The Interplay Between the Gut Microbiota and Colorectal Cancer: A Review of the Literature
Abstract
1. Introduction
2. Materials and Methods
3. Gut Microbiota and Colorectal Cancer Development
3.1. Genotoxin-Producing Bacteria
3.2. Inflammation-Associated Bacteria
3.3. Other Potentially Pro-Oncogenic Bacteria
4. Diet as a Risk Factor for CRC Development
4.1. Red and Processed Meat
4.2. Fiber-Rich Diet
4.3. High-Fat Diet
4.4. Xenobiotics
5. Gut Microbiota and Colorectal Cancer Treatments
5.1. Surgery
5.2. Chemotherapy
5.3. Immunotherapy
5.4. Radiotherapy
6. Future Perspectives
6.1. Pre- and Probiotics
6.2. Fecal Microbiota Transplantation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Ervik, M.; Lam, F.; Laversanne, M.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today; International Agency for Research on Cancer: Lyon, France, 2024. [Google Scholar]
- Cai, J.; Zhang, Y.; Yu, E.; Ding, W.; Jiang, Q.; Cai, Q.C.; Zhong, L. Gut Microbiota Enterotypes Mediate the Effects of Dietary Patterns on Colorectal Neoplasm Risk in a Chinese Population. Nutrients 2023, 15, 2940. [Google Scholar] [CrossRef] [PubMed]
- Lach, G.; Schellekens, H.; Dinan, T.G.; Cryan, J.F. Anxiety, Depression, and the Microbiome: A Role for Gut Peptides. Neurotherapeutics 2018, 15, 34–48. [Google Scholar] [CrossRef]
- Guan, Z.W.; Yu, E.Z.; Feng, Q. Soluble Dietary Fiber, One of the Most Important Nutrients for the Gut Microbiota. Molecules 2021, 26, 6802. [Google Scholar] [CrossRef]
- Quaglio, A.E.V.; Grillo, T.G.; De Oliveira, E.C.S.; Di Stasi, L.C.; Sassaki, L.Y. Gut Microbiota, Inflammatory Bowel Disease and Colorectal Cancer. World J. Gastroenterol. 2022, 28, 4053–4060. [Google Scholar] [CrossRef]
- Yang, Y.; Misra, B.B.; Liang, L.; Bi, D.; Weng, W.; Wu, W.; Cai, S.; Qin, H.; Goel, A.; Li, X.; et al. Integrated Microbiome and Metabolome Analysis Reveals a Novel Interplay between Commensal Bacteria and Metabolites in Colorectal Cancer. Theranostics 2019, 9, 4101–4114. [Google Scholar] [CrossRef]
- Loke, Y.L.; Chew, M.T.; Ngeow, Y.F.; Lim, W.W.D.; Peh, S.C. Colon Carcinogenesis: The Interplay Between Diet and Gut Microbiota. Front. Cell Infect. Microbiol. 2020, 10, 603086. [Google Scholar] [CrossRef] [PubMed]
- Jovandaric, M.Z. Importance of diet and intestinal microbiota in the prevention of colorectal cancer-colonoscopy early screening diagnosis. World J. Gastrointest. Oncol. 2024, 16, 3428–3435. [Google Scholar] [CrossRef] [PubMed]
- Chrysostomou, D.; Roberts, L.A.; Marchesi, J.R.; Kinross, J.M. Gut Microbiota Modulation of Efficacy and Toxicity of Cancer Chemotherapy and Immunotherapy. Gastroenterology 2023, 164, 198–213. [Google Scholar] [CrossRef]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What Is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef]
- Kong, C.; Liang, L.; Liu, G.; Du, L.; Yang, Y.; Liu, J.; Shi, D.; Li, X.; Ma, Y. Integrated Metagenomic and Metabolomic Analysis Reveals Distinct Gut-Microbiome-Derived Phenotypes in Early-Onset Colorectal Cancer. Gut 2023, 72, 1129–1142. [Google Scholar] [CrossRef]
- Wu, W.; Ouyang, Y.; Zheng, P.; Xu, X.; He, C.; Xie, C.; Hong, J.; Lu, N.; Zhu, Y.; Li, N. Research trends on the relationship between gut microbiota and colorectal cancer: A bibliometric analysis. Front. Cell Infect. Microbiol. 2023, 13, 1097454. [Google Scholar] [CrossRef] [PubMed]
- Ibeanu, G.C.; Rowaiye, A.B.; Okoli, J.C.; Eze, D.U. Microbiome differences in colorectal cancer patients and healthy individuals: Implications for vaccine antigen discovery. Immunotargets Ther. 2024, 13, 749–774. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, M.W.; Jobin, C. Intestinal bacteria and colorectal cancer: Etiology and treatment. Gut Microbes 2023, 15, 2185028. [Google Scholar] [CrossRef] [PubMed]
- White, M.T.; Sears, C.L. The microbial landscape of colorectal cancer. Nat. Rev. Microbiol. 2024, 22, 240–254. [Google Scholar] [CrossRef]
- Wilson, M.R.; Jiang, Y.; Villalta, P.W.; Stornetta, A.; Boudreau, P.D.; Carrá, A.; Brennan, C.A.; Chun, E.; Ngo, L.; Samson, L.D.; et al. The Human Gut Bacterial Genotoxin Colibactin Alkylates DNA. Science 2019, 363, eaar7785. [Google Scholar] [CrossRef]
