Antiviral Activity of Brazilian Propolis from Stingless Bees Against Rotavirus
Abstract
1. Introduction
2. Materials and Methods
2.1. Origin and Extractions of the Propolis Samples
2.2. Cell Lines
2.3. Cell Viability Assay
2.4. Quantification of the Inicial Concentration of the Wa Rotavirus Strains
2.5. Antiviral Activity of Brazilian EEP Against RV Strain
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RV | Group A rotavirus |
GI | Gastrointestinal disease |
SBs | Stingless bees |
PB | Brazilian propolis |
EEP | Ethanolic extracts of propolis |
MTT | Bromide 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium |
DMSO | Dimethyl sulfoxide |
IBT | Biotechnology Institute |
FFU | Focus forming units |
MOI | Multiplicity of infection |
References
- Zullkiflee, N.; Taha, H.; Usman, A. Propolis: Its Role and Efficacy in Human Health and Diseases. Molecules 2022, 27, 6120. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, P.; Mahanta, D.; Kaul, A.; Ishida, Y.; Terao, K.; Wadhwa, R.; Kaul, S.C. Experimental Evidence for Therapeutic Potentials of Propolis. Nutrients 2021, 13, 2528. [Google Scholar] [CrossRef] [PubMed]
- Popova, M.; Trusheva, B.; Bankova, V. Propolis of Stingless Bees: A Phytochemist’s Guide through the Jungle of Tropical Biodiversity. Phytomedicine 2021, 86, 153098. [Google Scholar] [CrossRef]
- Salatino, A.; Pereira, L.R.L.; Salatino, M.L.F. The Emerging Market of Propolis of Stingless Bees in Tropical Countries. MOJ Food Process. Technol. 2019, 7, 27–29. [Google Scholar] [CrossRef]
- Boncristiani, H.; Ellis, J.D.; Bustamante, T.; Graham, J.; Jack, C.; Kimmel, C.B.; Mortensen, A.; Schmehl, D.R. World Honey Bee Health: The Global Distribution of Western Honey Bee (Apis mellifera L.) Pests and Pathogens. Bee World 2021, 98, 2–6. [Google Scholar] [CrossRef]
- Chuttong, B.; Lim, K.; Praphawilai, P.; Danmek, K.; Maitip, J.; Vit, P.; Wu, M.C.; Ghosh, S.; Jung, C.; Burgett, M.; et al. Exploring the Functional Properties of Propolis, Geopropolis, and Cerumen, with a Special Emphasis on Their Antimicrobial Effects. Foods 2023, 12, 3909. [Google Scholar] [CrossRef]
- Lavinas, F.C.; Macedo, E.H.B.C.; Sá, G.B.L.; Amaral, A.C.F.; Silva, J.R.A.; Azevedo, M.M.B.; Vieira, B.A.; Domingos, T.F.S.; Vermelho, A.B.; Carneiro, C.S.; et al. Brazilian Stingless Bee Propolis and Geopropolis: Promising Sources of Biologically Active Compounds. Rev. Bras. Farmacogn. 2019, 29, 389–399. [Google Scholar] [CrossRef]
- Regnier, L.; Salatino, M.-L.F.; Salatino, A. Parameters of the Gross Composition of Propolis from Brazilian Meliponini. J. Apic. Res. 2024, 63, 1019–1027. [Google Scholar] [CrossRef]
- Pereira, F.A.N.; Barboza, J.R.; Vasconcelos, C.C.; Lopes, A.J.O.; Ribeiro, M.N.d.S. Use of Stingless Bee Propolis and Geopropolis against Cancer—A Literature Review of Preclinical Studies. Pharmaceuticals 2021, 14, 1161. [Google Scholar] [CrossRef]
- Rocha, V.M.; Portela, R.D.; dos Anjos, J.P.; de Souza, C.O.; Umsza-Guez, M.A. Stingless Bee Propolis: Composition, Biological Activities and Its Applications in the Food Industry. Food Prod. Process. Nutr. 2023, 5, 29. [Google Scholar] [CrossRef]
