Cepharanthine Inhibits Fusarium solani via Oxidative Stress and CFEM Domain-Containing Protein Targeting
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Preprocessing
2.2. Molecular Characterization, Feature Selection, and Dataset Partitioning
2.3. Grid Search and Five-Fold Cross-Validation
2.4. Assessment of Mycelial Growth, Conidiation, and Spore Germination
2.5. Mycelial Preparation and Oxidative Stress Assays
2.6. Chitin Content Measurement
2.7. RNA Extraction
2.8. Transcriptome Analysis
2.9. Molecular Docking and Molecular Dynamics Simulation
3. Results
3.1. Construction and Evaluation of Machine Learning Models
3.2. Compound Screening Based on Machine Learning Models
3.3. Inhibitory Effects of CEP on Mycelial Growth of Plant Pathogenic Fungi
3.4. CEP Regulates Sporulation, Spore Germination, and Antioxidant Systems of Fusarium solani
3.5. Transcriptomic Response of Fusarium solani to CEP Treatment Reveals Functional Enrichment Patterns
3.6. FsCFEM1 Is Identified as A Target of CEP Based on Molecular Docking Analysis
3.7. Molecular Dynamics Simulations Reveal the Stability and Flexibility of the CEP-FsCFEM1 Complex
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, B.; Yang, P.; Feng, Y.; Du, C.; Qi, G.; Zhao, X. Rhizospheric microbiota of suppressive soil protect plants against Fusarium solani infection. Pest. Manag. Sci. 2024, 80, 4186–4198. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Liu, Y.; He, L.; Kuang, Z.; Dai, S.; Hua, L.; Jiang, Q.; Wei, T.; Ye, P.; Zeng, H. Response of yields, soil physiochemical characteristics, and the rhizosphere microbiome to the occurrence of root rot caused by Fusarium solani in ligusticum chuanxiong hort. Microorganisms 2024, 12, 2350. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Jin, Q.; Xu, C.; Fan, S.; Wang, C.; Xie, P. Synthesis, characterization and antifungal activity of coumarin-functionalized chitosan derivatives. Int. J. Biol. Macromol. 2018, 106, 179–184. [Google Scholar] [CrossRef]
- Niu, J.; Yan, X.; Bai, Y.; Li, W.; Lu, G.; Wang, Y.; Liu, H.; Shi, Z.; Liang, J. Integration of transcriptomics and WGCNA to characterize Trichoderma harzianum-Induced systemic resistance in Astragalus mongholicus for defense against Fusarium solani. Genes 2024, 15, 1180. [Google Scholar] [CrossRef] [PubMed]
- Sangeetha, C.; Kiran Kumar, N.; Krishnamoorthy, A.S.; Harish, S. Biomolecules from Chaetomium globosum possessing antimicrobial compounds potentially inhibits Fusarium wilt of tomato. Appl. Biochem. Biotech. 2024, 196, 2196–2218. [Google Scholar] [CrossRef]
- Maximino, S.C.; Dutra, J.A.P.; Rodrigues, R.P.; Gonçalves, R.C.R.; Morais, P.A.B.; Ventura, J.A.; Schuenck, R.P.; Júnior, V.L.; Kitagawa, R.R.; S Borges, W. Synthesis of eugenol derivatives and evaluation of their antifungal activity against Fusarium solani f. Sp. Piperis. Curr. Pharm. Design 2020, 26, 1532–1542. [Google Scholar] [CrossRef]
- Saghrouchni, H.; El Barnossi, A.; Chefchaou, H.; Mzabi, A.; Tanghort, M.; Remmal, A.; Fouzia, C. Study the effect of Carvacrol, Eugenol and Thymol on Fusariums sp. Responsible for Lolium perenne Fusariosis. Eco Env. Cons. 2020, 26, 1059–1067. [Google Scholar]
