Habitat Heterogeneity of Nitrogen and Phosphorus Cycling Functional Genes in Rhizosphere Microorganisms of Pinus tabuliformis in Qinling Mountains, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design and Sampling
2.3. Soil Properties
2.4. DNA Extraction and Bioinformatics Analysis
2.5. Statistical Analyses
3. Results
3.1. Nitrogen and Phosphorus Cycling Functional Gene Composition in Different Habitats
3.2. Differences in the Abundance of Nitrogen Cycling Functional Genes Across Habitats
3.3. Differences in the Abundance of Phosphorous Cycling Functional Genes Across Habitats
3.4. Relationship Between the Functional Gene Abundance and Environmental Factors
4. Discussion
4.1. Nitrogen and Phosphorus Cycling Functional Gene Composition in Different Habitats
4.2. Relationship Between the Functional Gene Abundance and Environmental Factors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dobrovol’skaya, T.G.; Zvyagintsev, D.G.; Chernov, I.Y.; Golovchenko, A.V.; Zenova, G.M.; Lysak, L.V.; Manucharova, N.A.; Marfenina, O.E.; Polyanskaya, L.M.; Stepanov, A.L.; et al. The Role of Microorganisms in the Ecological Functions of Soils. Eurasian Soil Sci. 2015, 48, 959–967. [Google Scholar] [CrossRef]
- Vörös, J.; Wassens, S.; Price, L.; Hunter, D.; Myers, S.; Armstrong, K.; Mahony, M.J.; Donnellan, S. Molecular Systematic Analysis Demonstrates That the Threatened Southern Bell Frog, Litoria raniformis (Anura: Pelodryadidae) of EASTERN Australia, Comprises Two Sub-Species. Zootaxa 2023, 5228, 1–43. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Dong, L.; Zhang, M.; Cui, Y.; Bai, X.; Song, B.; Zhang, J.; Yu, X. Dynamic Microbial Community Composition, co-Occurrence Pattern and Assembly in Rhizosphere and Bulk Soils Along a Coniferous Plantation Chronosequence. CATENA 2023, 223, 106914. [Google Scholar] [CrossRef]
- Hinsinger, P.; Gobran, G.R.; Gregory, P.J.; Wenzel, W.W. Rhizosphere Geometry and Heterogeneity Arising from Root-Mediated Physical and Chemical Processes. New Phytol. 2005, 168, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Author Correction: Plant–Microbiome Interactions: From Community Assembly to Plant Health. Nat. Rev. Microbiol. 2021, 19, 72. [Google Scholar] [CrossRef]
- Petipas, R.H.; Geber, M.A.; Lau, J.A. Microbe-Mediated Adaptation in Plants. Ecol. Lett. 2021, 24, 1302–1317. [Google Scholar] [CrossRef]
- Bulgarelli, D.; Rott, M.; Schlaeppi, K.; van Themaat, E.V.L.; Ahmadinejad, N.; Assenza, F.; Rauf, P.; Huettel, B.; Reinhardt, R.; Schmelzer, E.; et al. Revealing Structure and Assembly Cues for Arabidopsis Root-Inhabiting Bacterial Microbiota. Nature 2012, 488, 91–95. [Google Scholar] [CrossRef]
- Sun, S.; Badgley, B.D. Changes in Microbial Functional Genes within the Soil Metagenome During Forest Ecosystem Restoration. Soil Biol. Biochem. 2019, 135, 163–172. [Google Scholar] [CrossRef]
- Levy-Booth, D.J.; Prescott, C.E.; Grayston, S.J. Microbial Functional Genes Involved in Nitrogen Fixation, Nitrification and Denitrification in Forest Ecosystems. Soil Biol. Biochem. 2014, 75, 11–25. [Google Scholar] [CrossRef]
- Sun, R.; Guo, X.; Wang, D.; Chu, H. Effects of Long-Term Application of Chemical and Organic Fertilizers on the Abundance of Microbial Communities Involved in the Nitrogen Cycle. Appl. Soil Ecol. 2015, 95, 171–178. [Google Scholar] [CrossRef]
