Bacillus subtilis B579 Controls Cucumber Fusarium Wilt by Improving Rhizosphere Microbial Community
Abstract
1. Introduction
2. Materials and Methods
2.1. Strain Culture
2.2. The Pot Experimental Design
2.3. Soil Collection and Analysis of Plant Growth
2.4. Analysis of the Soil’s Physicochemical Properties
2.5. Analysis of the Soil’s Enzyme Activity
2.6. DNA Extraction from the Soil
2.7. PCR and Sequencing
2.8. Sequence Data Processing
2.9. Statistical Analysis
3. Results
3.1. The Disease Index
3.2. Plant Growth
3.3. The Soil’s Physicochemical Properties and Enzyme Activities
3.4. Analysis of the Sequencing Results
3.5. PCoA
3.6. Analysis of the Soil’s Microbial Composition
3.7. The Correlation Between the Soil’s Physicochemical Properties and Abundant Genera
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lian, H.; Li, R.Z.; Ma, G.S.; Zhao, Z.H.; Zhang, T.; Li, M. The effect of Trichoderma harzianum agents on physiological-biochemical characteristics of cucumber and the control effect against Fusarium wilt. Sci. Rep. 2023, 13, 17606. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, Y.; Ma, Z.; Zheng, Y.; Jin, P. Hydrogen sulfide treatment alleviates chilling injury in cucumber fruit by regulating antioxidant capacity, energy metabolism and proline metabolism. Foods 2022, 11, 2749. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Jiang, H.Y.; Chang, G.Z.; Liang, S.; Ma, K.; Cai, Y.; Tian, B.; Shi, X. Effects of rhizosphere microbial communities on cucumber Fusarium wilt disease suppression. Microorganisms 2023, 11, 1576. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.Z.; Ahmad, K.; Kutawa, A.B.; Siddiqui, Y.; Saad, N.; Hun, T.G.; Hata, E.M.; Hossain, M.L. Biology, diversity, detection and management of Fusarium oxysporum f. sp. niveum causing vascular wilt disease of watermelon (Citrullus lanatus): A Review. Agronomy 2021, 11, 1310. [Google Scholar] [CrossRef]
- Robledo-Torres, V.; González-Cortés, A.; Luna-García, L.R.; Mendoza-Villarreal, R.; Pérez-Rodríguez, M.Á.; Camposeco-Montejo, N. Histological variations in cucumber grafted plants and their effect on yield. Agronomy 2024, 14, 1377. [Google Scholar] [CrossRef]
- Chakraborty, S.; Mandal, A.K.; Chattopadhyay, A. Screening of cucumber genotypes against downy mildew disease and its relationship with biochemical parameters. Indian Phytopathol. 2022, 75, 673–680. [Google Scholar] [CrossRef]
- Sennett, L.B.; Goyer, C.; Burton, D.L.; Zebarth, B.J.; Whitney, S. Chemical fumigation and biofumigation alter soil bacterial community diversity and composition. FEMS Microbiol. Ecol. 2022, 98, fiac026. [Google Scholar] [CrossRef]
- Li, Z.Y.; Ma, J.X.; Li, J.J.; Chen, Y.; Xie, Z.; Tian, Y.; Su, X.; Tian, T.; Shen, T. A biocontrol strain of Serratia plymuthica MM promotes growth and controls Fusarium wilt in watermelon. Agronomy 2023, 13, 2437. [Google Scholar] [CrossRef]
- He, D.C.; He, M.H.; Amalin, D.M.; Liu, W.; Alvindia, D.G.; Zhan, J. Biological control of plant diseases: An evolutionary and eco-economic consideration. Pathogens 2021, 10, 1311. [Google Scholar] [CrossRef]
