In Vitro Screening of NaCl-Tolerant Dark Septate Endophytes and Their Growth-Promoting Effects on Anemone tomentosa
Abstract
1. Introduction
2. Materials and Methods
2.1. Biological Materials
2.2. Experimental Design
2.2.1. In Vitro NaCl Stress Test
2.2.2. Pot Experiment
2.3. Determination of DSE Growth Indicators
2.4. Determination of DSE Physiological Indicators
2.5. Determination of Plant Morphological Indicators
2.6. Determination of Fungal Colonization and Fungal Growth Response
2.7. Determination of Plant Nutrient Element
2.8. Determination of Photosynthetic Pigment Contents
2.9. Statistical Analysis
3. Results
3.1. Effects of Different NaCl Concentrations on the Morphology of DSE Strains
3.2. Effects of Different NaCl Concentrations on Growth Indicators of DSE Strains
3.3. Effects of Different NaCl Concentrations on Physiological Indicators of DSE Strains
3.3.1. pH of the DSE Culture Solution
3.3.2. SOD Activity of DSE Strains
3.3.3. Soluble Substance Content of DSE Strains
3.3.4. Melanin and MDA Content of DSE Strains
3.3.5. Principal Component Analysis and Variation Partitioning Analysis
3.3.6. Relationship Between Growth and Physiological Indicators of DSE Strains
3.4. Effects of DSE Inoculation on the Growth Promotion of Anemone tomentosa
3.4.1. Effects of DSE Inoculation on the Growth Indicators of Anemone tomentosa
3.4.2. DSE Colonization and Mycorrhizal Growth Response of Anemone tomentosa
3.4.3. Effects of DSE Inoculation on Nutrient Elements of Anemone tomentosa
3.4.4. Effect of DSE Inoculation on Photosynthetic Pigments of Anemone tomentosa
3.4.5. Heatmap Analysis of Correlation Clustering
4. Discussion
4.1. DSE Tolerance to NaCl Stress In Vitro
4.2. Effects of DSE Inoculation on the Growth of Anemone tomentosa
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.G.; Pu, L.J.; Han, M.F.; Zhu, M.; Zhang, R.S.; Xiang, Y.Z. Soil salinization research in China: Advances and prospects. J. Geogr. Sci. 2014, 24, 943–960. [Google Scholar] [CrossRef]
- Santander, C.; Aroca, R.; Ruiz-Lozano, J.M.; Olave, J.; Cartes, P.; Borie, F.; Cornejo, P. Arbuscular mycorrhiza effects on plant performance under osmotic stress. Mycorrhiza 2017, 27, 639–657. [Google Scholar] [CrossRef] [PubMed]
- Sanwal, S.K.; Kumar, P.; Kesh, H.; Gupta, V.K.; Kumar, A.; Kumar, A.; Meena, B.L.; Colla, G.; Cardarelli, M.; Kumar, P. Salinity stress tolerance in potato cultivars: Evidence from physiological and biochemical traits. Plants 2022, 11, 1842. [Google Scholar] [CrossRef]
- Turan, M.; Ekinci, M.; Kul, R.; Boynueyri, F.G.; Yildirim, E. Mitigation of salinity stress in cucumber seedlings by exogenous hydrogen sulfide. J. Plant Res. 2022, 135, 517–529. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.Y.; Sun, Y.H.; Shi, Z.Y. Arbuscular mycorrhiza enhances biomass production and salt tolerance of sweet sorghum. Microorganisms 2019, 7, 289. [Google Scholar] [CrossRef]
- Hill, E.M.; Robinson, L.A.; Abdul-Sada, A.; Vanbergen, A.J.; Hodge, A.; Hartley, S.E. Arbuscular mycorrhizal fungi and plant chemical defence: Effects of colonisation on aboveground and belowground metabolomes. J. Chem. Ecol. 2018, 44, 198–208. [Google Scholar] [CrossRef]