- Kasote, D.; Bankova, V.; Viljoen, A.M. Propolis: Chemical Diversity and Challenges in Quality Control. Phytochem. Rev. 2022, 21, 1887–1911. [Google Scholar] [CrossRef] [PubMed]
- Anjum, S.I.; Ullah, A.; Khan, K.A.; Attaullah, M.; Khan, H.; Ali, H.; Bashir, M.A.; Tahir, M.; Ansari, M.J.; Ghramh, H.A.; et al. Composition and Functional Properties of Propolis (Bee Glue): A Review. Saudi J. Biol. Sci. 2019, 26, 1695–1703. [Google Scholar] [CrossRef]
- Baldomir da Cruz, F.; Martins, D.H.N.; de Freitas Ferreira, J.; De Oliveira Magalhães, P.; Silveira, D.; Fonseca Bazzo, Y.M. Antioxidant Activity of Apis mellifera Bee Propolis: A Review. J. Nat. Prod. Discov. 2022, 1, 1–44. [Google Scholar] [CrossRef]
- Socha, R.; Gałkowska, D.; Bugaj, M.; Juszczak, L. Phenolic Composition and Antioxidant Activity of Propolis from Various Regions of Poland. Nat. Prod. Res. 2015, 29, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, N.A.; Zullkiflee, N.; Zaini, S.N.Z.; Taha, H.; Hashim, F.; Usman, A. Phytochemicals, Mineral Contents, Antioxidants, and Antimicrobial Activities of Propolis Produced by Brunei Stingless Bees Geniotrigona Thoracica, Heterotrigona Itama, and Tetrigona Binghami. Saudi J. Biol. Sci. 2020, 27, 2902–2911. [Google Scholar] [CrossRef]
- Deac, L.M. Infectious Diarrhea, a Public Health Problem in Population. Biomed. Res. Clin. Rev. 2021, 4. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Chase, R.C.; Li, T.; Ramai, D.; Li, S.; Huang, X.; Antwi, S.O.; Keaveny, A.P.; Pang, M. Global Burden of Digestive Diseases: A Systematic Analysis of the Global Burden of Diseases Study, 1990 to 2019. Gastroenterology 2023, 165, 773–783. [Google Scholar] [CrossRef]
- Rivera-Dominguez, G.; Ward, R. Pediatric Gastroenteritis. Available online: https://www.ncbi.nlm.nih.gov/books/NBK499939/ (accessed on 24 January 2024).
- Shonhiwa, A.M.; Ntshoe, G.; Crisp, N.; Olowolagba, A.J.; Mbuthu, V.; Taylor, M.B.; Thomas, J.; Page, N.A. Investigation of Two Suspected Diarrhoeal-Illness Outbreaks in Northern Cape and KwaZulu-Natal Provinces, South Africa, April–July 2013: The Role of Rotavirus. S. Afr. J. Infect. Dis. 2020, 35, a159. [Google Scholar] [CrossRef]
- Omatola, C.A.; Olaniran, A.O. Rotaviruses: From Pathogenesis to Disease Control—A Critical Review. Viruses 2022, 14, 875. [Google Scholar] [CrossRef]
- Varghese, T.; Kang, G.; Steele, A.D. Understanding Rotavirus Vaccine Efficacy and Effectiveness in Countries with High Child Mortality. Vaccines 2022, 10, 346. [Google Scholar] [CrossRef]
- Du, Y.; Chen, C.; Zhang, X.; Yan, D.; Jiang, D.; Liu, X.; Yang, M.; Ding, C.; Lan, L.; Hecht, R.; et al. Global Burden and Trends of Rotavirus Infection-Associated Deaths from 1990 to 2019: An Observational Trend Study. Virol. J. 2022, 19, 166. [Google Scholar] [CrossRef]
- Caddy, S.; Papa, G.; Borodavka, A.; Desselberger, U. Rotavirus Research: 2014–2020. Virus Res. 2021, 304, 198499. [Google Scholar] [CrossRef]