- Shoyama, K.; Matsui, T.; Hashimoto, S.; Kabaya, K.; Oono, A.; Saito, O. Development of Land-Use Scenarios Using Vegetation Inventories in Japan. Sustain. Sci. 2019, 14, 39–52. [Google Scholar] [CrossRef]
- Ou, Y.; Quiñónez-Barraza, G.; Wang, C. Effects of Land-Use Types on Topsoil Physicochemical Properties in a Tropical Coastal Ecologically Fragile Zone of South China. Sustainability 2023, 15, 5484. [Google Scholar] [CrossRef]
- Hassani, M.A.; Durán, P.; Hacquard, S. Microbial Interactions within the Plant Holobiont. Microbiome 2018, 6, 58. [Google Scholar] [CrossRef]
- Domeignoz-Horta, L.A.; Pold, G.; Liu, X.-J.A.; Frey, S.D.; Melillo, J.M.; DeAngelis, K.M. Microbial Diversity Drives Carbon Use Efficiency in a Model Soil. Nat. Commun. 2020, 11, 3684. [Google Scholar] [CrossRef] [PubMed]
- A Malik, A.; Martiny, J.B.H.; Brodie, E.L.; Martiny, A.C.; Treseder, K.K.; Allison, S.D. Defining Trait-Based Microbial Strategies with Consequences for Soil Carbon Cycling Under Climate Change. ISME J. 2020, 14, 1–9. [Google Scholar] [CrossRef]
- Liu, F.; Sun, L.; Chang, Y.; Liu, J.; Liu, X.; Xu, Y.; Yao, D. Effects of different nutritional conditions on growth and rhizosphere microbial community of Eichhornia crassipes. J. Plant Resour. Environ. 2024, 33, 14–25. [Google Scholar]
- Elser, J.J. Biological stoichiometry from genes to ecosystems: Ideas, plans, and realities. Integr. Comp. Biol. 2002, 42, 1226. [Google Scholar]
- Mohapatra, M.; Yadav, R.; Rajput, V.; Dharne, M.S.; Rastogi, G. Metagenomic Analysis Reveals Genetic Insights on Biogeochemical Cycling, Xenobiotic Degradation, and Stress Resistance in Mudflat Microbiome. J. Environ. Manag. 2021, 292, 112738. [Google Scholar] [CrossRef]
- Siles, J.A.; Starke, R.; Martinovic, T.; Fernandes, M.L.P.; Orgiazzi, A.; Bastida, F. Distribution of Phosphorus Cycling Genes Across Land Uses and Microbial Taxonomic Groups Based on Metagenome and Genome Mining. Soil Biol. Biochem. 2022, 174, 108826. [Google Scholar] [CrossRef]
- Berkelmann, D.; Schneider, D.; Meryandini, A.; Daniel, R. Unravelling the Effects of Tropical Land Use Conversion on the Soil Microbiome. Environ. Microbiome 2020, 15, 5. [Google Scholar] [CrossRef]
- Ding, L.; Zhou, J.; Li, Q.; Tang, J.; Chen, X. Effects of Land-Use Type and Flooding on the Soil Microbial Community and Functional Genes in Reservoir Riparian Zones. Microb. Ecol. 2022, 83, 393–407. [Google Scholar] [CrossRef] [PubMed]
- Gruber, N.; Galloway, J.N. An Earth-System Perspective of the Global Nitrogen Cycle. Nature 2002, 451, 293–296. [Google Scholar] [CrossRef]
- Chen, Q.-L.; Ding, J.; Li, C.-Y.; Yan, Z.-Z.; He, J.-Z.; Hu, H.-W. Microbial Functional Attributes, Rather than Taxonomic Attributes, Drive Top Soil Respiration, Nitrification and Denitrification Processes. Sci. Total Environ. 2020, 734, 139479. [Google Scholar] [CrossRef]
- Zhu, Z. Preliminary Study on Pinus tabuliformis Forest in the Northern Slope of Qinling Mountains and Loess Plateau of Northern Shaanxi. Acta Bot. Boreali-Occident. Sin. 1987, 6, 73–82. [Google Scholar]
- Buckley, J.; Widmer, A.; Mescher, M.C.; De Moraes, C.M. Variation in Growth and Defence Traits Among Plant Populations at Different Elevations: Implications for Adaptation to Climate Change. J. Ecol. 2019, 107, 2478–2492. [Google Scholar] [CrossRef]