- Ruiz-Lozano, J.M.; Porcel, R.; Azcón, C.; Aroca, R. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: New challenges in physiological and molecular studies. J. Exp. Bot. 2012, 63, 4033–4044. [Google Scholar] [CrossRef]
- Liu, H.G.; Wang, Y.J.; Hart, M.; Chen, H.; Tang, M. Arbuscular mycorrhizal symbiosis regulates hormone and osmotic equilibrium of Lycium barbarum L. under salt stress. Mycosphere 2016, 7, 828–843. [Google Scholar] [CrossRef]
- Jumpponen, A.; Trappe, J.M. Dark septate endophytes: A review of facultative biotrophic root-colonizing fungi. New Phytol. 1998, 140, 295–310. [Google Scholar] [CrossRef]
- Bilal, S.; Shahzad, R.; Imran, M.; Jan, R.; Kim, K.M.; Lee, I.J. Synergistic association of endophytic fungi enhances Glycine max L. resilience to combined abiotic stresses: Heavy metals, high temperature and drought stress. Ind. Crops Prod. 2020, 143, 111931. [Google Scholar] [CrossRef]
- Hou, L.F.; He, X.L.; Li, X.; Wang, S.J.; Zhao, L.L. Species composition and colonization of dark septate endophytes are affected by host plant species and soil depth in the Mu Us sandland, northwest China. Fungal Ecol. 2019, 39, 276–284. [Google Scholar] [CrossRef]
- Lugo, M.A.; Reinhart, K.O.; Menoyo, E.; Crespo, E.M.; Urcelay, C. Plant functional traits and phylogenetic relatedness explain variation in associations with root fungal endophytes in an extreme arid environment. Mycorrhiza 2015, 25, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Mateu, M.G.; Baldwin, A.H.; Maul, J.E.; Yarwood, S.A. Dark septate endophyte improves salt tolerance of native and invasive lineages of Phragmites australis. ISME J. 2020, 14, 1943–1954. [Google Scholar] [CrossRef]
- Jumpponen, A.; Mattson, K.G.; Trappe, J.M. Mycorrhizal functioning of Phialocephala fortinii with Pinus contorta on glacier forefront soil: Interactions with soil nitrogen and organic matter. Mycorrhiza 1998, 7, 261–265. [Google Scholar] [CrossRef]
- Santos, M.; Cesanelli, I.; Diánez, F.; Sánchez-Montesinos, B.; Moreno-Gavíra, A. Advances in the role of dark septate endophytes in the plant resistance to abiotic and biotic stresses. J. Fungi 2021, 7, 939. [Google Scholar] [CrossRef]
- Xu, M.H.; Li, X.; Ye, Q.N.; Gong, F.; He, X.L. Occurrence of dark septate endophytes in Phragmites australis in the Baiyang Lake and their resistance to Cd stress. Pedosphere 2024, 34, 484–496. [Google Scholar] [CrossRef]
- Wang, D.; Xie, Y.L.; Zhang, W.Y.; Yao, L.; He, C.; He, X.L. Study on the biological characteristics of dark septate endophytes under drought and cadmium stress and their effects on regulating the stress resistance of Astragalus membranaceus. J. Fungi 2024, 10, 491. [Google Scholar] [CrossRef] [PubMed]
- Qu, D.H.; Wu, F.L.; Zhao, X.H.; Zhu, D.Z.; Gu, L.; Yang, L.N.; Zhao, W.W.; Sun, Y.D.; Yang, J.J.; Tian, W.; et al. A bZIP transcription factor VabZIP12 from blueberry induced by dark septate endocyte improving the salt tolerance of transgenic Arabidopsis. Plant Sci. 2022, 315, 111135. [Google Scholar] [CrossRef]
- Tan, J.Y.; Yue, Z.C.; Li, S.T.; Pan, Y.Y.; Chu, Z.Y.; Ban, Y.H.; Xu, Z.Y. Alleviation of salt stress and changes in glycyrrhizic acid accumulation by dark septate endophytes in Glycyrrhiza glabra grown under salt stress. J. Agric. Food Chem. 2024, 72, 14557–14569. [Google Scholar] [CrossRef]