- Purcell, R.V.; Permain, J.; Keenan, J.I. Enterotoxigenic Bacteroides fragilis Activates IL-8 Expression through Stat3 in Colorectal Cancer Cells. Gut Pathog. 2022, 14, 16. [Google Scholar] [CrossRef]
- Zamani, S.; Taslimi, R.; Sarabi, A.; Jasemi, S.; Sechi, L.A.; Feizabadi, M.M. Enterotoxigenic Bacteroides fragilis: A Possible Etiological Candidate for Bacterially-Induced Colorectal Precancerous and Cancerous Lesions. Front. Cell Infect. Microbiol. 2020, 9, 449. [Google Scholar] [CrossRef]
- Bennedsen, A.L.B.; Furbo, S.; Bjarnsholt, T.; Raskov, H.; Gögenur, I.; Kvich, L. The gut microbiota can orchestrate the signaling pathways in colorectal cancer. APMIS 2022, 130, 121–139. [Google Scholar] [CrossRef]
- Ambrosi, C.; Sarshar, M.; Aprea, M.R.; Pompilio, A.; Di Bonaventura, G.; Strati, F.; Pronio, A.; Nicoletti, M.; Zagaglia, C.; Palamara, A.T.; et al. Colonic Adenoma-Associated Escherichia coli Express Specific Phenotypes. Microbes Infect. 2019, 21, 305–312. [Google Scholar] [CrossRef]
- Shah, A.B.; Baiseitova, A.; Zahoor, M.; Ahmad, I.; Ikram, M.; Bakhsh, A.; Shah, M.A.; Ali, I.; Idress, M.; Ullah, R.; et al. Probiotic significance of Lactobacillus strains: A comprehensive review on health impacts, research gaps, and future prospects. Gut Microbes 2024, 16, 2431643. [Google Scholar] [CrossRef]
- Shah, A.B.; Cho, H.; Shim, S.H. Exploring the bioactive landscape: Peptides and non-peptides from the human microbiota. npj Biofilms Microbiomes 2025, 11, 76. [Google Scholar] [CrossRef] [PubMed]
- Oehmcke-Hecht, S.; Mandl, V.; Naatz, L.T.; Dühring, L.; Köhler, J.; Kreikemeyer, B.; Maletzki, C. Streptococcus gallolyticus Abrogates Anti-Carcinogenic Properties of Tannic Acid on Low-Passage Colorectal Carcinomas. Sci. Rep. 2020, 10, 471. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y.; Huycke, M.M. Commensal-Infected Macrophages Induce Dedifferentiation and Reprogramming of Epithelial Cells during Colorectal Carcinogenesis. Oncotarget 2017, 8, 102176–102190. [Google Scholar] [CrossRef]
- de Almeida, C.V.; Taddei, A.; Amedei, A. The Controversial Role of Enterococcus faecalis in Colorectal Cancer. Ther. Adv. Gastroenterol. 2018, 11, 1756284818783606. [Google Scholar] [CrossRef]
- Bradbury, K.E.; Murphy, N.; Key, T.J. Diet and Colorectal Cancer in UK Biobank: A Prospective Study. Int. J. Epidemiol. 2020, 49, 246–258. [Google Scholar] [CrossRef] [PubMed]
- Veettil, S.K.; Wong, T.Y.; Loo, Y.S.; Playdon, M.C.; Lai, N.M.; Giovannucci, E.L.; Chaiyakunapruk, N. Role of Diet in Colorectal Cancer Incidence: Umbrella Review of Meta-analyses of Prospective Observational Studies. JAMA Netw. Open 2021, 4, e2037341. [Google Scholar] [CrossRef]
- O’Keefe, S.J. Diet, Microorganisms and Their Metabolites, and Colon Cancer. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 691–703. [Google Scholar] [CrossRef]
- Kim, M.; Vogtmann, E.; Ahlquist, D.A.; Devens, M.E.; Kisiel, J.B.; Taylor, W.R.; White, B.A.; Hale, V.L.; Sung, J.; Chia, N.; et al. Fecal Metabolomic Signatures in Colorectal Adenoma Patients Are Associated with Gut Microbiota and Early Events of Colorectal Cancer Pathogenesis. mBio 2020, 11, e03186-19. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Cai, G.; Qiu, Y.; Fei, N.; Zhang, M.; Pang, X.; Jia, W.; Cai, S.; Zhao, L. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2012, 6, 320–329. [Google Scholar] [CrossRef]
- He, J.; Magnuson, B.A.; Giusti, M.M. Analysis of anthocyanins in rat intestinal contents—Impact of anthocyanin chemical structure on fecal excretion. J. Agric. Food Chem. 2005, 53, 2859–2866. [Google Scholar] [CrossRef]
- Shen, X.J.; Rawls, J.F.; Randall, T.; Burcal, L.; Mpande, C.N.; Jenkins, N.; Jovov, B.; Abdo, Z.; Sandler, R.S.; Keku, T.O. Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes 2010, 1, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Seiwert, N.; Wecklein, S.; Demuth, P.; Hasselwander, S.; Kemper, T.A.; Schwerdtle, T.; Brunner, T.; Fahrer, J. Heme Oxygenase 1 Protects Human Colonocytes against ROS Formation, Oxidative DNA Damage and Cytotoxicity Induced by Heme Iron, but Not Inorganic Iron. Cell Death Dis. 2020, 11, 787. [Google Scholar] [CrossRef]
- Hemmati, M.; Yousefi, B.; Bahar, A.; Eslami, M. Importance of Heme Oxygenase-1 in Gastrointestinal Cancers: Functions, Inductions, Regulations, and Signaling. J. Gastrointest. Cancer 2021, 52, 454–461. [Google Scholar] [CrossRef]