- Moreira, X.; Petry, W.K.; Mooney, K.A.; Rasmann, S.; Abdala-Roberts, L. Elevational Gradients in Plant Defences and Insect Herbivory: Recent Advances in the Field and Prospects for Future Research. Ecography 2017, 41, 1485–1496. [Google Scholar] [CrossRef]
- Lavergne, S.; Thompson, J.D.; Garnier, E.; Debussche, M. The Biology and Ecology of Narrow Endemic and Widespread Plants: A Comparative Study of Trait Variation in 20 Congeneric Pairs. Oikos 2004, 107, 505–518. [Google Scholar] [CrossRef]
- Yamada, T.; Zuidema, P.A.; Itoh, A.; Yamakura, T.; Ohkubo, T.; Kanzaki, M.; Tan, S.; Ashton, P.S. Strong Habitat Preference of a Tropical Rain Forest Tree does not Imply Large Differences in Population Dynamics Across Habitats. J. Ecol. 2007, 95, 332–342. [Google Scholar] [CrossRef]
- Kang, H.; Zheng, Y.; Liu, S.; Chai, Z.; Chang, M.; Hu, Y.; Li, G.; Wang, D. Population Structure and Spatial Pattern of Predominant Tree Species in a Pine–Oak Mosaic Mixed Forest in the Qinling Mountains, China. J. Plant Interact. 2017, 12, 78–86. [Google Scholar] [CrossRef]
- Chai, Z.Z.; Wang, D.X.; Zhang, L.N.; Zhang, Y.; Hang, Q.P.; Wu, H. Intraspecific and interspecific competition of Pinus tabuliformis natural secondery forests in western section of Qinling mountain. J. Northwest AF Univ. (Soc. Sci. Ed.) 2012, 31, 2533–2540. [Google Scholar]
- Qing, S.; Yang, H.; Xu, Z.; Zhao, Z.; Wang, Z. Mid- to Long-Term Influence of Gaps on Natural Regeneration in Pinus tabuliformis Plantations on the Loess Plateau. For. Ecol. Manag. 2025, 584, 122612. [Google Scholar] [CrossRef]
- Wu, G.; Feng, Z. Study on Community Characteristics and Biomass of Pinus tabuliformis Forest in China. Acta Ecol. Sin. 1994, 4, 415–422. [Google Scholar]
- Xu, H.; Sun, Z.; Guo, G.; Feng, L. Geographical Distribution and Provenance Division of Natural Pinus tabuliformis Forest. Sci. Silvae Sin. 1981, 3, 258–270. [Google Scholar]
- Fu, L.; Yan, Y.; Li, X.; Liu, Y.; Lu, X. Rhizosphere Soil Microbial Community and Its Response to Different Utilization Patterns in the Semi-Arid Alpine Grassland of Northern Tibet. Front. Microbiol. 2022, 13, 931795. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Li, D.; Liu, C.-M.; Luo, R.; Sadakane, K.; Lam, T.-W. MEGAHIT: An Ultra-Fast Single-Node Solution for Large and Complex Metagenomics Assembly via Succinct de Bruijn Graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and Sensitive Protein Alignment Using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef]
- Liao, L.; Wang, J.; Dijkstra, F.A.; Lei, S.; Zhang, L.; Wang, X.; Liu, G.; Zhang, C. Nitrogen enrichment stimulates rhizosphere multi-element cycling genes via mediating plant biomass and root exudates. Soil Biol. Biochem. 2024, 190, 109306. [Google Scholar] [CrossRef]
- Wu, X.; Peng, J.; Liu, P.; Bei, Q.; Rensing, C.; Li, Y.; Yuan, H.; Liesack, W.; Zhang, F.; Cui, Z. Metagenomic insights into nitrogen and phosphorus cycling at the soil aggregate scale driven by organic material amendments. Sci. Total Environ. 2021, 785, 147329. [Google Scholar] [CrossRef]
- Hao, Z.; Qian, X.; Dong, J. The Progress in the Function Research and Application of Plant Microbiome. J. Mirobiology 2021, 41, 1–7. [Google Scholar]