- Hou, L.F.; Li, X.; He, X.L.; Zuo, Y.L.; Zhang, D.D.; Zhao, L.L. Effect of dark septate endophytes on plant performance of Artemisia ordosica and associated soil microbial functional group abundance under salt stress. Appl. Soil Ecol. 2021, 165, 103998. [Google Scholar] [CrossRef]
- Zhan, F.D.; Li, B.; Jiang, M.; Qin, L.; Wang, J.X.; He, Y.M.; Li, Y. Effects of a root-colonized dark septate endophyte on the glutathione metabolism in maize plants under cadmium stress. J. Plant Interact. 2017, 12, 421–428. [Google Scholar] [CrossRef]
- Zhu, L.L.; Li, T.; Wang, C.J.; Zhang, X.R.; Xu, L.J.; Xu, R.B.; Zhao, Z.W. The effects of dark septate endophyte (DSE) inoculation on tomato seedlings under Zn and Cd stress. Environ. Sci. Pollut. Res. 2018, 25, 35232–35241. [Google Scholar] [CrossRef] [PubMed]
- Valli, P.P.S.; Muthukumar, T. Dark Septate root endophytic fungus Nectria haematococca improves tomato growth under water limiting conditions. Indian J. Microbiol. 2018, 58, 489–495. [Google Scholar] [CrossRef]
- Li, X.; He, X.L.; Zhou, Y.; Hou, Y.T.; Zuo, Y.L. Effects of dark septate endophytes on the performance of Hedysarum scoparium under water deficit stress. Front. Plant Sci. 2019, 10, 903. [Google Scholar] [CrossRef]
- Sun, Y.X.; Li, M.Q.; Liu, J.C. Haemolytic activities and adjuvant effect of Anemone raddeana saponins (ARS) on the immune responses to ovalbumin in mice. Int. Immunopharmacol. 2008, 8, 1095–1102. [Google Scholar] [CrossRef]
- Hu, H.B.; Zheng, X.D.; Jian, Y.F.; Liu, J.X.; Zhu, J.H. Constituents of the root of Anemone tomentosa. Arch. Pharmacal Res. 2011, 34, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y. Studies on the Saponin Constituents of Anemone tomentosa. Master’s Thesis, Fourth Military Medical University, Xi’an, China, 2012. [Google Scholar]
- Chen, X.; Lu, J.C.; He, W.F.; Chi, H.D.; Yamashita, K.I.; Manabe, M.B.; Kodama, H.Y. Antiperoxidation activity of triterpenoids from rhizome of Anemone raddeana. Fitoterapia 2009, 80, 105–111. [Google Scholar] [CrossRef]
- Zhang, L.T.; Zhang, Y.W.; Takaishi, Y.; Duan, H.Q. Antitumor triterpene saponins from Anemone flaccida. Chin. Chem. Lett. 2008, 19, 190–192. [Google Scholar] [CrossRef]
- Long, J. The Studies on the Constituents of the Root of Anemone tomentosa and Its Secondary Metabolites Bioactivity of Endophytic Fungi. Master’s Thesis, Lanzhou University of Techonlogy, Lanzhou, China, 2014. [Google Scholar]
- Giannopolitis, C.N.; Ries, S.K. Superoxide dismutases: II. purification and quantitative relationship with water-soluble protein in seedlings. Plant Physiol. 1977, 59, 315–318. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, F.; Kong, W.W.; He, Y. Application of visible and near-infrared hyperspectral imaging to determine soluble protein content in oilseed rape leaves. Sensors 2015, 15, 16576–16588. [Google Scholar] [CrossRef]
- Wang, Y.L.; Gao, S.S.; He, X.Y.; Li, Y.; Li, P.Y.; Zhang, Y.; Chen, W. Growth, secondary metabolites and enzyme activity responses of two edible fern species to drought stress and rehydration in northeast China. Agronomy 2019, 9, 137. [Google Scholar] [CrossRef]