- Rizzolo-Brime, L.; Farran-Codina, A.; Bou, R.; Luján-Barroso, L.; Quirós, J.R.; Amiano, P.; Sánchez, M.J.; Rodríguez-Barranco, M.; Guevara, M.; Moreno-Iribas, C.; et al. Nitrosyl-Heme and Heme Iron Intake from Processed Meats in Subjects from the EPIC-Spain Cohort. Nutrients 2024, 16, 878. [Google Scholar] [CrossRef] [PubMed]
- Yazici, C.; Wolf, P.G.; Kim, H.; Cross, T.L.; Vermillion, K.; Carroll, T.; Augustus, G.J.; Mutlu, E.; Tussing-Humphreys, L.; Braunschweig, C.; et al. Race-Dependent Association of Sulfidogenic Bacteria with Colorectal Cancer. Gut 2017, 66, 1983–1994. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Ma, W.; Wang, D.D.; Cao, Y.; Mallick, H.; Gerbaba, T.K.; Lloyd-Price, J.; Abu-Ali, G.; Hall, A.B.; Sikavi, D.; et al. Association Between Sulfur-Metabolizing Bacterial Communities in Stool and Risk of Distal Colorectal Cancer in Men. Gastroenterology 2020, 158, 1313–1325. [Google Scholar] [CrossRef]
- Farvid, M.S.; Sidahmed, E.; Spence, N.D.; Mante Angua, K.; Rosner, B.A.; Barnett, J.B. Consumption of Red Meat and Processed Meat and Cancer Incidence: A Systematic Review and Meta-Analysis of Prospective Studies. Eur. J. Epidemiol. 2021, 36, 937–951. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Saavedra, S.; González Del Rey, C.; Suárez, A.; Díaz, Y.; Zapico, A.; Arboleya, S.; Salazar, N.; Gueimonde, M.; de Los Reyes-Gavilán, C.G.; González, S. Associations of Dietary Factors and Xenobiotic Intake with Faecal Microbiota Composition According to the Presence of Intestinal Mucosa Damage. Food Funct. 2023, 14, 9591–9605. [Google Scholar] [CrossRef]
- Byrd, D.A.; Zouiouich, S.; Karwa, S.; Li, X.S.; Wang, Z.; Sampson, J.N.; Loftfield, E.; Huang, W.Y.; Hazen, S.L.; Sinha, R. Associations of Serum Trimethylamine N-Oxide and Its Precursors with Colorectal Cancer Risk in the Prostate, Lung, Colorectal, Ovarian Cancer Screening Trial Cohort. Cancer 2024, 130, 1982–1990. [Google Scholar] [CrossRef]
- Louis, P.; Flint, H.J. Formation of Propionate and Butyrate by the Human Colonic Microbiota. Environ. Microbiol. 2017, 19, 29–41. [Google Scholar] [CrossRef]
- Fung, K.Y.; Cosgrove, L.; Lockett, T.; Head, R.; Topping, D.L. A Review of the Potential Mechanisms for the Lowering of Colorectal Oncogenesis by Butyrate. Br. J. Nutr. 2012, 108, 820–831. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.; Carbonero, F.; Zoetendal, E.G.; DeLany, J.P.; Wang, M.; Newton, K.; Gaskins, H.R.; O’Keefe, S.J. Diet, Microbiota, and Microbial Metabolites in Colon Cancer Risk in Rural Africans and African Americans. Am. J. Clin. Nutr. 2013, 98, 111–120. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, S.J.; Li, J.V.; Lahti, L.; Ou, J.; Carbonero, F.; Mohammed, K.; Posma, J.M.; Kinross, J.; Wahl, E.; Ruder, E.; et al. Fat, Fibre and Cancer Risk in African Americans and Rural Africans. Nat. Commun. 2015, 6, 6342. [Google Scholar] [CrossRef] [PubMed]
- Tammi, R.; Kaartinen, N.E.; Harald, K.; Maukonen, M.; Tapanainen, H.; Smith-Warner, S.A.; Albanes, D.; Eriksson, J.G.; Jousilahti, P.; Koskinen, S.; et al. Partial Substitution of Red Meat or Processed Meat with Plant-Based Foods and the Risk of Colorectal Cancer. Eur. J. Epidemiol. 2024, 39, 419–428. [Google Scholar] [CrossRef]
- Young, G.P.; Hu, Y.; Le Leu, R.K.; Nyskohus, L. Dietary Fibre and Colorectal Cancer: A Model for Environment--Gene Interactions. Mol. Nutr. Food Res. 2005, 49, 571–584. [Google Scholar] [CrossRef]
- Ocvirk, S.; O’Keefe, S.J.D. Dietary Fat, Bile Acid Metabolism and Colorectal Cancer. Semin. Cancer Biol. 2021, 73, 347–355. [Google Scholar] [CrossRef]
- Campbell, C.; McKenney, P.T.; Konstantinovsky, D.; Isaeva, O.I.; Schizas, M.; Verter, J.; Mai, C.; Jin, W.B.; Guo, C.J.; Violante, S.; et al. Bacterial Metabolism of Bile Acids Promotes Generation of Peripheral Regulatory T Cells. Nature 2020, 581, 475–479. [Google Scholar] [CrossRef]
- Režen, T.; Rozman, D.; Kovács, T.; Kovács, P.; Sipos, A.; Bai, P.; Mikó, E. The Role of Bile Acids in Carcinogenesis. Cell Mol. Life Sci. 2022, 79, 243. [Google Scholar] [CrossRef]
- Liu, L.; Dong, W.; Wang, S.; Zhang, Y.; Liu, T.; Xie, R.; Wang, B.; Cao, H. Deoxycholic Acid Disrupts the Intestinal Mucosal Barrier and Promotes Intestinal Tumorigenesis. Food Funct. 2018, 9, 5588–5597. [Google Scholar] [CrossRef]