- Etesami, H.; Jeong, B.R.; Glick, B.R. Biocontrol of plant diseases by Bacillus spp. Physiol. Mol. Plant Pathol. 2023, 126, 102048. [Google Scholar] [CrossRef]
- Liu, Z.S.; Fan, C.X.; Xiao, J.W.; Sun, S.; Gao, T.; Zhu, B.; Zhang, D. Metabolomic and transcriptome analysis of the inhibitory effects of Bacillus subtilis strain Z-14 against Fusarium oxysporum causing vascular wilt diseases in cucumber. J. Agr. Food Chem. 2023, 71, 2644–2657. [Google Scholar] [CrossRef] [PubMed]
- Ta, Y.; Fu, S.; Liu, H.; Zhang, C.; He, M.; Yu, H.; Ren, Y.; Han, Y.; Hu, W.; Yan, Z.; et al. Evaluation of Bacillus velezensis F9 for cucumber growth promotion and suppression of Fusarium wilt disease. Microorganisms 2024, 12, 1882. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Li, X.; Yan, H.X.; Sun, Y.W.; Wu, D.W.; Du, Y.; Luo, Y.M. Recruitment of beneficial cucumber rhizosphere microbes mediated by amino acid secretion induced by biocontrol Bacillus subtilis isolate 1JN2. Front. Microbiol. 2024, 15, 1379566. [Google Scholar] [CrossRef]
- Nwachukwu, B.C.; Ayangbenro, A.S.; Babalola, O.O. Elucidating the rhizosphere associated bacteria for environmental sustainability. Agriculture 2021, 23, 13639. [Google Scholar] [CrossRef]
- Ladygina, N.; Hedlund, K. Plant species influence microbial diversity and carbon allocation in the rhizosphere. Soil. Biol. Biochem. 2010, 42, 162–168. [Google Scholar] [CrossRef]
- Park, I.; Seo, Y.S.; Mannaa, M. Recruitment of the rhizo-microbiome army: Assembly determinants and engineering of the rhizosphere microbiome as a key to unlocking plant potential. Front. Microbiol. 2023, 14, 3832. [Google Scholar] [CrossRef]
- Ma, X.J.; Thakar, S.B.; Zhang, H.M.; Yu, Z.Q.; Meng, L.; Yue, J.Y. Bioinformatics analysis of the rhizosphere microbiota of Dangshan su pear in different soil types. Curr. Bioinform. 2020, 15, 503–514. [Google Scholar] [CrossRef]
- Norris, C.E.; Swallow, M.J.B.; Liptzin, D.; Cope, M.; Bean, G.M.; Cappellazzi, S.B.; Greub, K.L.H.; Rieke, E.L.; Tracy, P.W.; Morgan, C.L.S.; et al. Use of phospholipid fatty acid analysis as phenotypic biomarkers for soil health and the influence of management practices. Appl. Soil Ecol. 2023, 185, 104793. [Google Scholar] [CrossRef]
- Karna, R.R.; Kumara, S.T.; McCracken, V.J.; Fowler, T.J.; Lin, Z.-Q. Enhancement on selenium volatilization for phytoremediation: Role of plant and soil microbe interaction. Front. Plant Sci. 2024, 15, 1504528. [Google Scholar] [CrossRef]
- Bubici, G.; Kaushal, M.; Prigigallo, M.I.; Gómez-Lama Cabanás, C.; Mercado-Blanco, J. Biological control agents against Fusarium wilt of banana. Front. Microbiol. 2019, 10, 616. [Google Scholar] [CrossRef]
- Chaudhary, P.; Sharma, A.; Chaudhary, A.; Khati, P.; Gangola, S.; Maithani, D. Illumina based high throughput analysis of microbial diversity of maize rhizosphere treated with nanocompounds and Bacillus sp. Appl. Soil Ecol. 2021, 159, 103836. [Google Scholar] [CrossRef]