- El-Sheekh, M.M.; Ahmed, A.Y.; Soliman, A.S.; Abdel-Ghafour, S.E.; Sobhy, H.M. Biological control of soil borne cucumber diseases using green marine macroalgae. Egypt. J. Biol. Pest. Co. 2021, 31, 72. [Google Scholar] [CrossRef]
- Azevedo, P.; Almeida, A.C.D.; Marques, R.D.; Costa, C.L.D.; Benedetti, A.R.; Lescano, L.E.A.M.; Carvalho, M.C.D.C.; Matsumoto, L.S. In vitro inhibition of Fusarium solani by Trichoderma harzianum and biofertilizer. Res, Soc. Dev. 2021, 10, 12994. [Google Scholar] [CrossRef]
- Camaioni, L.; Ustyanowski, B.; Buisine, M.; Lambert, D.; Sendid, B.; Billamboz, M.; Jawhara, S. Natural compounds with antifungal properties against Candida albicans and identification of Hinokitiol as a promising antifungal drug. Antibiotics 2023, 12, 1603. [Google Scholar] [CrossRef]
- Yabuuchi, H.; Hayashi, K.; Shigemoto, A.; Fujiwara, M.; Nomura, Y.; Nakashima, M.; Ogusu, T.; Mori, M.; Tokumoto, S.; Miyai, K. Virtual screening of antimicrobial plant extracts by machine-learning classification of chemical compounds in semantic space. PLoS ONE 2023, 18, e285716. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Swanson, K.; Jin, W.; Coley, C.; Eiden, P.; Gao, H.; Guzman-Perez, A.; Hopper, T.; Kelley, B.; Mathea, M.; et al. learned molecular representations for property prediction. J. Chem. Inf. Model. 2019, 59, 3370–3388. [Google Scholar] [CrossRef] [PubMed]
- Sunseri, J.; Koes, D.R. Virtual screening with Gnina 1.0. Molecules 2021, 26, 7369. [Google Scholar] [CrossRef] [PubMed]
- Wani, M.A.; Garg, P.; Roy, K.K. Machine learning-enabled predictive modeling to precisely identify the antimicrobial peptides. Med. Biol. Eng. Comput. 2021, 59, 2397–2408. [Google Scholar] [CrossRef]
- Sakthivel, S.; Habeeb, S.K.M.; Raman, C. Screening of broad spectrum natural pesticides against conserved target arginine kinase in cotton pests by molecular modeling. J. Biomol. Struct. Dyn. 2019, 37, 1022–1042. [Google Scholar] [CrossRef]
- Islam, M.S.; Mahmud, S.; Sultana, R.; Dong, W. Identification and in silico molecular modelling study of newly isolated Bacillus subtilis SI-18 strain against S9 protein of Rhizoctonia solani. Arab. J. Chem. 2020, 13, 8600–8612. [Google Scholar] [CrossRef]
- Cheng, W.; Ng, C.A. Using machine learning to classify Bioactivity for 3486 Per- and Polyfluoroalkyl Substances (PFASs) from the OECD list. Environ. Sci. Technol. 2019, 53, 13970–13980. [Google Scholar] [CrossRef]
- Bailly, C. Cepharanthine: An update of its mode of action, pharmacological properties and medical applications. Phytomedicine 2019, 62, 152956. [Google Scholar] [CrossRef]
- Phumesin, P.; Panaampon, J.; Kariya, R.; Limjindaporn, T.; Yenchitsomanus, P.; Okada, S. Cepharanthine inhibits dengue virus production and cytokine secretion. Virus Res. 2023, 325, 199030. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Y.; Zhang, Y.; Zheng, L.; Yang, X.; Wang, N.; Jiang, J.; Ma, F.; Yin, D.; Sun, C.; et al. In vitro activity of cepharanthine hydrochloride against clinical wild-type and lamivudine-resistant hepatitis B virus isolates. Eur. J. Pharmacol. 2012, 683, 10–15. [Google Scholar] [CrossRef]