- Liu, T.; Guo, Z.; Song, X.; Liu, L.; Dong, W.; Wang, S.; Xu, M.; Yang, C.; Wang, B.; Cao, H. High-Fat Diet-Induced Dysbiosis Mediates MCP-1/CCR2 Axis-Dependent M2 Macrophage Polarization and Promotes Intestinal Adenoma-Adenocarcinoma Sequence. J. Cell Mol. Med. 2020, 24, 2648–2662. [Google Scholar] [CrossRef]
- Yang, J.; Wei, H.; Zhou, Y.; Szeto, C.H.; Li, C.; Lin, Y.; Coker, O.O.; Lau, H.C.H.; Chan, A.W.H.; Sung, J.J.Y.; et al. High-Fat Diet Promotes Colorectal Tumorigenesis Through Modulating Gut Microbiota and Metabolites. Gastroenterology 2022, 162, 135–149.e2. [Google Scholar] [CrossRef] [PubMed]
- Ocvirk, S.; Wilson, A.S.; Posma, J.M.; Li, J.V.; Koller, K.R.; Day, G.M.; Flanagan, C.A.; Otto, J.E.; Sacco, P.E.; Sacco, F.D.; et al. A Prospective Cohort Analysis of Gut Microbial Co-Metabolism in Alaska Native and Rural African People at High and Low Risk of Colorectal Cancer. Am. J. Clin. Nutr. 2020, 111, 406–419. [Google Scholar] [CrossRef]
- Ramaboli, M.C.; Ocvirk, S.; Khan Mirzaei, M.; Eberhart, B.L.; Valdivia-Garcia, M.; Metwaly, A.; Neuhaus, K.; Barker, G.; Ru, J.; Nesengani, L.T.; et al. Diet Changes Due to Urbanization in South Africa Are Linked to Microbiome and Metabolome Signatures of Westernization and Colorectal Cancer. Nat. Commun. 2024, 15, 3379. [Google Scholar] [CrossRef] [PubMed]
- Esposito, K.; Chiodini, P.; Colao, A.; Lenzi, A.; Giugliano, D. Metabolic Syndrome and Risk of Cancer: A Systematic Review and Meta-Analysis. Diabetes Care 2012, 35, 2402–2411. [Google Scholar] [CrossRef]
- Moreno-Indias, I.; Cardona, F.; Tinahones, F.J.; Queipo-Ortuño, M.I. Impact of the Gut Microbiota on the Development of Obesity and Type 2 Diabetes Mellitus. Front. Microbiol. 2014, 5, 190. [Google Scholar] [CrossRef]
- Gustafsson, U.O.; Scott, M.J.; Schwenk, W.; Demartines, N.; Roulin, D.; Francis, N.; McNaught, C.E.; Macfie, J.; Liberman, A.S.; Soop, M.; et al. Guidelines for Perioperative Care in Elective Colorectal Surgery: Enhanced Recovery After Surgery (ERAS®) Society Recommendations: 2018. World J. Surg. 2019, 43, 659–695. [Google Scholar] [CrossRef]
- Leenen, J.P.L.; Croese, A.D.; Kok, N.F.M.; Koorevaar, I.A.; Ringers, J.; Koning, O.H. Effectiveness of Mechanical Bowel Preparation versus No Preparation on Anastomotic Leakage in Colorectal Surgery: A Systematic Review and Meta-Analysis. Updates Surg. 2019, 71, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Koliarakis, I.; Athanasopoulos, P.; Valata, V.; Daniilidis, K.; Kastanioudakis, I.; Tzardi, M.; Tsatsakis, A.; Alegakis, A.; Kampa, M.; Spandidos, D.A. Intestinal Microbiota in Colorectal Cancer Surgery. Cancers 2020, 12, 3011. [Google Scholar] [CrossRef]
- Jin, S.; Kryczek, I.; Lu, L.; Wang, G.; Zou, W. Deciphering Mechanisms and Implications of Bacterial Translocation in Human Health and Disease. Curr. Opin. Microbiol. 2022, 67, 102147. [Google Scholar] [CrossRef]
- Ianiro, G.; Tilg, H.; Gasbarrini, A. Antibiotics as Deep Modulators of Gut Microbiota: Between Good and Evil. Gut 2016, 65, 1906–1915. [Google Scholar] [CrossRef]
- Žukauskaitė, K.; Horvath, A.; Gricius, Ž.; Kvietkauskas, M.; Baušys, B.; Dulskas, A.; Kuliavas, J.; Baušys, R.; Letautienė, S.R.; Vaicekauskaitė, I.; et al. Impact of Mechanical Bowel Preparation on the Gut Microbiome of Patients Undergoing Left-Sided Colorectal Cancer Surgery: Randomized Clinical Trial. Br. J. Surg. 2024, 111, znae213. [Google Scholar] [CrossRef]
- Anderson, D.I.; Harris, K.; Barlow, J.M.; Martin, M.J.; Healy, M.G.; Buchberg, B.S. Enterococcus faecalis Is Associated with Anastomotic Leak in Patients Undergoing Colorectal Surgery. Surg. Infect. 2021, 22, 1047–1051. [Google Scholar] [CrossRef]
- Jacobson, R.A.; Wienholts, K.; Williamson, A.J.; Fichera, A.; Rubin, D.T.; Alverdy, J.C.; Zaborina, O. Enterococcus faecalis Exploits the Human Fibrinolytic System to Drive Excess Collagenolysis: Implications in Gut Healing and Identification of Druggable Targets. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 318, G1–G9. [Google Scholar] [CrossRef]