- Meng, W.; Zhou, Z.; Tan, M.; Liu, A.; Liu, S.; Wang, J.; Sun, Z.; Tan, Y.; Liu, Y.; Wang, B.; et al. Integrated analysis of metatranscriptome and amplicon sequencing to reveal distinctive rhizospheric microorganisms of salt-tolerant rice. Plants 2024, 14, 36. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Wang, M.; Zheng, Y.; Luo, J.; Yang, X.; Wang, X. Quantitative changes of plant defense enzymes and phytohormone in biocontrol of cucumber Fusarium wilt by Bacillus subtilis B579. World J. Microbiol. Biotechnol. 2009, 26, 675–684. [Google Scholar] [CrossRef]
- Pu, X.M.; Xie, B.Y.; Li, P.Q.; Mao, Z.; Ling, J.; Shen, H.; Zhang, J.; Huang, N.; Lin, B. Analysis of the defence-related mechanism in cucumber seedlings in relation to root colonization by nonpathogenic Fusarium oxysporum CS-20. FEMS Microbiol. Lett. 2014, 355, 142–151. [Google Scholar] [CrossRef]
- Shi, L.; Liu, N.; Liu, G.; Fang, J. Bacterial community structure and dynamic changes in different functional areas of a piggery wastewater treatment system. Microorganisms 2021, 9, 2134–2150. [Google Scholar] [CrossRef]
- Nawaz, A.; Farooq, M.; Lal, R.; Rehman, A.; Hussain, T.; Nadeem, A. Influence of sesbania brown manuring and rice residue mulch on soil health, weeds and system productivity of conservation rice-wheat systems. Land Degrad. Dev. 2016, 28, 1078–1090. [Google Scholar] [CrossRef]
- Tu, J.; Zhao, X.; Yang, Y.; Yi, Y.; Wang, H.; Wei, B.; Zeng, L. Two Bacillus spp. strains improve the structure and diversity of the rhizosphere soil microbial community of Lilium brownii var. viridulum. Microorganisms 2023, 11, 1229. [Google Scholar] [CrossRef]
- Kandeler, E.; Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fert. Soils 1988, 6, 68–72. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, F.G.; Zhao, X.C.; Gu, X.Y.; Chen, C.; Chen, J.H. Influences of nitrogen input forms and levels on phosphorus availability in karst grassland soils. Front. Sustain. Food Syst. 2024, 8, 1343283. [Google Scholar] [CrossRef]
- Adekanmbi, A.A.; Dale, L.; Shaw, L.; Sizmur, T. Differential temperature sensitivity of intracellular metabolic processes and extracellular soil enzyme activities. Biogeosciences 2023, 20, 2207–2219. [Google Scholar] [CrossRef]
- Xue, D.; Huang, X.D. The impact of sewage sludge compost on tree peony growth and soil microbiological, and biochemical properties. Chemosphere 2013, 93, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Dick, W.A.; TTavamani, B.; Conley, S.; Blaisdell, R.; Sengupta, A. Prediction of β-glucosidase and β-glucosaminidase activities, soil organic C, and amino sugar N in a diverse population of soils using near infrared reflectance spectroscopy. Soil Biol. Biochem. 2013, 56, 99–104. [Google Scholar] [CrossRef]
- Wasimuddin; Schlaeppi, K.; Ronchi, F.; Leib, S.L.; Erb, M.; Ramette, A. Evaluation of primer pairs for microbiome profiling from soils to humans within the One Health framework. Mol. Ecol. Resour. 2020, 20, 1558–1571. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Jiang, H.Y.; Liang, S.; Chang, G.Z.; Ma, K.; Niu, L.L.; Mi, G.Q.; Tang, Y.L.; Tian, B.M.; Shi, X.J. High-throughput sequencing reveals the effect of the south root-knot nematode on cucumber rhizosphere soil microbial community. Agronomy 2023, 13, 1726. [Google Scholar] [CrossRef]