- Hatib, A.; Hassou, N.; Ennaji, M. Monitoring of Group A Rotavirus Strains Circulating in the Environment and Among Children with Acute Gastroenteritis. J. Biomed. Res. Environ. Sci. 2021, 2, 104–113. [Google Scholar] [CrossRef]
- Bouseettine, R.; Hassou, N.; Hatib, A.; Berradi, B.; Bessi, H.; Ennaji, M.M. Worldwide Emerging and Reemerging Rotavirus Genotypes: Genetic Variability and Interspecies Transmission in Health and Environment. In Emerging and Reemerging Viral Pathogens: Volume 1: Fundamental and Basic Virology Aspects of Human, Animal and Plant Pathogens; Academic Press: Cambridge, MA, USA, 2020; pp. 1017–1040. [Google Scholar]
- Kirkwood, C.D.; Ma, L.F.; Carey, M.E.; Steele, A.D. The Rotavirus Vaccine Development Pipeline. Vaccine 2019, 37, 7328–7335. [Google Scholar] [CrossRef]
- Ruiz, M.C.; Leon, T.; Díaz, Y.; Michelangeli, F. Molecular Biology of Rotavirus Entry and Replication. Sci. World J. 2009, 9, 1476–1497. [Google Scholar] [CrossRef]
- Jiang, L.; Tang, A.; Song, L.; Tong, Y.; Fan, H. Advances in the Development of Antivirals for Rotavirus Infection. Front. Immunol. 2023, 14, 1041149. [Google Scholar] [CrossRef] [PubMed]
- de la Flor i Brú, J. Gastroenteritis Aguda. Pediatr. Integral 2019, 23, 348–355. [Google Scholar]
- Steyer, A.; Mičetić-Turk, D.; Fijan, S. The Efficacy of Probiotics as Antiviral Agents for the Treatment of Rotavirus Gastrointestinal Infections in Children: An Updated Overview of Literature. Microorganisms 2022, 10, 2392. [Google Scholar] [CrossRef]
- Rocha, M.P.; Amorim, J.M.; Lima, W.G.; Brito, J.C.M.; da Cruz Nizer, W.S. Effect of Honey and Propolis, Compared to Acyclovir, against Herpes Simplex Virus (HSV)-Induced Lesions: A Systematic Review and Meta-Analysis. J. Ethnopharmacol. 2022, 287, 114939. [Google Scholar] [CrossRef]
- Yosri, N.; Abd El-Wahed, A.A.; Ghonaim, R.; Khattab, O.M.; Sabry, A.; Ibrahim, M.A.A.; Moustafa, M.F.; Guo, Z.; Zou, X.; Algethami, A.F.M.; et al. Anti-Viral and Immunomodulatory Properties of Propolis: Chemical Diversity, Pharmacological Properties, Preclinical and Clinical Applications, and in Silico Potential against SARS-CoV-2. Foods 2021, 10, 1776. [Google Scholar] [CrossRef]
- Vilhelmova-Ilieva, N.M.; Nikolova, I.N.; Nikolova, N.Y.; Petrova, Z.D.; Trepechova, M.S.; Holechek, D.I.; Todorova, M.M.; Topuzova, M.G.; Ivanov, I.G.; Tumbarski, Y.D. Antiviral Potential of Specially Selected Bulgarian Propolis Extracts: In Vitro Activity against Structurally Different Viruses. Life 2023, 13, 1611. [Google Scholar] [CrossRef]
- Saifulazmi, N.F.; Rohani, E.R.; Harun, S.; Bunawan, H.; Hamezah, H.S.; Nor Muhammad, N.A.; Azizan, K.A.; Ahmed, Q.U.; Fakurazi, S.; Mediani, A.; et al. A Review with Updated Perspectives on the Antiviral Potentials of Traditional Medicinal Plants and Their Prospects in Antiviral Therapy. Life 2022, 12, 1287. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, R.Z.; Nascimento, R.M.; Fernandes, A.C.O.; Silva, P.I., Jr. Antiviral Action of Aqueous Extracts of Propolis from Scaptotrigona aff. postica (Hymenoptera; Apidae) against Zica, Chikungunya, and Mayaro Virus. Sci. Rep. 2024, 14, 15289. [Google Scholar] [CrossRef] [PubMed]