- Palmisano, S.; Campisciano, G.; Iacuzzo, C.; Bonadio, L.; Zucca, A.; Cosola, D.; Comar, M.; de Manzini, N. Role of Preoperative Gut Microbiota on Colorectal Anastomotic Leakage: Preliminary Results. Updates Surg. 2020, 72, 1013–1022. [Google Scholar] [CrossRef] [PubMed]
- Pohl, J.-M.; Gutweiler, S.; Thiebes, S.; Volke, J.K.; Klein-Hitpass, L.; Zwanziger, D.; Gunzer, M.; Jung, S.; Agace, W.W.; Kurts, C.; et al. Irf4-Dependent CD103+CD11b+ Dendritic Cells and the Intestinal Microbiome Regulate Monocyte and Macrophage Activation and Intestinal Peristalsis in Postoperative Ileus. Gut 2017, 66, 2110–2120. [Google Scholar] [CrossRef]
- Jin, Y.; Geng, R.; Liu, Y.; Liu, L.; Jin, X.; Zhao, F.; Feng, J.; Wei, Y. Prediction of Postoperative Ileus in Patients with Colorectal Cancer by Preoperative Gut Microbiota. Front. Oncol. 2020, 10, 526009. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.Y.; Hussain, Z.; Lee, Y.J.; Park, H. An Altered Composition of Fecal Microbiota, Organic Acids, and the Effect of Probiotics in the Guinea Pig Model of Postoperative Ileus. Neurogastroenterol. Motil. 2021, 33, e13966. [Google Scholar] [CrossRef]
- McQuade, R.M.; Finlay, M.R.V.; Armstrong, S.A.; Tan, A.L.; Reece, J.L.; Schneider, J.M.; Hill, A.S. Colorectal Cancer Chemotherapy: The Evolution of Treatment and New Approaches. Curr. Med. Chem. 2017, 24, 1537–1557. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.W.; Zhang, D.; Yin, H.S.; Li, X.L.; Wang, Z.G.; Yang, L.; Sun, H.; Lu, M.; Liu, L. Fusobacterium nucleatum Promotes Esophageal Squamous Cell Carcinoma Progression and Chemoresistance by Enhancing the Secretion of Chemotherapy-Induced Senescence-Associated Secretory Phenotype via Activation of DNA Damage Response Pathway. Gut Microbes 2023, 15, 2197836. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, Y.; Liu, H.; Zhang, J.; Yu, Q.; Wang, X.; Yang, W.; Li, Z.; Liu, S. Fusobacterium nucleatum Induces Chemoresistance in Colorectal Cancer by Inhibiting Pyroptosis via the Hippo Pathway. Gut Microbes 2024, 16, 2333790. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, H.; Zhang, X.; Wei, Y.; Li, F.; Liu, S.; Liu, J. Fusobacterium nucleatum Promotes Chemoresistance to 5-Fluorouracil by Upregulation of BIRC3 Expression in Colorectal Cancer. J. Exp. Clin. Cancer Res. 2019, 38, 14. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.J.; Lee, S.Y.; Kim, S.Y.; Choi, K.M.; Kim, H.S.; Lee, K.S.; Park, H.J.; Lee, C.K.; Cho, M.Y.; Lee, J.Y.; et al. Prognostic Impact of Fusobacterium nucleatum Depends on Combined Tumor Location and Microsatellite Instability Status in Stage II/III Colorectal Cancers Treated with Adjuvant Chemotherapy. J. Pathol. Transl. Med. 2019, 53, 40–49. [Google Scholar] [CrossRef]
- Huang, F.; Li, S.; Chen, W.; Han, Y.; Yao, Y.; Yang, L.; Li, Q.; Xiao, Q.; Wei, J.; Liu, Z.; et al. Postoperative Probiotics Administration Attenuates Gastrointestinal Complications and Gut Microbiota Dysbiosis Caused by Chemotherapy in Colorectal Cancer Patients. Nutrients 2023, 15, 356. [Google Scholar] [CrossRef]
- Yi, Y.; Liu, Y.; Zeng, Q.; Yang, Z.; Jiang, L.; Chen, D.; Li, Z.; Jiang, Q.; Zhang, Q.; Li, T.; et al. Gut Microbiome Components Predict Response to Neoadjuvant Chemoradiotherapy in Patients with Locally Advanced Rectal Cancer: A Prospective, Longitudinal Study. Clin. Cancer Res. 2021, 27, 1329–1340. [Google Scholar] [CrossRef]
- Kuo, Y.-R.; Li, X.; Zhang, Z.; Zhang, J.; Sun, L.; Zhang, L.; Wu, Y.-H.; Wang, X.; Zhou, Y.-L.; Wang, X.; et al. L-Glutamine Substantially Improves 5-Fluorouracil-Induced Intestinal Mucositis by Modulating Gut Microbiota and Maintaining the Integrity of the Gut Barrier in Mice. Mol. Nutr. Food Res. 2024, 68, e2300704. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Li, H.; Wang, X.; Liu, Y.; Xu, Y.; Liu, X.; Zhang, Y.; Jiang, Z.; Zhang, C.; Xie, Y.; et al. Pediococcus pentosaceus PP34 Ameliorates 5-Fluorouracil-Induced Intestinal Mucositis via Inhibiting Oxidative Stress and Restoring the Gut Microbiota. In Probiotics and Antimicrobial Proteins; Springer: London, UK, 2024. [Google Scholar]