- Ding, Y.; Ke, J.T.; Hong, T.; Zhang, A.D.; Wu, X.; Jiang, X.R.; Shao, S.L.; Gong, M.; Zhao, S.D.; Shen, L.; et al. Microbial diversity and ecological roles of halophilic microorganisms in Dingbian (Shaanxi, China) saline-alkali soils and salt lakes. BMC Microbiol. 2025, 25, 287. [Google Scholar] [CrossRef]
- Lu, L.F.; Ni, L.F.; Ai, C.X.; Zhang, D.D.; Zheng, P.F.; Li, X.J.; Liu, X.; Dang, H.Y. Seasonal dynamics of microbial communities link to summer-autumn aquaculture disease outbreaks in Sanggou Bay. Front. Mar. Sci. 2025, 12, 1581190. [Google Scholar] [CrossRef]
- Chen, S.F.; Zhou, Y.Q.; Chen, Y.R.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, 884–890. [Google Scholar] [CrossRef]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef]
- Han, H.; Choi, Y.H.; Kim, S.Y.; Park, J.H.; Chung, J.; Na, H.S. Optimizing microbiome reference databases with PacBio full-length 16S rRNA sequencing for enhanced taxonomic classification and biomarker discovery. Front. Microbiol. 2024, 15, 1485073. [Google Scholar] [CrossRef]
- Yilmaz, P.; Parfrey, L.W.; Yarza, P.; Gerken, J.; Pruesse, E.; Quast, C.; Schweer, T.; Peplies, J.; Ludwig, W.; Glöckner, F.O. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014, 42, 643–648. [Google Scholar] [CrossRef]
- Nilsson, R.H.; Larsson, K.-H.; Taylor, A.F.S.; Bengtsson-Palme, J.; Jeppesen, T.S.; Schigel, D.; Kennedy, P.; Picard, K.; Glöckner, F.O.; Tedersoo, L.; et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019, 47, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, B.; Smart, L.B.; Hijri, M. Microbiome of field grown hemp reveals potential microbial interactions with root and rhizosphere soil. Front. Microbiol. 2021, 12, 741597. [Google Scholar] [CrossRef]
- Zhao, J.; Mei, Z.; Zhang, X.; Xue, C.; Zhang, C.; Ma, T.; Zhang, S. Suppression of Fusarium wilt of cucumber by ammonia gas fumigation via reduction of Fusarium population in the field. Sci. Rep. 2017, 7, 1342. [Google Scholar] [CrossRef]
- Chen, W.M.; Wu, Z.S.; Liu, C.H.; Zhang, Z.Y.; Liu, X.C. Biochar combined with Bacillus subtilis SL-44 as an eco-friendly strategy to improve soil fertility, reduce Fusarium wilt, and promote radish growth. Ecotoxicol. Environ. Saf. 2023, 251, 114509. [Google Scholar] [CrossRef]
- Zhu, J.X.; Tan, T.M.; Shen, A.R.; Yang, X.B.; Yu, Y.T.; Gao, C.S.; Li, Z.M.; Cheng, Y.; Chen, J.; Guo, L.; et al. Biocontrol potential of Bacillus subtilis IBFCBF-4 against Fusarium wilt of watermelon. J. Plant Pathol. 2020, 102, 433–441. [Google Scholar] [CrossRef]
- Adriano-Anaya, L.; Pardo-Girón, L.F.; Salvador-Adriano, M.; Salvador-Figueroa, M.; Ovando-Medina, I.; Moreno-Castillo, B. Effectiveness of Bacillus subtilis ANT01 and Rhizobium sp. 11B on the control of fusarium wilt in pineapple (Ananas comosus). PeerJ 2024, 12, e16871. [Google Scholar] [CrossRef]
- Mesanza, N.; Crawford, B.D.; Coulson, T.J.D.; Iturritxa, E.; Patten, C.L. Colonization of Pinus radiata D. Don seedling roots by biocontrol bacteria Erwinia billingiae and Bacillus simplex. Forests 2019, 10, 552. [Google Scholar] [CrossRef]