- Wang, Y.N.; Jie, W.G.; Peng, X.Y.; Hua, X.Y.; Yan, X.F.; Zhou, Z.Q.; Lin, J.X. Physiological adaptive strategies of oil seed crop Ricinus communis early seedlings (cotyledon vs. true leaf) under salt and alkali stresses: From the growth, photosynthesis and chlorophyll fluorescence. Front. Plant Sci. 2019, 9, 1939. [Google Scholar] [CrossRef]
- Wang, Y.N.; Lin, J.X.; Huang, S.C.; Zhang, L.; Zhao, W.N.; Yang, C.X. Isobaric tags for relative and absolute quantification-based proteomic analysis of Puccinellia tenuiflora inoculated with arbuscular mycorrhizal fungi reveal stress response mechanisms in alkali-degraded soil. Land Degrad Dev. 2019, 30, 1584–1598. [Google Scholar] [CrossRef]
- Gaber, D.A.; Berthelot, C.; Camehl, I.; Kovács, G.M.; Blaudez, D.; Franken, P. Salt stress tolerance of dark septate endophytes is independent of melanin accumulation. Front. Microbiol 2020, 11, 562931. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.L.; Qu, W.J. Laboratory Instruction of Plant Physiology; Higher Education Press: Beijing, China, 2003. [Google Scholar]
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, Y.Y.; Li, P.W.; Xu, L.J.; Fu, Q. Ectomycorrhizal fungi and dark septate endophyte inoculation improve growth and tolerance of Pinus tabulaeformis under cadmium stress. Pedosphere 2024, 34, 473–483. [Google Scholar] [CrossRef]
- Xu, L.J.; Li, Y.H.; Dai, X.Y.; Jin, X.Y.; Zhao, Q.N.; Tian, B.Y.; Zhou, Y. Symbiotic fungal inoculation promotes the growth of Pinus tabuliformis seedlings in relation to the applied nitrogen form. BMC Plant Biol. 2025, 25, 10. [Google Scholar] [CrossRef]
- Bao, S.D. Agrochemical Analysis of Soil; Chinese Agricultural Press: Beijing, China, 2000. [Google Scholar]
- Zhu, S.P.; Nong, J.F.; Luo, G.T.; Li, Q.P.; Wang, F.S.; Jiang, D.; Zhao, X.C. Varied tolerance and different responses of five citrus rootstocks to acid stress by principle component analysis and orthogonal analysis. Sci. Hortic. 2021, 278, 109853. [Google Scholar] [CrossRef]
- Berthelot, C.; Leyval, C.; Foulon, J.; Chalot, M.; Blaudez, D. Plant growth promotion, metabolite production and metal tolerance of dark septate endophytes isolated from metal-polluted poplar phytomanagement sites. FEMS Microbiol. Ecol. 2016, 92, fiw144. [Google Scholar] [CrossRef]
- Lin, Y.L.; Wang, Z.Z.; Chen, W.J.; Liu, Y.F.; Li, X.; Tang, H.L.; He, X.L. Paraboremia selaginellae enhances Salvia miltiorrhiza growth and cadmium tolerance via modulating root architecture and cadmium speciation in contaminated environments. Front. Plant Sci. 2025, 16, 1540126. [Google Scholar] [CrossRef]
- He, C.; Wang, W.Q.; Hou, J.L.; Li, X.N. Dark septate endophytes isolated from wild licorice roots grown in the desert regions of northwest China enhance the growth of host plants under water deficit stress. Front. Microbiol 2021, 12, 522449. [Google Scholar] [CrossRef] [PubMed]
