The Detection and Differentiation of Pigeon Adenovirus Types 1 and 2 via a High-Resolution Melting Curve Platform
Abstract
1. Introduction
2. Materials and Methods
2.1. Viruses and Controls
2.2. Target Gene and Primer Design
2.3. Preparation of Positive Standards
2.4. Optimization of the qPCR-HRM Platform
2.5. Sensitivity, Specificity, and Repeatability
2.6. Clinical Sample Screening
3. Results
3.1. The Optimized qPCR-HRM Reaction
3.2. Standard Curve of the qPCR-HRM Platform
3.3. HRM Analysis
3.4. Sensitivity, Specificity, and Repeatability
3.5. Detection of Clinical Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, B.; Ma, J.; Shen, L.; Li, Y.; Xie, S.; Li, H.; Li, J.; Li, X.; Wang, Z. Genomic insights into pigeon breeding: GWAS for economic traits and the development of a high-throughput liquid phase array chip. Poult. Sci. 2025, 104, 104872. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Niu, J.; Hu, D.; Yao, J.; Zhao, H.; Yang, M.; Wang, J.; Zhang, Y. Effect of Dietary Energy Levels on the Reproductive Performance in Breeding Pigeons, and Growth Performance and Intestinal Health in Squabs. J. Poult. Sci. 2025, 62, 2025015. [Google Scholar] [CrossRef] [PubMed]
- Vereecken, M.; de Herdt, P.; Ducatelle, R. Adenovirus infections in pigeons: A review. Avian Pathol. 1998, 27, 333–338. [Google Scholar] [CrossRef]
- Agnihotri, K.; Smith, C.; Oakey, J.; Storie, G. Pigeon adenovirus and pigeon torque teno virus associated with acute multifocal hepatic necrosis in pigeons in Queensland, Australia. Arch. Virol. 2021, 166, 1469–1475. [Google Scholar] [CrossRef]
- Łukaszuk, E.; Dziewulska, D.; Prątnicka, A.; Custer, J.M.; Kraberger, S.; Varsani, A.; Stenzel, T. Characterization, phylogeny and prevalence of the coding-complete genomes of aviadenoviruses and siadenovirus in young racing pigeons. Virology 2025, 603, 110400. [Google Scholar] [CrossRef]
- Li, Y.; Xiang, C.; Xing, Y.; Jing, S.; He, H. First detection and molecular characterisation of a pigeon aviadenovirus in Northern Chinese pigeon and turtledove flocks provides further evidence of viral crosstransmission. Am. J. Vet. Res. 2025, 86, ajvr.24.09.0272. [Google Scholar] [CrossRef]
- Marlier, D.; Vindevogel, H. Viral infections in pigeons. Vet. J. 2006, 172, 40–51. [Google Scholar] [CrossRef]
- Ballmann, M.Z.; Harrach, B. Detection and partial genetic characterisation of novel avi- and siadenoviruses in racing and fancy pigeons (Columba livia domestica). Acta Vet. Hung. 2016, 64, 514–528. [Google Scholar] [CrossRef] [PubMed]
- Scullion, F.T.; Scullion, M.G. Pathologic findings in racing pigeons (Columba livia domestica) with “young bird sickness”. J. Avian Med. Surg. 2007, 21, 1–7. [Google Scholar] [CrossRef]
- Rahimi Sardo, E.; Talazadeh, F.; Jafari, R.A.; Seifi, M.R. Phylogenetic analysis of pigeon adenovirus 1 in clinical specimens of domestic pigeons (Columba livia domestica) in Iran. Vet. Res. Forum. 2023, 14, 329–334. [Google Scholar]