- Yang, X.R.; Tian, T.; Sun, S.Q.; Liu, Y.X. GFP-expressing Bacillus subtilis B579 strain and its colonization detection. Acta Phytopathol. Sin. 2013, 43, 82–87. [Google Scholar]
- Yang, W.; Wang, L.; Li, X.; Yan, H.; Zhong, B.; Du, X.; Guo, Q.; He, T.; Luo, Y. Biological control potential of Bacillus subtilis isolate 1JN2 against Fusarium wilt on cucumber. Horticulturae 2024, 10, 843. [Google Scholar] [CrossRef]
- Yang, F.; Wang, X.; Jiang, H.; Yao, Q.; Liang, S.; Chen, W.; Shi, G.; Tian, B.; Hegazy, A.; Ding, S. Mechanism of a novel Bacillus subtilis JNF2 in suppressing Fusarium oxysporum f. sp. cucumerium and enhancing cucumber growth. Front. Microbiol. 2024, 15, 11467. [Google Scholar] [CrossRef]
- Hao, H.B.; Yue, Y.H.; Wang, Q.; Xiao, T.T.; Zhao, Z.L.; Zhang, J.J.; Chen, H. Effects of the rice-mushroom rotation pattern on soil properties and microbial community succession in paddy fields. Front. Microbiol. 2024, 15, 1449922. [Google Scholar] [CrossRef] [PubMed]
- Wurch, L.L.; Haley, S.T.; Orchard, E.D.; Gobler, C.J.; Dyhrman, S.T. Nutrient—Regulated transcriptional responses in the brown tide—Forming alga Aureococcus anophagefferens. Environ. Microbiol. 2010, 13, 468–481. [Google Scholar] [CrossRef]
- Bai, N.; Zhang, H.; He, Y.; Zhang, J.; Zheng, X.; Zhang, H.; Zhang, Y.; Lv, W.; Li, S. Effects of Bacillus subtilis A-5 and its fermented γ-polyglutamic acid on the rhizosphere bacterial community of Chinese cabbage. Front. Microbiol. 2022, 13, 954489. [Google Scholar] [CrossRef]
- Deng, Z.; Wang, J.; Yan, Y.; Wang, J.; Shao, W.; Wu, Z. Biochar-based Bacillus subtilis inoculants promote plant growth: Regulating microbial community to improve soil properties. J. Environ. Manag. 2024, 373, 123534. [Google Scholar] [CrossRef]
- Qi, R.; Lin, W.; Gong, K.; Han, Z.; Ma, H.; Zhang, M.; Zhang, Q.; Gao, Y.; Li, J.; Zhang, X. Bacillus co-inoculation alleviated salt stress in seedlings cucumber. Agronomy 2021, 11, 966. [Google Scholar] [CrossRef]
- Chen, C.; Cheng, Y.; Zhang, F.; Yu, S.; Cui, X.; Wu, Y. A comparative analysis of microbial communities in the rhizosphere soil and plant roots of healthy and diseased Yuanyang Nanqi (Panax vietnamensis) with root rot. Agriculture 2024, 14, 719. [Google Scholar] [CrossRef]
- Dlamini, S.P.; Akanmu, A.O.; Babalola, O.O. Rhizospheric microorganisms: The gateway to a sustainable plant health. Front. Sustain. Food Syst. 2022, 6, 925802. [Google Scholar] [CrossRef]
- Meng, T.; Wang, Q.; Abbasi, P.; Ma, Y. Deciphering differences in the chemical and microbial characteristics of healthy and Fusarium wilt-infected watermelon rhizosphere soils. Appl. Microbiol. Biot. 2018, 103, 1497–1509. [Google Scholar] [CrossRef]
- Lv, B.; Zhang, Z.; Chen, B.; Yu, S.; Song, M.; Yu, Y.; Lu, T.; Sun, L.; Qian, H. The effects of different halogenated-pyrethroid pesticides on soil microbial community. Sci. Total Environ. 2025, 958, 177882. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Z.; Song, J.; Mei, J.; Fang, H.; Gui, W. Reduced bacterial network complexity in agricultural soils after application of the neonicotinoid insecticide thiamethoxam. Environ. Pollut. 2021, 274, 116540. [Google Scholar] [CrossRef]