- Rocha, V.M.; Portela, R.W.; Lacerda, L.E.; Sokolonski, A.R.; de Souza, C.O.; dos Anjos, J.P.; Nascimento, R.Q.; Umsza-Guez, M.A. Propolis from Different Brazilian Stingless Bee Species: Phenolic Composition and Antimicrobial Activity. Food Prod. Process. Nutr. 2024, 6, 12. [Google Scholar] [CrossRef]
- Escriche, I.; Juan-Borrás, M. Standardizing the Analysis of Phenolic Profile in Propolis. Food Res. Int. 2018, 106, 834–841. [Google Scholar] [CrossRef]
- Superti, F.; Tinari, A.; Baldassarri, L.; Donelli, G. HT-29 Cells: A New Substrate for Rotavirus Growth. Arch. Virol. 1991, 116, 159–173. [Google Scholar] [CrossRef] [PubMed]
- Romero-Arguelles, R.; Tamez-Guerra, P.; González-Ochoa, G.; Romo-Sáenz, C.I.; Gomez-Flores, R.; Flores-Mendoza, L.; Aros-Uzarraga, E. Bifidobacterium Longum and Chlorella Sorokiniana Improve the IFN Type I-Mediated Antiviral Response in Rotavirus-Infected Cells. Microorganisms 2023, 11, 1237. [Google Scholar] [CrossRef]
- Chasey, D. Investigation of Immunoperoxidase-Labelled Rotavirus in Tissue Culture by Light and Electron Microscopy. J. General. Virol. 1980, 50, 195–200. [Google Scholar] [CrossRef]
- Alvarez, A.; Barisone, G.A.; Diaz, E. Focus Formation: A Cell-Based Assay to Determine the Oncogenic Potential of a Gene. J. Vis. Exp. 2014, 94, 51742. [Google Scholar] [CrossRef]
- ISO-10993-5; Biological Evaluation of Medical Devices. Part 5: Tests for In Vitro Cytotoxicity. ISO: Geneva, Switzerland, 2009.
- Barboza, J.R.; Pereira, F.A.N.; Fernandes, R.A.; Vasconcelos, C.C.; Cartágenes, M.d.S.d.S.; Oliveira Lopes, A.J.; Melo, A.C.d.; Guimarães, I.d.S.; Rocha, C.Q.d.; Ribeiro, M.N.d.S. Cytotoxicity and Pro-Apoptotic, Antioxidant and Anti-Inflammatory Activities of Geopropolis Produced by the Stingless Bee Melipona fasciculata Smith. Biology 2020, 9, 292. [Google Scholar] [CrossRef]
- Choudhari, M.K.; Haghniaz, R.; Rajwade, J.M.; Paknikar, K.M. Anticancer Activity of Indian Stingless Bee Propolis: An In Vitro Study. Evid.-Based Complement. Altern. Med. 2013, 2013, 928280. [Google Scholar] [CrossRef] [PubMed]
- Miryan, M.; Alavinejad, P.; Abbaspour, M.; Soleimani, D.; Ostadrahimi, A. Does Propolis Affect the Quality of Life and Complications in Subjects with Irritable Bowel Syndrome (Diagnosed with Rome IV Criteria)? A Study Protocol of the Randomized, Double-Blinded, Placebo-Controlled Clinical Trial. Trials 2020, 21, 698. [Google Scholar] [CrossRef] [PubMed]
- Hossain, S.; Yousaf, M.; Liu, Y.; Chang, D.; Zhou, X. An Overview of the Evidence and Mechanism of Drug–Herb Interactions Between Propolis and Pharmaceutical Drugs. Front. Pharmacol. 2022, 13, 876183. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.W.; Sze, D.M.Y.; Chan, W.K.; Deng, R.X.; Tu, W.; Chan, G.C.F. Brazilian Green Propolis and Its Constituent, Artepillin C Inhibits Allogeneic Activated Human CD4 T Cells Expansion and Activation. J. Ethnopharmacol. 2011, 138, 463–471. [Google Scholar] [CrossRef]