- Matsuda, K.; Hattori, S.; Komizu, Y.; Kariya, R.; Ueoka, R.; Okada, S. Cepharanthine inhibited HIV-1 cell–cell transmission and cell-free infection via modification of cell membrane fluidity. Bioorg. Med. Chem. Lett. 2014, 24, 2115–2117. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, W.; Chen, Y.; Wang, L.; An, W.; An, X.; Song, L.; Tong, Y.; Fan, H.; Lu, C. Transcriptome analysis of cepharanthine against a SARS-CoV-2-related coronavirus. Brief. Bioinform. 2021, 22, 1378–1386. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tang, Q.; Rao, Z.; Fang, Y.; Jiang, X.; Liu, W.; Luan, F.; Zeng, N. Inhibition of herpes simplex virus 1 by cepharanthine via promoting cellular autophagy through up-regulation of STING/TBK1/P62 pathway. Antivir. Res. 2021, 193, 105143. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, L.; Liu, W.; Li, D.; Zeng, J.; Tang, Q.; Zhang, Y.; Luan, F.; Zeng, N. Cepharanthine suppresses Herpes Simplex Virus Type 1 replication through the downregulation of the PI3K/Akt and p38 MAPK signaling pathways. Front. Microbiol. 2021, 12, 795756. [Google Scholar] [CrossRef]
- Chen, G.; Wen, D.; Shen, L.; Feng, Y.; Xiong, Q.; Li, P.; Zhao, Z. Cepharanthine exerts antioxidant and anti-inflammatory effects in lipopolysaccharide (LPS)-induced macrophages and DSS-induced colitis mice. Molecules 2023, 28, 6070. [Google Scholar] [CrossRef]
- Shi, L.; Wang, S.; Zhang, S.; Wang, J.; Chen, Y.; Li, Y.; Liu, Z.; Zhao, S.; Wei, B.; Zhang, L. Research progress on pharmacological effects and mechanisms of cepharanthine and its derivatives. Naunyn-Schmiedebergs Arch. Pharmacol. 2023, 396, 2843–2860. [Google Scholar] [CrossRef]
- Khan, M.F.; Kundu, D.; Hazra, C.; Patra, S. A strategic approach of enzyme engineering by attribute ranking and enzyme immobilization on zinc oxide nanoparticles to attain thermostability in mesophilic Bacillus subtilis lipase for detergent formulation. Int. J. Biol. Macromol. 2019, 136, 66–82. [Google Scholar] [CrossRef]
- Chakravorty, D.; Khan, M.F.; Patra, S. Thermostability of proteins revisited through machine learning methodologies: From nucleotide sequence to structure. Curr. Biotechnol. 2017, 6, 39–49. [Google Scholar] [CrossRef]
- Zhao, H.; Peramuna, T.; Ajmal, S.; Wendt, K.L.; Petrushenko, Z.M.; Premachandra, K.; Cichewicz, R.H.; Rybenkov, V.V. Inhibitor of Chromosome Segregation in Pseudomonas aeruginosa from Fungal Extracts. Acs Chem. Biol. 2024, 19, 1387–1396. [Google Scholar] [CrossRef]
- Alyami, B.A.; Ahmad, Z.; Ghufran, M.; Mahnashi, M.H.; Sadiq, A.; Ayaz, M. Appraisal of the neuroprotective potentials of isoeugenol using in-vitro, in-vivo and in-silico approaches. Curr. Neuropharmacol. 2025, 23, 317–328. [Google Scholar] [CrossRef]
- Brinza, I.; Boiangiu, R.S.; Honceriu, I.; Abd-Alkhalek, A.M.; Osman, S.M.; Eldahshan, O.A.; Todirascu-Ciornea, E.; Dumitru, G.; Hritcu, L. Neuroprotective potential of Origanum majorana L. Essential oil against Scopolamine-Induced memory deficits and oxidative stress in a zebrafish model. Biomolecules 2025, 15, 138. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, Y.; He, S.; Li, H.; Wang, Y.; Wu, Z. FpOGT is required for fungal growth, stress response, and virulence of Fusarium proliferatum by affecting the expression of glucokinase and other glucose metabolism-related genes. Phytopathol. Res. 2024, 6, 2. [Google Scholar] [CrossRef]