- Lalthazuali, E.; Marwein, B.; Sailo, H.; Lalbiaktluanga, P.S.; Vanlalmuana, M.C.F.; Ralte, L. Enhancing rice growth in adverse conditions: The role of dark septate endophytes in salt and water scarcity tolerance. Mycologia 2025. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, L.; Proe, M.F.; Cameron, A.D. Interactive effects of nitrogen and water availabilities on gas exchange and whole-plant carbon allocation in poplar. Tree Physiol. 1998, 18, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zou, Y.N.; Wu, Q.S.; Kuca, K. Arbuscular mycorrhizas modulate root polyamine metabolism to enhance drought tolerance of trifoliate orange. Environ. Exp. Bot. 2020, 171, 103926. [Google Scholar] [CrossRef]
- Kejžar, A.; Gobec, S.; Plemenitaš, A.; Lenassi, M. Melanin is crucial for growth of the black yeast Hortaea werneckii in its natural hypersaline environment. Fungal Biol 2013, 117, 368–379. [Google Scholar] [CrossRef]
- Eisenman, H.C.; Casadevall, A. Synthesis and assembly of fungal melanin. Appl. Microbiol. Biotechnol. 2012, 93, 931–940. [Google Scholar] [CrossRef]
- Xie, Y.L.; He, X.L.; Wang, D.; Wang, M.H.; Li, W.Y.; Chen, W.J.; Li, X.N.; He, C. Characterization of dark septate endophytes under drought and rehydration and their compensatory mechanisms in Astragalus membranaceus. Microorganisms 2024, 12, 2254. [Google Scholar] [CrossRef]
- Wang, W.B.; Kim, Y.H.; Lee, H.S.; Kim, K.Y.; Deng, X.P.; Kwak, S.S. Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol. Biochem. 2009, 47, 570–577. [Google Scholar] [CrossRef]
- Quiroga, G.; Erice, G.; Aroca, R.; Zamarreño, A.M.; García-Mina, J.M.; Ruiz-Lozano, J.M. Radial water transport in arbuscular mycorrhizal maize plants under drought stress conditions is affected by indole-acetic acid (IAA) application. J. Plant Physiol. 2020, 246, 153115. [Google Scholar] [CrossRef]
- Deinlein, U.; Stephan, A.B.; Horie, T.; Luo, W.; Xu, G.H.; Schroeder, J.I. Plant salt-tolerance mechanisms. Trends Plant Sci. 2014, 19, 371–379. [Google Scholar] [CrossRef]
- Raja, V.; Majeed, U.; Kang, H.; Andrabi, K.I.; John, R. Abiotic stress: Interplay between ROS, hormones and MAPKs. Environ. Exp. Bot. 2017, 137, 142–157. [Google Scholar] [CrossRef]
- Wu, L.; Guo, S. Interaction between an isolate of dark-septate fungi and its host plant Saussurea involucrata. Mycorrhiza 2008, 18, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Gibert, A.; Tozer, W.; Westoby, M. Plant performance response to eight different types of symbiosis. New Phytol. 2019, 222, 526–542. [Google Scholar] [CrossRef]
- Surono; Narisawa, K. The dark septate endophytic fungus Phialocephala fortinii is a potential decomposer of soil organic compounds and a promoter of Asparagus officinalis growth. Fungal Ecol. 2017, 28, 1–10. [Google Scholar] [CrossRef]
- Chu, H.L.; Wang, C.Y.; Li, Z.M.; Wang, H.H.; Xiao, Y.G.; Chen, J.; Tang, M. The dark septate endophytes and ectomycorrhizal fungi effect on Pinus tabulaeformis Carr. seedling growth and their potential effects to pine wilt disease resistance. Forests 2019, 10, 140. [Google Scholar] [CrossRef]
- Verma, S.K.; Sahu, P.K.; Kumar, K.; Pal, G.; Gond, S.K.; Kharwar, R.N.; White, J.F. Endophyte roles in nutrient acquisition, root system architecture development and oxidative stress tolerance. J. Appl. Microbiol. 2021, 131, 2161–2177. [Google Scholar] [CrossRef]