- Shen, Z.Z.; Ruan, Y.Z.; Chao, X.; Zhang, J.; Li, R.; Shen, Q. Rhizosphere microbial community manipulated by 2 years of consecutive biofertilizer application associated with banana Fusarium wilt disease suppression. Biol. Fert. Soils 2015, 51, 553–562. [Google Scholar] [CrossRef]
- Shi, L.; Du, N.S.; Shu, S.; Sun, J.; Li, S.; Guo, S. Paenibacillus polymyxa NSY50 suppresses Fusarium wilt in cucumbers by regulating the rhizospheric microbial community. Sci. Rep. 2017, 7, 41234. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.Y.; Shi, J.B.; Zhou, X.G.; Yuan, T.; Gao, D.M.; Wu, F.Z. Crop rotation with cress increases cucumber yields by regulating the composition of the rhizosphere soil microbial community. Front. Microbiol. 2021, 12, 631882. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; He, X.; Dai, J.; Yang, N.; Jiang, Q.; Xu, Z.; Tang, X.; Yu, Y.; Xiao, M. Induced resistance mechanism of Bacillus velezensis S3-1 against pepper wilt. Curr. Microbiol. 2023, 80, 367–378. [Google Scholar] [CrossRef]
- Yu, Y.; Gui, Y.; Li, Z.; Jiang, C.; Guo, J.; Niu, D. Induced systemic resistance for improving plant immunity by beneficial microbes. Plants 2022, 11, 386–405. [Google Scholar] [CrossRef]
- Cai, F.; Yang, C.; Ma, T.; Osei, R.; Jin, M.; Zhang, C.; Wang, Y. An endophytic Paenibacillus polymyxa hg18 and its biocontrol potential against Fusarium oxysporum f. sp. cucumerinum. Biol. Control 2024, 188, 105380. [Google Scholar] [CrossRef]
- Du, N.; Yang, Q.; Xue, L.; Guo, H.; Lv, J.; Zhang, T.; Dong, X.; Shen, S.; Piao, F. Paenibacillus polymyxa NSY50 improves defense against Fusarium oxysporum by increasing photosynthetic efficiency, sucrose metabolism, and antioxidant capacity in cucumber. J. Plant Growth Regul. 2022, 42, 2246–2257. [Google Scholar] [CrossRef]
- Mendes, R.; Kruijt, M.; De Bruijn, I.; Dekkers, E.; van der Voort, M.; Schneider, J.H.M.; Piceno, Y.M.; DeSantis, T.Z.; Andersen, G.L.; Bakker, P.A.H.M.; et al. Deciphering the rhizosphere microbiome for disease-duppressive bacteria. Science 2011, 332, 1097–1100. [Google Scholar] [CrossRef]
- Rosenzweig, N.; Tiedje, J.M.; Quensen, J.F.; Meng, Q.; Hao, J.J. Microbial communities associated with potato common scab-suppressive soil determined by pyrosequencing analyses. Plant Dis. 2012, 96, 718–725. [Google Scholar] [CrossRef]
- Ebrahimi-Zarandi, M.; Saberi Riseh, R.; Tarkka, M.T. Actinobacteria as effective biocontrol agents against plant pathogens, an overview on their role in eliciting plant defense. Microorganisms 2022, 10, 1739. [Google Scholar] [CrossRef]
- Law, J.W.-F.; Ser, H.-L.; Khan, T.M.; Chuah, L.-H.; Pusparajah, P.; Chan, K.-G.; Goh, B.-H.; Lee, L.-H. The potential of Streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Front. Microbiol. 2017, 8, 3. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Tao, J.; Liu, T.; Liu, Y.; Xiao, N.; Li, T.; Gu, Y.; Yin, H.; Meng, D. Responses of phyllosphere microbiota and plant health to application of two different biocontrol agents. AMB Express 2019, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.J.; Liu, Y.W.; Li, S.W.; Yang, Q.L. The combination of biochar and Bacillus subtilis biological agent reduced the relative abundance of pathogenic bacteria in the rhizosphere soil of Panax notoginseng. Microorganisms 2024, 12, 783. [Google Scholar] [CrossRef]