- Fu, C.; Zhang, X.; Veri, A.O.; Iyer, K.R.; Lash, E.; Xue, A.; Yan, H.; Revie, N.M.; Wong, C.; Lin, Z.Y.; et al. Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets. Nat. Commun. 2021, 12, 6497. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, H.; Yang, J.; Yang, X.; Zhang, M.; Zhao, Z.; Fan, Y.; Wang, C.; Wang, J. Bioinformatics and transcriptome analysis of CFEM proteins in Fusarium graminearum. J. Fungi 2021, 7, 871. [Google Scholar] [CrossRef]
- Vieira, L.S.; Costa, S.N.; Borges, C.V.; Gonçalves, Z.S.; Haddad, F. Fusarium oxysporum f. sp. Cubense biocontrol mediated by Bacillus spp. In Prata-Anã banana. Rev. Bras. Cienc. Agrar. 2020, 15, 1–7. [Google Scholar] [CrossRef]
- Xia, S.; Fernando, W.G.D.; Lu, J. Editorial: Soilborne pathogenic fungi: Systematics, pathogenesis and disease control. Front. Microbiol. 2024, 15, 1525583. [Google Scholar] [CrossRef]
- Gonçalves, D.C.; Tebaldi De Queiroz, V.; Costa, A.V.; Lima, W.P.; Belan, L.L.; Moraes, W.B.; Pontes Póvoa Iorio, N.L.; Corrêa Póvoa, H.C. Reduction of Fusarium wilt symptoms in tomato seedlings following seed treatment with Origanum vulgare L. Essential oil and carvacrol. Crop Prot. 2021, 141, 105487. [Google Scholar] [CrossRef]
- Zhou, X.; Ma, H.; Xiong, S.; Zhang, L.; Zhu, X.; Zhu, Y.; Zhou, L. Evaluation of the inhibitory efficacy of eugenol against the pathogen of Fusarium wilt in ginger seedlings. Horticulturae 2023, 9, 1024. [Google Scholar] [CrossRef]
- Mostafa, Y.S.; Alamri, S.A.; Alrumman, S.A.; Hashem, M.; Taher, M.A.; Baka, Z.A. In vitro and in vivo biocontrol of tomato Fusarium wilt by extracts from brown, red, and green macroalgae. Agriculture 2022, 12, 345. [Google Scholar] [CrossRef]
- Muhorakeye, M.C.; Namikoye, E.S.; Khamis, F.M.; Wanjohi, W.; Akutse, K.S. Biostimulant and antagonistic potential of endophytic fungi against Fusarium wilt pathogen of tomato Fusarium oxysporum f. Sp. Lycopersici. Sci. Rep. 2024, 14, 15365. [Google Scholar] [CrossRef]
- Syaifudin, A.; Kasiamdari, R.S. The inhibition of Fusarium wilt in Chili by endophytic fungi isolated from green betel (Piper betle L.) leaf. J. Nat. Sci. Math. Res. 2022, 8, 84–93. [Google Scholar] [CrossRef]
- Krishnan, S.V.; Anaswara, P.A.; Nampoothiri, K.M.; Kovács, S.; Adácsi, C.; Szarvas, P.; Király, S.; Pócsi, I.; Pusztahelyi, T. Biocontrol activity of new lactic acid bacteria isolates against fusaria and Fusarium mycotoxins. Toxins 2025, 17, 68. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, M.; Liu, C.; Li, Y.; Guo, Y.; Jiang, H.; Liu, J.; Hong, M. Investigation of in vitro antiviral and antimicrobial activities of cepharanthine-luteolin and their interaction with pepsin by multispectral and molecular docking methods. J. Mol. Liq. 2024, 411, 125811. [Google Scholar] [CrossRef]
- Ding, J.; Liu, C.; Huang, P.; Zhang, Y.; Hu, X.; Li, H.; Liu, Y.; Chen, L.; Liu, Y.; Qin, W. Effects of thymol concentration on postharvest diseases and quality of blueberry fruit. Food Chem. 2023, 402, 134227. [Google Scholar] [CrossRef]
- Mączka, W.; Twardawska, M.; Grabarczyk, M.; Wińska, K. Carvacrol-A natural phenolic compound with antimicrobial properties. Antibiotics 2023, 12, 824. [Google Scholar] [CrossRef]