- Fei, Z.; Zhang, Y.; Wang, W.; Li, S.; Zhang, H.; Li, Z.; Zhang, W.; Shi, W.; Liu, L.; Xue, F.; et al. Gut Microbiome Associated with Chemotherapy-Induced Diarrhea from the CapeOX Regimen as Adjuvant Chemotherapy in Resected Stage III Colorectal Cancer. Gut Pathog. 2019, 11, 18. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Lian, J.; Wang, X.; Li, Z.; Li, F.; Zhang, Y.; Jiang, X.; Wang, Q.; Zhang, H. Intrinsic Resistance and Efficacy of Immunotherapy in Microsatellite Instability-High Colorectal Cancer: A Systematic Review and Meta-Analysis. Biomol. Biomed. 2023, 23, 198–208. [Google Scholar] [CrossRef]
- Trullas, A.; Delgado, J.; Genazzani, A.; Mueller-Berghaus, J.; Migali, C.; Müller-Egert, S.; Zander, H.; Enzmann, H.; Pignatti, F. The EMA Assessment of Pembrolizumab as Monotherapy for the First-Line Treatment of Adult Patients with Metastatic Microsatellite Instability-High or Mismatch Repair Deficient Colorectal Cancer. ESMO Open 2021, 6, 100145. [Google Scholar] [CrossRef]
- Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; et al. Gut Microbiome Modulates Response to Anti-PD-1 Immunotherapy in Melanoma Patients. Science 2018, 359, 97–103. [Google Scholar] [CrossRef]
- Routy, B.; Lenehan, J.G.; Miller, W.H., Jr.; Jamal, R.; Messaoudene, M.; Daisley, B.A.; Hes, C.; Al, K.F.; Martinez-Gili, L.; Punčochář, M.; et al. Fecal Microbiota Transplantation Plus Anti-PD-1 Immunotherapy in Advanced Melanoma: A Phase I Trial. Nat. Med. 2023, 29, 2121–2132. [Google Scholar] [CrossRef]
- Botticelli, A.; Vernocchi, P.; Marini, F.; Quagliariello, A.; Cerbelli, B.; Reddel, S.; Del Chierico, F.; Di Pietro, F.; Giusti, R.; Tomassini, A.; et al. Gut Metabolomics Profiling of Non-Small Cell Lung Cancer (NSCLC) Patients under Immunotherapy Treatment. J. Transl. Med. 2020, 18, 49. [Google Scholar] [CrossRef] [PubMed]
- Nomura, M.; Nagatomo, R.; Doi, K.; Shimizu, J.; Baba, K.; Saito, T.; Matsumoto, S.; Inoue, K.; Muto, M. Association of Short-Chain Fatty Acids in the Gut Microbiome with Clinical Response to Treatment with Nivolumab or Pembrolizumab in Patients with Solid Cancer Tumors. JAMA Netw. Open 2020, 3, e202895. [Google Scholar] [CrossRef]
- Xu, X.; Lv, J.; Guo, F.; Li, J.; Bai, Y.; Zhu, Y.; Zhang, S.; Zhang, X. Gut Microbiome Influences the Efficacy of PD-1 Antibody Immunotherapy on MSS-Type Colorectal Cancer via Metabolic Pathway. Front. Microbiol. 2020, 11, 814. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Q.; Yu, B.; Zhou, J.; Zhang, Y.; He, L.; Wang, X.; Huang, Y.; Li, Q.; Sun, Z. Lysates of Lactobacillus acidophilus Combined with CTLA-4-Blocking Antibodies Enhance Antitumor Immunity in a Mouse Colon Cancer Model. Sci. Rep. 2019, 9, 20128. [Google Scholar] [CrossRef] [PubMed]
- Martini, G.; Ciardiello, D.; Vitiello, P.P.; Napolitano, S.; Cardone, C.; Cuomo, A.; Troiani, T.; Ciardiello, F.; Martinelli, E. Resistance to Anti-Epidermal Growth Factor. Receptor in Metastatic Colorectal Cancer: What Does Still. Need to Be Addressed? Cancer Treat. Rev. 2020, 86, 102023. [Google Scholar] [CrossRef]
- Lopès, A.; Billard, E.; Casse, A.H.; Villéger, R.; Veziant, J.; Roche, M.; Branchereau, J.; Bouniol, L.; Sobhani, I.; Serino, M.; et al. Colibactin-Positive Escherichia coli Induce a Procarcinogenic Immune Environment Leading to Immunotherapy Resistance in Colorectal Cancer. Int. J. Cancer 2020, 146, 3147–3159. [Google Scholar] [CrossRef]
- Häfner, M.F.; Debus, J. Radiotherapy for Colorectal Cancer: Current Standards and Future Perspectives. Visc. Med. 2016, 32, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Liang, Y.; Tian, S.; Jin, J.; Zhao, Y.; Fan, H. Radiation-Induced Intestinal Injury: Injury Mechanism and Potential Treatment Strategies. Toxics 2023, 11, 1011. [Google Scholar] [CrossRef]
- Gerassy-Vainberg, S.; Blatt, A.; Danin-Poleg, Y.; Gershovich, K.; Sabo, E.; Nevelsky, A.; Daniel, S.; Dahan, A.; Ziv, O.; Dheer, R.; et al. Radiation Induces Proinflammatory Dysbiosis: Transmission of Inflammatory Susceptibility by Host Cytokine Induction. Gut 2018, 67, 97–107. [Google Scholar] [CrossRef]
- González-Mercado, V.J.; Lim, J.; Marrero, S.; Pedro, E.; Saligan, L.N. Gut Microbiota and Fatigue in Rectal Cancer Patients: A Cross-Sectional Pilot Study. Support. Care Cancer 2021, 29, 4615–4621. [Google Scholar] [CrossRef]
- Qu, R.; Zhang, Y.; Ma, Y.; Zhou, X.; Sun, L.; Jiang, C.; Zhang, Z.; Fu, W. Role of the Gut Microbiota and Its Metabolites in Tumorigenesis or Development of Colorectal Cancer. Adv. Sci. 2023, 10, e2205563. [Google Scholar] [CrossRef] [PubMed]