- Sahindokuyucu, I.; Turkmen, M.B.; Sumer, T.; Elhag, A.E.; Alcigir, M.E.; Yazici, Z.; Barry, G.; Gulbahar, M.Y.; Kul, O. Molecular epidemiology analysis of fowl adenovirus A and pigeon circovirus co-infection associated with Young Pigeon Disease Syndrome (YPDS) in Turkish pigeons (Columba livia domestica). Vet. Med. Sci. 2022, 8, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Wu, B.; Xu, X.; Zhang, S.; Zhao, S.; Xu, X.; Liang, G.; Guo, H.; Tang, Y.; Diao, Y. Isolation and identification of pigeon adenovirus 1 and analysis of its pathogenicity in pigeons and chickens. Microb. Pathog. 2025, 201, 107334. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhou, Y.; Lin, J.; Wang, X.; Huang, C.; Gao, J.; Wang, G.; Yang, B.; Liu, G.; Duan, H.; et al. Identification and characterization of pigeon adenovirus 1 as an emerging pathogen in pigeons from Northern and Northwest China. BMC Vet. Res. 2025, 21, 266. [Google Scholar] [CrossRef]
- Sahindokuyucu, I.; Yazici, Z.; Barry, G. A retrospective molecular investigation of selected pigeon viruses between 2018–2021 in Turkey. PLoS ONE 2022, 17, e0268052. [Google Scholar] [CrossRef] [PubMed]
- Teske, L.; Rubbenstroth, D.; Meixner, M.; Liere, K.; Bartels, H.; Rautenschlein, S. Identification of a novel aviadenovirus, designated pigeon adenovirus 2 in domestic pigeons (Columba livia). Virus Res. 2017, 227, 15–22. [Google Scholar] [CrossRef]
- Wada, Y.; Kondo, H.; Nakazawa, M.; Kubo, M. Natural infection with attaching and effacing Escherichia coli and adenovirus in the intestine of a pigeon with diarrhea. J. Vet. Med. Sci. 1995, 57, 531–533. [Google Scholar] [CrossRef]
- Stenzel, T.; Koncicki, A. The epidemiology, molecular characterization and clinical pathology of circovirus infections in pigeons—Current knowledge. Vet. Q. 2017, 37, 166–174. [Google Scholar] [CrossRef]
- Freick, M.; Müller, H.; Raue, R. Rapid detection of pigeon herpesvirus, fowl adenovirus and pigeon circovirus in young racing pigeons by multiplex PCR. J. Virol. Methods 2008, 148, 226–231. [Google Scholar] [CrossRef]
- Shriner, S.A.; Root, J.J. A Review of Avian Influenza a Virus Associations in Synanthropic Birds. Viruses 2020, 12, 1209. [Google Scholar] [CrossRef]
- Bodewes, R. Novel viruses in birds: Flying through the roof or is a cage needed? Vet. J. 2018, 233, 55–62. [Google Scholar] [CrossRef]
- Alkharsah, K.R.; Al-Afaleq, A.I. Serological Evidence of West Nile Virus Infection Among Humans, Horses, and Pigeons in Saudi Arabia. Infect. Drug. Resist. 2021, 14, 5595–5601. [Google Scholar] [CrossRef] [PubMed]
- Phan, T.G.; Vo, N.P.; Boros, Á.; Pankovics, P.; Reuter, G.; Li, O.T.; Wang, C.; Deng, X.; Poon, L.L.; Delwart, E. The viruses of wild pigeon droppings. PLoS ONE 2013, 8, e72787. [Google Scholar] [CrossRef] [PubMed]
- Marek, A.; Kaján, G.L.; Kosiol, C.; Harrach, B.; Schlötterer, C.; Hess, M. Complete genome sequences of pigeon adenovirus 1 and duck adenovirus 2 extend the number of species within the genus Aviadenovirus. Virology 2014, 462–463, 107–114. [Google Scholar] [CrossRef]
- Saha, B.; Wong, C.M.; Parks, R.J. The adenovirus genome contributes to the structural stability of the virion. Viruses 2014, 6, 3563–3583. [Google Scholar] [CrossRef] [PubMed]