- Ren, Z.; Chhetri, A.; Guan, Z.; Suo, Y.; Yokoyama, K.; Lee, S. Structural basis for inhibition and regulation of a chitin synthase from Candida albicans. Nat. Struct. Mol. Biol. 2022, 29, 653–664. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, Q.; Zhang, G.; Zhu, Y.; Murphy, R.W.; Liu, Z.; Zou, C. Systematic analyses reveal uniqueness and origin of the CFEM domain in fungi. Sci. Rep. 2015, 5, 13032. [Google Scholar] [CrossRef]
- Peng, J.; Wu, L.; Zhang, W.; Zhang, Q.; Xing, Q.; Wang, X.; Li, X.; Yan, J. Systemic identification and functional characterization of common in fungal extracellular membrane proteins in Lasiodiplodia theobromae. Front. Plant Sci. 2021, 12, 804696. [Google Scholar] [CrossRef]
- Ling, J.; Zeng, F.; Cao, Y.; Zhang, J.; Chen, G.; Mao, Z.; Yang, Y.; Xie, B. Identification of a class of CFEM proteins containing a new conserved motif in Fusarium oxysporum. Physiol. Mol. Plant P. 2015, 89, 41–48. [Google Scholar] [CrossRef]
- Arya, G.C.; Srivastava, D.A.; Pandaranayaka, E.P.J.; Manasherova, E.; Prusky, D.B.; Elad, Y.; Frenkel, O.; Dvir, H.; Harel, A. Characterization of the role of a Non-GPCR Membrane-Bound CFEM protein in the pathogenicity and germination of botrytis cinerea. Microorganisms 2020, 8, 1043. [Google Scholar] [CrossRef]
- Qian, Y.; Zheng, X.; Wang, X.; Yang, J.; Zheng, X.; Zeng, Q.; Li, J.; Zhuge, Q.; Xiong, Q. Systematic identification and functional characterization of the CFEM proteins in poplar fungus Marssonina brunnea. Front. Cell Infect. Mi. 2022, 12, 1045615. [Google Scholar] [CrossRef]
- Vaknin, Y.; Shadkchan, Y.; Levdansky, E.; Morozov, M.; Romano, J.; Osherov, N. The three Aspergillus Fumigatus CFEM-domain GPI-anchored proteins (CfmA-C) affect cell-wall stability but do not play a role in fungal virulence. Fungal Genet. Biol. 2014, 63, 55–64. [Google Scholar] [CrossRef]
Model | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|
RF | 0.88 | 0.86 | 0.85 | 0.83 |
SVM | 0.79 | 0.80 | 0.75 | 0.78 |
NN | 0.82 | 0.80 | 0.78 | 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yang, Z.; Xue, J.; Wang, Y.; Li, H.; Wu, Z.; Gao, Y. Cepharanthine Inhibits Fusarium solani via Oxidative Stress and CFEM Domain-Containing Protein Targeting. Microorganisms 2025, 13, 1423. https://doi.org/10.3390/microorganisms13061423
Wang Y, Yang Z, Xue J, Wang Y, Li H, Wu Z, Gao Y. Cepharanthine Inhibits Fusarium solani via Oxidative Stress and CFEM Domain-Containing Protein Targeting. Microorganisms. 2025; 13(6):1423. https://doi.org/10.3390/microorganisms13061423
Chicago/Turabian StyleWang, Yuqing, Zenghui Yang, Jingwen Xue, Yitong Wang, Haibo Li, Zhihong Wu, and Yizhou Gao. 2025. "Cepharanthine Inhibits Fusarium solani via Oxidative Stress and CFEM Domain-Containing Protein Targeting" Microorganisms 13, no. 6: 1423. https://doi.org/10.3390/microorganisms13061423
APA StyleWang, Y., Yang, Z., Xue, J., Wang, Y., Li, H., Wu, Z., & Gao, Y. (2025). Cepharanthine Inhibits Fusarium solani via Oxidative Stress and CFEM Domain-Containing Protein Targeting. Microorganisms, 13(6), 1423. https://doi.org/10.3390/microorganisms13061423