- Thoda, C.; Touraki, M. Probiotic-Derived Bioactive Compounds in Colorectal Cancer Treatment. Microorganisms 2023, 11, 1898. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Huang, Y.; Yang, Z.; Yang, Y.; Wei, F.; Yan, M.; Li, F.; Wang, C. Effect of Probiotics Combined with Immune Checkpoint Suppressors and Chemotherapeutic Agents on Digestive System Function, Intestinal Immunity and Prognosis in Patients with Metastatic Colorectal Carcinoma: A Quasi-Experimental Study. BMC Gastroenterol. 2025, 25, 38. [Google Scholar] [CrossRef]
- Ianiro, G.; Bibbò, S.; Gasbarrini, A.; Cammarota, G. Therapeutic Modulation of Gut Microbiota: Current Clinical Applications and Future Perspectives. Curr. Drug Targets 2014, 15, 762–770. [Google Scholar] [CrossRef]
- Baruch, E.N.; Youngster, I.; Ben-Betzalel, G.; Ortenberg, R.; Lahat, A.; Katz, L.; Adler, K.; Dick-Necula, D.; Raskin, S.; Bloch, N.; et al. Fecal Microbiota Transplant Promotes Response in Immunotherapy-Refractory Melanoma Patients. Science 2021, 371, 602–609. [Google Scholar] [CrossRef]
- Zhao, W.; Lei, J.; Ke, S.; Chen, Y.; Xiao, J.; Tang, Z.; Wang, L.; Ren, Y.; Alnaggar, M.; Qiu, H.; et al. Fecal Microbiota Transplantation Plus Tislelizumab and Fruquintinib in Refractory Microsatellite Stable Metastatic Colorectal Cancer: An Open-Label, Single-Arm, Phase II Trial (RENMIN-215). EClinicalMedicine 2023, 66, 102315. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.W.; Lee, H.C.; Li, L.H.; Chiang Chiau, J.S.; Wang, T.E.; Chuang, W.H.; Chen, M.J.; Wang, H.Y.; Shih, S.C.; Liu, C.Y.; et al. Fecal Microbiota Transplantation Prevents Intestinal Injury, Upregulation of Toll-Like Receptors, and 5-Fluorouracil/Oxaliplatin-Induced Toxicity in Colorectal Cancer. Int. J. Mol. Sci. 2020, 21, 386. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Zhang, Y.J.; Peng, L.H. Intestinal Microecological Transplantation for a Patient with Chronic Radiation Enteritis: A Case Report. World J. Gastroenterol. 2024, 30, 2603–2611. [Google Scholar] [CrossRef]
Treatment Area | Specific Modality | Advantages/Positive Impacts | Disadvantages/Complications |
---|---|---|---|
Surgery | Mechanical Bowel Preparation | It facilitates the detection and handling of small CRCs by directed palpation by the surgeon. | It does not affect the prevention of postsurgical complications, such as anastomotic leaks. Severe alterations of the luminal and mucosal microbiota (e.g., reduction of Bifidobacteria, Clostridium coccoides, Lactobacillus), with total re-establishment only after 14 days. This may result in a greater intestinal permeability, translocation of bacteria, and proliferation of pathogenic species. |
Antibiotic Prophylaxis | - | Major GM changes reduced heterogeneity, with complete restoration only after 60 days. Intravenously administered β-lactams resulted in an overall increase in Firmicutes and a reduction in Bacteroidetes. | |
General Colorectal Surgery | - | Postoperative complications, such as infections, are accompanied by a discrete dysbiosis pattern. Anastomotic leaks are affected by bacteria (e.g., Enterococcus faecalis, Acinetobacter lwoffii) that either colonize the anastomotic site, influence the epithelial barrier, biodegrade collagen, or activate MMP9. Postoperative ileus is also associated with increased dysbiosis and decreased Faecalibacterium | |
Chemotherapy (CHT) | Cytotoxic regimens | Chemoresistance related to specific bacteria (e.g., Fusobacterium nucleatum regulating BIRC3). Adverse reactions such as gastrointestinal mucositis and chemotherapy-induced diarrhea. Reduced GM diversity, dysbiosis and high Klebsiella. | |
Neoadjuvant Chemoradiotherapy | The ‘beneficial microbiota’ (e.g., Roseburia, Dorea) is over-represented in responders. Streptococcus has been proposed as a potential biomarker to predict responsiveness. | Fusobacterium overexpression is linked to scarce responsiveness. | |
Probiotics with CHT | It may decrease gastrointestinal side effects while not affecting the effectiveness of chemotherapy. It protects from chemotherapy-induced dysbiosis and supports the generation of short-chain fatty acids (SCFAs). It mitigates the treatment-related adverse reactions, in particular, mucositis and diarrhea. | There is limited research exploring the beneficial role before/during CRC treatments. | |