- Suffness, M.; Pezzuto, J. Assays Related to Cancer Drug Discovery. In Methods in Plant Biochemistry: Assays for Bioactivity; Academic Press: London, UK, 1990; Volume 6. [Google Scholar]
- Tutunchi, H.; Naeini, F.; Ostadrahimi, A.; Hosseinzadeh-Attar, M.J. Naringenin, a Flavanone with Antiviral and Anti-Inflammatory Effects: A Promising Treatment Strategy against COVID-19. Phytother. Res. 2020, 34, 3137–3147. [Google Scholar] [CrossRef]
- Cai, J.; Wen, H.; Zhou, H.; Zhang, D.; Lan, D.; Liu, S.; Li, C.; Dai, X.; Song, T.; Wang, X.; et al. Naringenin: A Flavanone with Anti-Inflammatory and Anti-Infective Properties. Biomed. Pharmacother. 2023, 164, 114990. [Google Scholar] [CrossRef]
- Banerjee, S.; Sarkar, R.; Mukherjee, A.; Miyoshi, S.I.; Kitahara, K.; Halder, P.; Koley, H.; Chawla-Sarkar, M. Quercetin, a Flavonoid, Combats Rotavirus Infection by Deactivating Rotavirus-Induced pro-Survival NF-ΚB Pathway. Front. Microbiol. 2022, 13, 951716. [Google Scholar] [CrossRef]
- Choi, H.J. Antiviral Activity of Flavonoids Against Non-Polio Enteroviruses. J. Bacteriol. Virol. 2023, 53, 29–42. [Google Scholar] [CrossRef]
- Wang, D.; Chen, J.; Pu, L.; Yu, L.; Xiong, F.; Sun, L.; Yu, Q.; Cao, X.; Chen, Y.; Peng, F.; et al. Galangin: A Food-Derived Flavonoid with Therapeutic Potential against a Wide Spectrum of Diseases. Phytother. Res. 2023, 37, 5700–5723. [Google Scholar] [CrossRef]
- Huang, H.; Liao, D.; Zhou, G.; Zhu, Z.; Cui, Y.; Pu, R. Antiviral Activities of Resveratrol against Rotavirus in Vitro and in Vivo. Phytomedicine 2020, 77, 153230. [Google Scholar] [CrossRef]
- Pal, D.; Bareth, K.; Rani, P.; Kandar, C.C.; Mishra, A. Coumarins as Emerging Anti-Viral Compounds from Natural Origins: Ethnopharmacology, Chemistry, Mechanism of Action, Clinical and Preclinical Studies, and Future Perspectives. In Anti-Viral Metabolites from Medicinal Plants; Reference Series in Phytochemistry; Springer: Cham, Switzerland, 2024; pp. 1039–1065. [Google Scholar]
- de Carvalho, F.M.d.A.; Schneider, J.K.; de Jesus, C.V.F.; de Andrade, L.N.; Amaral, R.G.; David, J.M.; Krause, L.C.; Severino, P.; Soares, C.M.F.; Caramão Bastos, E.; et al. Brazilian Red Propolis: Extracts Production, Physicochemical Characterization, and Cytotoxicity Profile for Antitumor Activity. Biomolecules 2020, 10, 726. [Google Scholar] [CrossRef] [PubMed]
- Arung, E.T.; Ramadhan, R.; Khairunnisa, B.; Amen, Y.; Matsumoto, M.; Nagata, M.; Kusuma, I.W.; Paramita, S.; Sukemi; Yadi; et al. Cytotoxicity Effect of Honey, Bee Pollen, and Propolis from Seven Stingless Bees in Some Cancer Cell Lines. Saudi J. Biol. Sci. 2021, 28, 7182–7189. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Cheng, K.; Gang, Y.; Hou, Y.; Wang, C. Immunomodulatory Effects of Vitamin D and Zinc on Viral Infection. Biol. Trace Elem. Res. 2025, 203, 1–17. [Google Scholar] [CrossRef] [PubMed]
