnitzii and Human Intestinal Health. Curr. Opin. Microbiol. 2013, 16, 255–261. [Google Scholar] [CrossRef]
- Silvestre-Ryan, J.; Holmes, I. Pair consensus decoding improves accuracy of neural network basecallers for nanopore sequencing. Genome Biol. 2021, 22, 38. [Google Scholar] [CrossRef]
- Srivathsan, A.; Feng, V.; Suárez, D.; Emerson, B.; Meier, R. ONTbarcoder 2.0: Rapid species discovery and identification with real-time barcoding facilitated by Oxford Nanopore R10.4. Cladistics 2024, 40, 192–203. [Google Scholar] [CrossRef]
- Tsifintaris, M.; Kiousi, D.E.; Repanas, P.; Kamarinou, C.S.; Kavakiotis, I.; Galanis, A. Probio-Ichnos: A database of microorganisms with in vitro probiotic properties. Microorganisms 2024, 12, 1955. [Google Scholar] [CrossRef]
- Mantzios, T.; Kiousi, D.E.; Brellou, G.D.; Papadopoulos, G.A.; Economou, V.; Vasilogianni, M.; Kanari, E.; Petridou, E.; Giannenas, I.; Tellez-Isaias, G.; et al. Investigation of Potential Gut Health Biomarkers in Broiler Chicks Challenged by Campylobacter jejuni and Submitted to a Continuous Water Disinfection Program. Pathogens 2024, 13, 356. [Google Scholar] [CrossRef]
Age/Period (days) | Group A (Negative Control) | Group B (Eimeria spp. Challenge) | Group C (Eimeria spp. Challenge and Vaccine) | p |
---|---|---|---|---|
Body weight (BW, g) | ||||
1st | 44 ± 3 | 44 ± 3 | 45 ± 3 | 0.206 |
9th | 165 ± 22 | 163 ± 22 | 158 ± 25 | 0.145 |
16th | 416 ± 72 | 435 ± 52 | 425 ± 56 | 0.162 |
18th | 544 ± 69 | 569 ± 63 | 553 ± 67 | 0.067 |
20th | 681 ± 88 | 691 ± 77 | 680 ± 83 | 0.687 |
22nd | 817 ± 102 | 812 ± 94 | 815 ± 93 | 0.954 |
24th | 949 ± 126 | 943 ± 111 | 953 ± 117 | 0.895 |
29th | 1383 ± 165 | 1364 ± 143 | 1390 ± 154 | 0.683 |
35th | 1991 ± 232 | 1948 ± 210 | 2033 ± 222 | 0.265 |
Average daily weight gain (ADWG, g) | ||||
1–9 | 15.12 ± 1.42 | 14.82 ± 0.95 | 14.19 ± 1.01 | 0.383 |
9–22 | 50.18 ± 3.26 | 49.95 ± 1.31 | 50.58 ± 1.31 | 0.879 |
22–29 | 80.79 ± 3.46 | 78.98 ± 2.97 | 82.06 ± 5.00 | 0.412 |
29–35 | 101.44 ± 9.82 | 97.06 ± 7.14 | 107.28 ± 6.14 | 0.111 |
22–35 | 90.32 ± 4.53 a,b | 87.32 ± 3.62 a | 93.70 ± 2.60 b | 0.029 |
1–35 | 57.27 ± 1.64 a,b | 55.97 ± 1.51 a | 58.50 ± 1.04 b | 0.025 |
Average daily feed intake (ADFI, g) | ||||
1–9 | 14.42 ± 1.77 | 15.05 ± 1.78 | 14.58 ± 1.24 | 0.787 |
9–22 | 62.37 ± 1.99 | 61.70 ± 1.39 | 60.65 ± 1.07 | 0.181 |
22–29 | 104.16 ± 1.51 a | 106.65 ± 1.55 b | 107.74 ± 1.79 b | 0.005 |
29–35 | 132.58 ± 5.51 | 135.70 ± 8.80 | 132.30 ± 2.37 | 0.580 |
22–35 | 129.63 ± 3.86 | 131.92 ± 1.60 | 132.11 ± 2.25 | 0.247 |
1–35 | 73.41 ± 1.03 | 73.76 ± 1.06 | 73.39 ± 0.32 | 0.714 |
Feed conversion ratio (FCR g:g) | ||||
1–9 | 1.12 ± 0.08 | 1.19 ± 0.16 | 1.21 ± 0.12 | 0.427 |
9–22 | 1.34 ± 0.06 | 1.33 ± 0.03 | 1.29 ± 0.03 | 0.148 |
22–29 | 1.52 ± 0.05 | 1.60 ± 0.07 | 1.59 ± 0.08 | 0.150 |
29–35 | 1.66 ± 0.13 | 1.61 ± 0.09 | 1.55 ± 0.10 | 0.248 |
22–35 | 1.63 ± 0.06 | 1.67 ± 0.08 | 1.64 ± 0.09 | 0.856 |
1–35 | 1.49 ± 0.03 | 1.50 ± 0.03 | 1.47 ± 0.04 | 0.439 |
Day 23 (7 dpi) | Score | Group A (Negative Control) | Group B (Eimeria spp. Challenge) | Group C (Eimeria spp. Challenge and Vaccine) | p |
---|---|---|---|---|---|
Day 23 (7 dpi) | |||||
E. acervulina | 0 | 18 (100%) | 13 (72.2%) | 17 (94.4%) | 0.089 |