Immunotherapy | Immune Checkpoint Inhibitors | The GM may improve treatment response and toxicity. Greater diversity of the GM in responders (melanoma). The abundance of Akkermansia muciniphila enhances the efficacy of ICIs (other cancer types). The metabolites, such as SCFA (e.g., butyrate), may be biomarkers of responsiveness. The occurrence of butyrate-producing bacteria is linked to a better response to cetuximab + avelumab in mCRC. | Very limited application to CRC (only approved for CRC dMMR or MSH). Antibiotics inhibit the beneficial effects of ICIs. Colonization by colibactin-producing E. coli (CoPEC) can decrease effectiveness by compromising anti-cancer T-cell sensitivity. |
Lactobacillus acidophilus with ICIs | It sustains the immune system response and boosts anti-CTLA-4 effectivity (mouse model). | ||
Probiotics with Immunotherapy | Successful association in improving symptom burden and quality of life in metastatic CRC. The GM holds major potential through immune modulation. | Additional research is required. | |
Radiotherapy (RT) | Localized RT or CRT (for rectal cancer) | Enhances local management and overall survival in localized rectal carcinoma. | Altered GM composition; dysbiosis. Elevated inflammation, increased membrane permeability, and enhanced bacterial translocation. Radiation-induced gastrointestinal mucositis. Proctitis linked to alterations in bacterial phyla (e.g., increase in Akkermansia, Bacteroides) and the production of pro-inflammatory cytokines. Fatigue tied to GM alterations. |
Gut Microbiota (GM) Modulation (Future Perspectives) | Dietary Interventions | Customized nutrition has an influence on GM composition. A protective influence between dietary patterns and incidence of CRC. Modulation potential of treatment tolerance. Crucial in preventing CRC. | Scarce available data on the impact during cancer therapies. Represents a major challenge for physicians. |
Probiotics/Prebiotics | Anti-inflammatory and anti-proliferative effects, direct anti-tumor action, and treat treatment-related diarrhea (probiotics). Repair intestinal flora, attenuate adverse effects (prebiotics, probiotics). | Only a few studies have investigated the true role before/during treatment for CRC. It represents a major challenge for clinicians. Additional studies are needed. | |
Fecal Microbiota Transplantation (FMT) | It holds great potential for the prevention and treatment of CRC. It improves responsiveness to immunotherapy (melanoma). Pilot studies safely suggest an improvement in CRC outcomes. Affective for radiation enteritis, restoring the GM. Key in CRC prevention and support strategy. | Research on CRC is scarce. It represents a major challenge for clinicians. Additional research is needed. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cintoni, M.; Palombaro, M.; Zoli, E.; D’Agostino, G.; Pulcini, G.; Leonardi, E.; Raoul, P.; Rinninella, E.; De Maio, F.; Capristo, E.; et al. The Interplay Between the Gut Microbiota and Colorectal Cancer: A Review of the Literature. Microorganisms 2025, 13, 1410. https://doi.org/10.3390/microorganisms13061410
Cintoni M, Palombaro M, Zoli E, D’Agostino G, Pulcini G, Leonardi E, Raoul P, Rinninella E, De Maio F, Capristo E, et al. The Interplay Between the Gut Microbiota and Colorectal Cancer: A Review of the Literature. Microorganisms. 2025; 13(6):1410. https://doi.org/10.3390/microorganisms13061410
Chicago/Turabian StyleCintoni, Marco, Marta Palombaro, Eleonora Zoli, Giuseppe D’Agostino, Gabriele Pulcini, Elena Leonardi, Pauline Raoul, Emanuele Rinninella, Flavio De Maio, Esmeralda Capristo, and et al. 2025. "The Interplay Between the Gut Microbiota and Colorectal Cancer: A Review of the Literature" Microorganisms 13, no. 6: 1410. https://doi.org/10.3390/microorganisms13061410
APA StyleCintoni, M., Palombaro, M., Zoli, E., D’Agostino, G., Pulcini, G., Leonardi, E., Raoul, P., Rinninella, E., De Maio, F., Capristo, E., Gasbarrini, A., & Mele, M. C. (2025). The Interplay Between the Gut Microbiota and Colorectal Cancer: A Review of the Literature. Microorganisms, 13(6), 1410. https://doi.org/10.3390/microorganisms13061410