- Guzmán-Guzmán, P.; Kumar, A.; de los Santos-Villalobos, S.; Parra-Cota, F.I.; Orozco-Mosqueda, M.d.C.; Fadiji, A.E.; Hyder, S.; Babalola, O.O.; Santoyo, G. Trichoderma species: Our best fungal allies in the biocontrol of plant diseases—A Review. Plants 2023, 12, 432. [Google Scholar] [CrossRef] [PubMed]
- Jaroszuk-Ściseł, J.; Kurek, E.; Słomka, A.; Janczarek, M.; Rodzik, B. Activities of cell wall degrading enzymes in autolyzing cultures of three Fusarium culmorum isolates: Growth-promoting, deleterious and pathogenic to rye (Secale cereale). Mycologia 2011, 103, 929–945. [Google Scholar] [CrossRef]
- Ozimek, E.; Hanaka, A. Mortierella species as the plant growth-promoting fungi present in the agricultural soils. Agriculture 2020, 11, 7. [Google Scholar] [CrossRef]
- Lacey, M.J.; Wilson, C.R. Relationship of common scab incidence of potatoes grown in Tasmanian ferrosol soils with pH, exchangeable cations and other chemical properties of those soils. J. Phytopathol. 2001, 149, 679–683. [Google Scholar] [CrossRef]
- Jia, M.; Cheng, P.Y.; Wang, Y.H.; Pang, X.M.; Li, M.Z.; Hong, L.; Zhang, Q.; Chen, Y.L.; Jia, X.L.; Ye, J.H.; et al. Effects of aviation mutagenesis on soil chemical indexes, enzyme activities, and metabolites of Dahongpao (Camellia sinensis) tea trees. Plants 2024, 13, 1291. [Google Scholar] [CrossRef]
- Morant, A.V.; Jørgensen, K.; Jørgensen, C.; Paquette, S.M.; Sánchez-Pérez, R.; Møller, B.L.; Bak, S. β-Glucosidases as detonators of plant chemical defense. Phytochemistry 2008, 69, 1795–1813. [Google Scholar] [CrossRef]
- Muthu Narayanan, M.; Ahmad, N.; Shivanand, P.; Metali, F. The role of endophytes in combating fungal- and bacterial-induced stress in plants. Molecules 2022, 27, 6549. [Google Scholar] [CrossRef]
Treatment | pH | TP (μg/g) | TN (g/kg) | OC (g/kg) | AK (mg/kg) | AP (mg/kg) | OP (μg/g) |
---|---|---|---|---|---|---|---|
CK | 7.47 ± 0.05 b | 1147.83 ± 131.48 b | 1.34 ± 0.13 b | 32.60 ± 0.16 b | 79.58 ± 6.57 b | 38.61 ± 2.82 b | 529.91 ± 28.05 b |
B579 | 7.70 ± 0.07 a | 1340.28 ± 58.17 b | 1.59 ± 0.02 a | 34.54 ± 1.30 a | 112.17 ± 6.21 a | 57.28 ± 5.92 a | 652.92 ± 6.88 a |
B579 + FOC | 7.19 ± 0.04 c | 1140.12 ± 66.22 a | 1.32 ± 0.07 b | 30.71 ± 0.84 c | 71.69 ± 4.16 b | 38.35 ± 1.67 b | 528.48 ± 7.25 b |
FOC | 6.80 ± 0.06 d | 968.53 ± 32.81 c | 1.10 ± 0.05 c | 28.81 ± 0.80 d | 58.07 ± 5.60 c | 26.34 ± 1.81 c | 522.99 ± 9.11 b |
Treatment | Urease (mg/kg·h) | Alkaline Phosphatase (mg/g·h) | Catalase (mL/g·h) | Chitinase (μg/g·h) | β-Glucosidase (μg/g·h) |
---|---|---|---|---|---|
CK | 27.44 ± 2.21 b | 1.08 ± 0.05 b | 3.79 ± 0.17 b | 2.54 ± 0.34 a | 157.64 ± 11.94 b |
B579 | 32.14 ± 1.53 a | 1.49 ± 0.13 a | 4.57 ± 0.16 a | 2.88 ± 0.16 a | 188.42 ± 12.02 a |
B579 + FOC | 23.73 ± 1.86 c | 1.45 ± 0.11 a | 3.74 ± 0.33 b | 2.51 ± 0.25 a | 145.82 ± 5.26 b |
FOC | 13.39 ± 0.63 d | 0.88 ± 0.06 c | 3.15 ± 0.18 c | 2.37 ± 0.36 a | 124.64 ± 3.24 c |