- Kardoudi, A.; Benani, A.; Allaoui, A.; Kichou, F.; Biskri, L.; Ouchhour, I.; Fellahi, S. Fowl Adenovirus Serotype 1: From Gizzard Erosion to Comprehensive Insights into Genome Organization, Epidemiology, Pathogenesis, Diagnosis, and Prevention. Vet. Sci. 2025, 12, 378. [Google Scholar] [CrossRef]
- Kulanayake, S.; Tikoo, S.K. Adenovirus Core Proteins: Structure and Function. Viruses 2021, 13, 388. [Google Scholar] [CrossRef]
- Günes, A.; Marek, A.; Hess, M. Species determination of fowl adenoviruses based on the 52K gene region. Avian Dis. 2013, 57, 290–294. [Google Scholar] [CrossRef]
- Said, A.; Wang, W.; Woldermariam, T.; Tikoo, S.K. Domains of bovine adenovirus-3 protein 22K involved in interacting with viral protein 52K and cellular importins alpha-5/alpha-7. Virology 2018, 522, 209–219. [Google Scholar] [CrossRef]
- Kanavedee, R.; Mahamooth, T.N. Automated high-throughput extraction system of sRNA and high-resolution melting quantitative PCR (HRM-qPCR) analysis for viroid detection. Heliyon 2023, 9, e22613. [Google Scholar] [CrossRef]
- Wittwer, C.T.; Hemmert, A.C.; Kent, J.O.; Rejali, N.A. DNA melting analysis. Mol. Asp. Med. 2024, 97, 101268. [Google Scholar] [CrossRef]
- Kardoudi, A.; Siham, F.; Abdelmounaaim, A.; Faouzi, K.; Ikram, O.; Thomas, J.; Abdelouaheb, B. A snapshot on molecular technologies for diagnosing FAdV infections. Front. Vet. Sci. 2025, 12, 1558257. [Google Scholar] [CrossRef] [PubMed]
- Hess, M.; Prusas, C.; Vereecken, M.; De Herdt, P. Isolation of fowl adenoviruses serotype 4 from pigeons with hepatic necrosis. Berl. Munch. Tierarztl. Wochenschr. 1998, 111, 140–142. [Google Scholar] [PubMed]
- Wan, C.; Chen, C.; Cheng, L.; Shi, S.; Fu, G.; Liu, R.; Chen, H.; Fu, Q.; Huang, Y. Detection of novel adenovirus in sick pigeons. J. Vet. Med. Sci. 2018, 80, 1025–1028. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Q.; Wang, S.; Zhang, F.; Zhao, C.; Chen, Q.; Zhao, R.; Guo, P.; Ju, L.; Li, J.; Hou, G.; et al. Molecular epidemiology analysis of fowl adenovirus detected from apparently healthy birds in eastern China. BMC Vet. Res. 2023, 19, 5. [Google Scholar] [CrossRef]
- Shah, M.S.; Ashraf, A.; Khan, M.I.; Rahman, M.; Habib, M.; Chughtai, M.I.; Qureshi, J.A. Fowl adenovirus: History, emergence, biology and development of a vaccine against hydropericardium syndrome. Arch. Virol. 2017, 162, 1833–1843. [Google Scholar] [CrossRef]
- Li, P.; Zheng, P.; Zhang, T.; Wen, G.; Shao, H.; Luo, Q. Fowl adenovirus serotype 4: Epidemiology, pathogenesis, diagnostic detection, and vaccine strategies. Poult. Sci. 2017, 96, 2630–2640. [Google Scholar] [CrossRef]
- Rashid, F.; Xie, Z.; Wei, Y.; Xie, Z.; Xie, L.; Li, M.; Luo, S. Biological features of fowl adenovirus serotype-4. Front. Cell. Infect. Microbiol. 2024, 14, 1370414. [Google Scholar] [CrossRef]
- Gan, S.D.; Patel, K.R. Enzyme immunoassay and enzyme-linked immunosorbent assay. J. Investig. Dermatol. 2013, 133, e12. [Google Scholar] [CrossRef]
- Chen, C.; Wan, C.; Shi, S.; Cheng, L.; Chen, Z.; Fu, G.; Liu, R.; Zhu, C.; Huang, Y. Development and application of a fiber2 protein-based indirect ELISA for detection of duck adenovirus 3. Mol. Cell. Probes 2019, 48, 101447. [Google Scholar] [CrossRef]