- da Silva Lima, F.; da Rocha Romero, A.B.; Hastreiter, A.; Nogueira-Pedro, A.; Makiyama, E.; Colli, C.; Fock, R.A. An Insight into the Role of Magnesium in the Immunomodulatory Properties of Mesenchymal Stem Cells. J. Nutr. Biochem. 2018, 55, 200–208. [Google Scholar] [CrossRef]
- Bilal Hussain, M.; Hassan, S.; Waheed, M.; Javed, A.; Adil Farooq, M.; Tahir, A. Bioavailability and Metabolic Pathway of Phenolic Compounds. In Plant Physiological Aspects of Phenolic Compounds; IntechOpen: London, UK, 2019. [Google Scholar]
- Kyselova, Z. Toxicological Aspects of the Use of Phenolic Compounds in Disease Prevention. Interdiscip. Toxicol. 2011, 4, 173–183. [Google Scholar] [CrossRef]
- Catalkaya, G.; Venema, K.; Lucini, L.; Rocchetti, G.; Delmas, D.; Daglia, M.; De Filippis, A.; Xiao, H.; Quiles, J.L.; Xiao, J.; et al. Interaction of Dietary Polyphenols and Gut Microbiota: Microbial Metabolism of Polyphenols, Influence on the Gut Microbiota, and Implications on Host Health. Food Front. 2020, 1, 109–133. [Google Scholar] [CrossRef]
- Antunes Moura, R.T.; Bueno, N.B.; Silva-Neto, L.G.R.; Pureza, I.R.d.O.M.; da Silva, M.G.V.; Cabral, M.J.; Florêncio, T.M.d.M.T. Red Propolis Supplementation Does Not Decrease Acute Respiratory Events in Stunted Preschool Children: A Paired Nonrandomized Clinical Trial. Clin. Nutr. ESPEN 2022, 50, 264–269. [Google Scholar] [CrossRef]
- MedlinePlus National Library of Medicine Propolis. Available online: https://medlineplus.gov/druginfo/natural/390.html (accessed on 11 June 2025).
- Kara, M.; Sütçü, M.; Kılıç, Ö.; Gül, D.; Tural Kara, T.; Akkoç, G.; Baktır, A.; Bozdemir, Ş.E.; Özgür Gündeşlioğlu, Ö.; Yıldız, F.; et al. Propolis as a Treatment Option for Hand, Foot, and Mouth Disease (HFMD) in Children: A Prospective Randomized Clinical Study. Children 2025, 12, 695. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Ochoa, G.; Balderrama-Carmona, A.P.; Erro-Carvajal, J.A.; Soñanez-Organis, J.G.; Zamora-Álvarez, L.A.; Umsza Guez, M.A. Antiviral Activity of Brazilian Propolis from Stingless Bees Against Rotavirus. Microorganisms 2025, 13, 1424. https://doi.org/10.3390/microorganisms13061424
González-Ochoa G, Balderrama-Carmona AP, Erro-Carvajal JA, Soñanez-Organis JG, Zamora-Álvarez LA, Umsza Guez MA. Antiviral Activity of Brazilian Propolis from Stingless Bees Against Rotavirus. Microorganisms. 2025; 13(6):1424. https://doi.org/10.3390/microorganisms13061424
Chicago/Turabian StyleGonzález-Ochoa, Guadalupe, Ana Paola Balderrama-Carmona, Jesús Antonio Erro-Carvajal, José Guadalupe Soñanez-Organis, Luis Alberto Zamora-Álvarez, and Marcelo Andrés Umsza Guez. 2025. "Antiviral Activity of Brazilian Propolis from Stingless Bees Against Rotavirus" Microorganisms 13, no. 6: 1424. https://doi.org/10.3390/microorganisms13061424
APA StyleGonzález-Ochoa, G., Balderrama-Carmona, A. P., Erro-Carvajal, J. A., Soñanez-Organis, J. G., Zamora-Álvarez, L. A., & Umsza Guez, M. A. (2025). Antiviral Activity of Brazilian Propolis from Stingless Bees Against Rotavirus. Microorganisms, 13(6), 1424. https://doi.org/10.3390/microorganisms13061424