Sample | Retained Sequences | |
---|---|---|
Bacterial 16S rRNA Sequences | Fungal ITS Sequences | |
CK1 | 77,149 | 105,995 |
CK2 | 71,265 | 98,215 |
CK3 | 75,819 | 94,054 |
B5791 | 82,872 | 97,147 |
B5792 | 79,211 | 104,539 |
B5793 | 75,083 | 94,954 |
B579 + FOC1 (BF1) | 119,309 | 100,749 |
B579 + FOC2 (BF2) | 85,392 | 99,151 |
B579 + FOC3 (BF3) | 82,269 | 105,446 |
FOC1 | 69,980 | 98,040 |
FOC2 | 68,742 | 101,698 |
FOC3 | 72,079 | 98,244 |
Mean | 79,931 | 99,853 |
Total | 959,170 | 1,198,232 |
Treament | Community Characteristics | |||||
---|---|---|---|---|---|---|
Bacterial Community | Fungal Community | |||||
CK | chao1 | Shannon | Simpson | chao1 | Shannon | Simipson |
2157.04 ± 299.12 ab | 9.39 ± 0.34 ab | 0.99 ± 0.00 ab | 360.76 ± 73.76 a | 4.15 ± 0.69 a | 0.86 ± 0.05 a | |
B579 | 2497.08 ± 111.19 a | 9.73 ± 0.21 a | 0.99 ± 0.00 a | 215.66 ± 20.32 ab | 2.70 ± 0.56 ab | 0.74 ± 0.08 ab |
B579 + FOC | 2102.28 ± 325.81 ab | 9.28 ± 0.43 ab | 0.99 ± 0.00 ab | 247.02 ± 24.47 ab | 3.33 ± 0.80 ab | 0.79 ± 0.08 ab |
FOC | 1719.89 ± 157.17 b | 8.97 ± 0.27 c | 0.99 ± 0.00 c | 143.40 ± 27.32 b | 1.70 ± 0.34 c | 0.42 ± 0.08 c |
Taxonomy | CK | B579 | BF | FOC |
---|---|---|---|---|
Bacillus | 0.56 ± 0.14 b | 1.38 ± 0.18 a | 1.36 ± 0.37 a | 0.48 ± 0.10 b |
Paenibacillus | 0.70 ± 0.03 ab | 1.16 ± 0.30 a | 1.08 ± 0.47 a | 0.30 ± 0.10 b |
Sphingomonas | 0.42 ± 0.06 b | 1.23 ± 0.51 a | 0.85 ± 0.20 a | 0.52 ± 0.19 b |
Pseudomonas | 0.20 ± 0.01 b | 1.01 ± 0.30 a | 1.53 ± 0.43 a | 0.16 ± 0.04 b |
Microbacterium | 0.35 ± 0.06 b | 0.45 ± 0.08 b | 1.03 ± 0.15 a | 0.59 ± 0.04 b |
Streptomyces | 0.34 ± 0.03 b | 0.39 ± 0.06 b | 0.54 ± 0.22 a | 0.36 ± 0.08 b |
Taxonomy | CK | B579 | BF | FOC |
---|---|---|---|---|
Fusarium | 0.11 ± 0.03 c | 0.08 ± 0.02 c | 48.34 ± 7.98 b | 75.44 ± 5.74 a |
Mortierella | 0.53 ± 0.10 bc | 3.21 ± 0.35 a | 0.77 ± 0.27 b | 0.01 ± 0.00 c |
Trichoderma | 0.05 ± 0.00 b | 0.06 ± 0.01 b | 0.10 ± 0.02 a | 0.05 ± 0.01 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Z.; Feng, J.; Zheng, L.; Chen, Y.; Wang, M.; Peng, X.; Wang, S.; Chen, F. Bacillus subtilis B579 Controls Cucumber Fusarium Wilt by Improving Rhizosphere Microbial Community. Microorganisms 2025, 13, 1382. https://doi.org/10.3390/microorganisms13061382
Fan Z, Feng J, Zheng L, Chen Y, Wang M, Peng X, Wang S, Chen F. Bacillus subtilis B579 Controls Cucumber Fusarium Wilt by Improving Rhizosphere Microbial Community. Microorganisms. 2025; 13(6):1382. https://doi.org/10.3390/microorganisms13061382
Chicago/Turabian StyleFan, Zongqiang, Jinghan Feng, Lixue Zheng, Yanru Chen, Minglei Wang, Xiangqian Peng, Shuo Wang, and Fang Chen. 2025. "Bacillus subtilis B579 Controls Cucumber Fusarium Wilt by Improving Rhizosphere Microbial Community" Microorganisms 13, no. 6: 1382. https://doi.org/10.3390/microorganisms13061382
APA StyleFan, Z., Feng, J., Zheng, L., Chen, Y., Wang, M., Peng, X., Wang, S., & Chen, F. (2025). Bacillus subtilis B579 Controls Cucumber Fusarium Wilt by Improving Rhizosphere Microbial Community. Microorganisms, 13(6), 1382. https://doi.org/10.3390/microorganisms13061382