- Ahirwar, R.; Bhattacharya, A.; Kumar, S. Unveiling the underpinnings of various non-conventional ELISA variants: A review article. Expert Rev. Mol. Diagn. 2022, 22, 761–774. [Google Scholar] [CrossRef]
- Hayrapetyan, H.; Tran, T.; Tellez-Corrales, E.; Madiraju, C. Enzyme-Linked Immunosorbent Assay: Types and Applications. Methods Mol. Biol. 2023, 2612, 1–17. [Google Scholar] [PubMed]
- Matson, R.S. ELISA-Based Biosensors. Methods Mol. Biol. 2023, 2612, 225–238. [Google Scholar]
- Wan, C.; Chen, C.; Cheng, L.; Fu, G.; Shi, S.; Liu, R.; Chen, H.; Fu, Q.; Huang, Y. A TaqMan-based real-time PCR for detection and quantification of newly identified novel pigeon adenovirus. J. Virol. Methods 2018, 261, 6–9. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, C.; Chen, Z.; Cai, G.; Lin, L.; Zhang, S.; Jiang, B.; Miao, Z.; Fu, G.; Huang, Y.; et al. Rapid detection of pigeon adenovirus 2 using a TaqMan real-time PCR assay. Poult. Sci. 2024, 103, 103848. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fu, H.; Chen, C.; Jiang, J.; Lin, Y.; Jiang, B.; Lin, L.; Hu, Q.; Wan, C. Rapid detection of pigeon Megrivirus using TaqMan real-time PCR technology. Poult. Sci. 2023, 102, 103027. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, C.; Chen, S.; Chen, Z.; Fu, H.; Chen, Y.; Zhang, M.; Zhang, W.; Huang, Y.; Cheng, L.; et al. Specific detection of pigeon parvovirus with TaqMan real-time PCR technology. Poult. Sci. 2025, 104, 104541. [Google Scholar] [CrossRef] [PubMed]
- Nath, B.K.; Das, S.; Das, T.; Forwood, J.K.; Raidal, S.R. Development and applications of a TaqMan based quantitative real-time PCR for the rapid detection of Pigeon circovirus (PiCV). J. Virol. Methods 2022, 308, 114588. [Google Scholar] [CrossRef]
- Lucassen, R.; van Leuven, N.; Bockmühl, D. Biological and Synthetic Surfactants Increase Class I Integron Prevalence in Ex Situ Biofilms. Microorganisms 2024, 12, 712. [Google Scholar] [CrossRef]
- Keikha, M.; Karbalaei, M. High resolution melting assay as a reliable method for diagnosing drug-resistant TB cases: A systematic review and meta-analysis. BMC Infect. Dis. 2021, 21, 989. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhou, Y.; Chen, Y.; Xie, W.; Meng, J.; Shen, D.; He, X.; Chen, H. Rapid detection of the SARS-CoV-2 omicron variants based on high-resolution melting curve analysis. Sci. Rep. 2024, 14, 28227. [Google Scholar] [CrossRef]
- Mao, F.; Leung, W.Y.; Xin, X. Characterization of EvaGreen and the implication of its physicochemical properties for qPCR applications. BMC Biotech. 2007, 7, 76. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Zhao, M.; Chen, S.; Huang, Y.; Wan, C. Simultaneous detection and differentiation of DuCV-1 and DuCV-2 by high-resolution melting analysis. Poult. Sci. 2024, 103, 103566. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chen, C.; Zhang, M.; Chen, Y.; Zhang, W.; Fu, H.; Huang, Y.; Cheng, L.; Wan, C. Detection and differentiation of fowl adenovirus serotype 4 and duck adenovirus 3 using high resolution melting curve assay. Poult. Sci. 2024, 103, 104426. [Google Scholar] [CrossRef]