- White, J.F.; Kingsley, K.L.; Verma, S.K.; Kowalski, K.P. Rhizophagy cycle: An oxidative process in plants for nutrient extraction from symbiotic microbes. Microorganisms 2018, 6, 95. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.A.; Li, H.Y.; Kowalski, K.P.; Bergen, M.; Torres, M.S.; White, J.F. Functional role of bacteria from invasive Phragmites australis in promotion of host growth. Microb. Ecol. 2016, 72, 407–417. [Google Scholar] [CrossRef]
- White, J.F.; Kingsley, K.L.; Zhang, Q.W.; Verma, R.; Obi, N.; Dvinskikh, S.; Elmore, M.T.; Verma, S.K.; Gond, S.K.; Kowalski, K.P. Review: Endophytic microbes and their potential applications in crop management. Pest Manag. Sci. 2019, 75, 2558–2565. [Google Scholar] [CrossRef]
- Mandyam, K.; Jumpponen, A. Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud. Mycol. 2005, 53, 173–189. [Google Scholar] [CrossRef]
- Caldwell, B.A.; Jumpponen, A.; Trappe, J.M. Utilization of major detrital substrates by dark-septate, root endophytes. Mycologia 2000, 92, 230–232. [Google Scholar] [CrossRef]
- Menkis, A.; Allmer, J.; Vasiliauskas, R.; Lygis, V.; Stenlid, J.; Finlay, R. Ecology and molecular characterization of dark septate fungi from roots, living stems, coarse and fine woody debris. Mycol. Res. 2004, 108, 965–973. [Google Scholar] [PubMed]
- Mandyam, K.; Loughin, T.; Jumpponen, A. Isolation and morphological and metabolic characterization of common endophytes in annually burned tallgrass prairie. Mycologia 2010, 102, 813–821. [Google Scholar] [CrossRef] [PubMed]
DSE | NaCl | DSE × NaCl | ||||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
Diameter | 804.69 | *** | 368.69 | *** | 27.31 | *** |
Biomass | 46.15 | *** | 67.81 | *** | 8.48 | *** |
pH | 88.41 | *** | 4.03 | *** | 14.02 | *** |
SP | 483.57 | *** | 102.87 | *** | 40.89 | *** |
SOD | 465.11 | *** | 34.53 | *** | 52.56 | *** |
Melanin | 122.38 | *** | 45.43 | *** | 21.19 | *** |
MDA | 36.53 | *** | 19.89 | *** | 6.04 | *** |
SS | 98.50 | *** | 68.28 | *** | 32.41 | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.; Xu, L.; Dong, M.; Song, Z.; Zhang, X.; Liu, W.; Xu, J.; Li, Y. In Vitro Screening of NaCl-Tolerant Dark Septate Endophytes and Their Growth-Promoting Effects on Anemone tomentosa. Microorganisms 2025, 13, 1303. https://doi.org/10.3390/microorganisms13061303
Jin X, Xu L, Dong M, Song Z, Zhang X, Liu W, Xu J, Li Y. In Vitro Screening of NaCl-Tolerant Dark Septate Endophytes and Their Growth-Promoting Effects on Anemone tomentosa. Microorganisms. 2025; 13(6):1303. https://doi.org/10.3390/microorganisms13061303
Chicago/Turabian StyleJin, Xueyu, Lingjie Xu, Mengyu Dong, Zhanwei Song, Xiaohan Zhang, Wenxiao Liu, Jinge Xu, and Yanhui Li. 2025. "In Vitro Screening of NaCl-Tolerant Dark Septate Endophytes and Their Growth-Promoting Effects on Anemone tomentosa" Microorganisms 13, no. 6: 1303. https://doi.org/10.3390/microorganisms13061303
APA StyleJin, X., Xu, L., Dong, M., Song, Z., Zhang, X., Liu, W., Xu, J., & Li, Y. (2025). In Vitro Screening of NaCl-Tolerant Dark Septate Endophytes and Their Growth-Promoting Effects on Anemone tomentosa. Microorganisms, 13(6), 1303. https://doi.org/10.3390/microorganisms13061303