1 | 0 (0%) | 4 (22.2%) | 1 (5.6%) | ||
2 | 0 (0%) | 1 (5.6%) | 0 (0%) | ||
3 | 0 (0%) | 0 (0%) | 0 (0%) | ||
4 | 0 (0%) | 0 (0%) | 0 (0%) | ||
AV | 0.00 ± 0.00 a | 0.33 ± 0.59 b | 0.06 ± 0.24 a | 0.020 | |
E. tenella | 0 | 18 (100%) | 0 (0%) | 8 (44.4%) | |
1 | 0 (0%) | 3 (16.7%) | 7 (38.9%) | <0.001 | |
2 | 0 (0%) | 15 (83.3%) | 3 (16.7%) | ||
3 | 0 (0%) | 0 (0%) | 0 (0%) | ||
4 | 0 (0%) | 0 (0%) | 0 (0%) | ||
AV | 0.00 ± 0.00 a | 1.83 ± 0.38 c | 0.72 ± 0.75 b | <0.001 | |
TMLS | 0.00 ± 0.00 a | 2.17 ± 0.71 c | 0.78 ± 0.81 b | <0.001 | |
Day 29 (13 dpi) | |||||
E. acervulina | 0 | 18 (100%) | 16 (94.1%) | 17 (94.4%) | 0.585 |
1 | 0 (0%) | 1 (5.9%) | 1 (5.6%) | ||
2 | 0 (0%) | 0 (0%) | 0 (0%) | ||
3 | 0 (0%) | 0 (0%) | 0 (0%) | ||
4 | 0 (0%) | 0 (0%) | 0 (0%) | ||
Total | 18 (100%) | 17 (100%) | 18 (100%) | ||
AV | 0.00 ± 0.00 | 0.06 ± 0.24 | 0.06 ± 0.24 | 0.600 | |
E. tenella | 0 | 18 (100%) | 4 (23.5%) | 12(66.7%) | <0.001 |
1 | 0 (0%) | 10 (58.9%) | 6 (33.3%) | ||
2 | 0 (0%) | 3 (17.6%) | 0 (0%) | ||
3 | 0 (0%) | 0 (0%) | 0 (0%) | ||
4 | 0 (0%) | 0 (0%) | 0 (0%) | ||
Total | 18 (100%) | 17 (100%) | 18 (100%) | ||
AV | 0.00 ± 0.00 a | 0.94 ± 0.66 c | 0.33 ± 0.49 b | <0.001 | |
TMLS | 0.00 ± 0.00 a | 1.00 ± 0.61 c | 0.39 ± 0.61 b | <0.001 |
Dysbiosis Score | Group A (Negative Control) | Group B (Eimeria spp. Challenge) | Group C (Eimeria spp. Challenge and Vaccine) | p |
---|---|---|---|---|
1 | 0 (0%) | 1 (5.6%) | 0 (0%) | 0.014 |
2 | 0 (0%) | 0 (0%) | 2 (11%) | |
3 | 6 (33.4%) | 0 (0%) | 2 (11%) | |
4 | 9 (50%) | 11 (61.1%) | 4 (22.2%) | |
5 | 3 (16.6%) | 4 (22.2%) | 5 (27.8%) | |
6 | 0 (0%) | 2 (11.1%) | 5 (27.8%) | |
AV | 2.83 ± 0.71 | 3.28 ± 1.07 | 3.50 ± 1.34 | 0.175 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karadedos, D.M.; Mantzios, T.; Kiousi, D.E.; Tsifintaris, M.; Giannenas, I.; Sakkas, P.; Papadopoulos, G.A.; Antonissen, G.; Pappa, A.; Galanis, A.; et al. Metagenomic Insight into Cecal Microbiota Shifts in Broiler Chicks Following Eimeria spp. Vaccination. Microorganisms 2025, 13, 1470. https://doi.org/10.3390/microorganisms13071470
Karadedos DM, Mantzios T, Kiousi DE, Tsifintaris M, Giannenas I, Sakkas P, Papadopoulos GA, Antonissen G, Pappa A, Galanis A, et al. Metagenomic Insight into Cecal Microbiota Shifts in Broiler Chicks Following Eimeria spp. Vaccination. Microorganisms. 2025; 13(7):1470. https://doi.org/10.3390/microorganisms13071470
Chicago/Turabian StyleKaradedos, Dimitrios Marinos, Tilemachos Mantzios, Despoina Eugenia Kiousi, Margaritis Tsifintaris, Ilias Giannenas, Panagiotis Sakkas, Georgios A. Papadopoulos, Gunther Antonissen, Aglaia Pappa, Alex Galanis, and et al. 2025. "Metagenomic Insight into Cecal Microbiota Shifts in Broiler Chicks Following Eimeria spp. Vaccination" Microorganisms 13, no. 7: 1470. https://doi.org/10.3390/microorganisms13071470
APA StyleKaradedos, D. M., Mantzios, T., Kiousi, D. E., Tsifintaris, M., Giannenas, I., Sakkas, P., Papadopoulos, G. A., Antonissen, G., Pappa, A., Galanis, A., & Tsiouris, V. (2025). Metagenomic Insight into Cecal Microbiota Shifts in Broiler Chicks Following Eimeria spp. Vaccination. Microorganisms, 13(7), 1470. https://doi.org/10.3390/microorganisms13071470