- Er, T.K.; Chang, J.G. High-resolution melting: Applications in genetic disorders. Clin. Chim. Acta 2012, 414, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Nikodem, D.; Cłapa, T.; Narożna, D. High Resolution Melting Analysis (HRM-PCR)—Method and its application. Postep. Biochem. 2021, 67, 54–58. [Google Scholar]
Viruses | P1P2-HRM1F (5′-3′) | Position | P1P2-HRM1R (5′-3′) | Position | Length (bp) |
---|---|---|---|---|---|
PiAdV-1 | AAGACGGYTACCCGAG | 880–896 A | ACATGTAGTCCGCGTCAGTCA | 1034–1054 A | 175 |
PiAdV-2 | 874–890 B | 1028–1048 B |
Position | 1–60 |
PiAdV-1 | AAGAACGGCTACCCGAG CATGGCGCAGATGGCGAAAGCGCAGGAGTTCTTTTTTCGCGTG |
PiAdV-2 | AAGAACGGTTACCCGAG TATGGGTCAGATGGCTAAAGCTCAAGAGTTTTTCTTCAGAATC |
Position | 61–120 |
PiAdV-1 | ATGGAGGCCATCCTGGACCTGGGCGTGCAGTTGGGCATTTACCACAACCACCCGGTGCCG |
PiAdV-2 | ATGCAAGCAATACTGGATTTAGGAGTGCAGTTAGGGGTTTACAACAATCGTCCGGTACCG |
Position | 120–175 |
PiAdV-1 | TACCGGCAGAAGCGGGCGAGCGAGCTGCCGCAGCTGACTGACGCGGACTACATGT |
PiAdV-2 | TTCCGTCAAAAGAGGGCGTCTGATATTCCGCAGATGACTGACGCGGACTACATGT |
Virus | Concentration of Plasmid Standards (Copies/μL−1) | Intra-Assay Reproducibility | Inter-Assay Reproducibility | ||
---|---|---|---|---|---|
Cq ± SD | CV/% | Cq ± SD | CV/% | ||
PiAdV-1 | 5.7 × 107 | 11.56 ± 0.12 | 1.06 | 11.63 ± 0.17 | 1.42 |
5.7 × 105 | 18.44 ± 0.09 | 0.47 | 18.59 ± 0.13 | 0.72 | |
5.7 × 103 | 25.29 ± 0.13 | 0.49 | 25.39 ± 0.20 | 0.79 | |
PiAdV-2 | 5.6 × 107 | 11.35 ± 0.06 | 0.57 | 11.53 ± 0.16 | 1.40 |
5.6 × 105 | 18.24 ± 0.06 | 0.31 | 18.39 ± 0.12 | 0.66 | |
5.6 × 103 | 25.01 ± 0.11 | 0.44 | 25.11 ± 0.27 | 1.09 |
Species | Number | HRM | cPCR | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PiAdV-1 | PiAdV-2 | Coinfection | PiAdV-1 | PiAdV-2 | Coinfection | ||||||||
P | R | P | R | P | R | P | R | P | R | P | R | ||
Racing pigeon | 35 | 2 | 5.71 | 5 | 14.29 | 1 | 2.86 | 2 | 5.71 | 3 | 8.57 | 1 | 2.86 |
Meat pigeon | 35 | 0 | 0 | 3 | 8.57 | 0 | 0 | 0 | 0 | 2 | 5.71 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Zhang, W.; Tang, Z.; Lu, T.; Wan, C.; Jin, W.; Li, J. The Detection and Differentiation of Pigeon Adenovirus Types 1 and 2 via a High-Resolution Melting Curve Platform. Microorganisms 2025, 13, 1331. https://doi.org/10.3390/microorganisms13061331
Chen S, Zhang W, Tang Z, Lu T, Wan C, Jin W, Li J. The Detection and Differentiation of Pigeon Adenovirus Types 1 and 2 via a High-Resolution Melting Curve Platform. Microorganisms. 2025; 13(6):1331. https://doi.org/10.3390/microorganisms13061331
Chicago/Turabian StyleChen, Shuyu, Wenyu Zhang, Zhiwang Tang, Tingting Lu, Chunhe Wan, Wensong Jin, and Jiayu Li. 2025. "The Detection and Differentiation of Pigeon Adenovirus Types 1 and 2 via a High-Resolution Melting Curve Platform" Microorganisms 13, no. 6: 1331. https://doi.org/10.3390/microorganisms13061331
APA StyleChen, S., Zhang, W., Tang, Z., Lu, T., Wan, C., Jin, W., & Li, J. (2025). The Detection and Differentiation of Pigeon Adenovirus Types 1 and 2 via a High-Resolution Melting Curve Platform. Microorganisms, 13(6), 1331. https://doi.org/10.3390/microorganisms13061331