- Guo, L.; Yu, Z.; Li, Y.; Xie, Z.; Wang, G.; Liu, X.; Liu, J.; Liu, J.; Jin, J. Plant phosphorus acquisition links to phosphorus transformation in the rhizospheres of soybean and rice grown under CO2 and temperature co-elevation. Sci. Total Environ. 2022, 823, 153558. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Song, Y.; Su, P.; Wang, J.; Miao, C.; Luo, Y.; Sun, Q.; Wang, J.; Zhang, G.; Bu, N.; et al. Asymmetric Responses of Functional Microbes in Methane and Nitrous Oxide Emissions to Plant Invasion: A Meta-Analysis. Soil Biol. Biochem. 2023, 178, 108931. [Google Scholar] [CrossRef]
- WWu, H.; Ruan, C.; Wan, W.; Li, S.; Pei, D.; Han, M.; Chen, G.W.; Liu, Y.; Zhu, K.; Wang, G. Progress of Functional Genes Related to Soil Nitrogen Cycling Based on Knowledge Mapping. Acta Pedol. Sin. 2023, 60, 7–22. [Google Scholar]
- Hirao, T.; Fujii, M.; Shigyo, N.; Kojima, H.; Fukui, M. Influence of Understory Vegetation on Soil Bacterial Communities and Nitrogen Cycling Gene Abundance in Cool-Temperate and Sub-Alpine Forests Along an Elevational Gradient. Pedobiologia 2021, 87, 150746. [Google Scholar] [CrossRef]
- Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; van der Putten, W.H. Going Back to the Roots: The Microbial Ecology of the Rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Wang, F.; Hu, C.; Liu, B. Metagenomics Reveals Taxon-Specific Responses of the Nitrogen-Cycling Microbial Community to Long-Term Nitrogen Fertilization. Soil Biol. Biochem. 2021, 156, 108214. [Google Scholar] [CrossRef]
- Xu, L.; Cao, H.; Li, C.; Wang, C.; He, N.; Hu, S.; Yao, M.; Wang, C.; Wang, J.; Zhou, S.; et al. The Importance of Rare Versus Abundant phoD-Harboring Subcommunities in Driving Soil Alkaline Phosphatase Activity and Available P Content in Chinese Steppe Ecosystems. Soil Biol. Biochem. 2022, 164, 108491. [Google Scholar] [CrossRef]
- Hartmann, M.; Six, J. Soil Structure and Microbiome Functions in Agroecosystems. Nat. Rev. Earth Environ. 2023, 4, 4–18. [Google Scholar] [CrossRef]
- Reich, P.B.; Wright, I.J.; Cavender-Bares, J.; Craine, J.M.; Oleksyn, J.; Westoby, M.; Walters, M.B. The Evolution of Plant Functional Variation: Traits, Spectra, and Strategies. Int. J. Plant Sci. 2003, 164, S143–S164. [Google Scholar] [CrossRef]
- Grime, J.P. The C-S-R model of primary plant strategies—Origins, implications and tests. In Plant Evolutionary Biology; Springer: Dordrecht, The Netherlands, 1988; pp. 371–393. [Google Scholar]
- Liao, J.; Dou, Y.; Yang, X.; An, S. Soil Microbial Community and Their Functional Genes During Grassland Restoration. J. Environ. Manag. 2023, 325, 116488. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.-F.; Chen, Y.; Sun, M.-M.; Wang, Y.; Chen, Y.-F. The Transcription Factor NIGT1.2 Modulates Both Phosphate Uptake and Nitrate Influx during Phosphate Starvation in Arabidopsis and Maize. Plant Cell 2020, 32, 3519–3534. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Krebs, L.; Richter, F.; Mo, Y.; Singh, A.K.; Chen, C.; Liu, W.; Buchmann, N. Tropical forest restoration promotes soil phosphorus bioavailability in SW China: Processes and predictors. Agric. Ecosyst. Environ. 2025, 381, 109459. [Google Scholar] [CrossRef]
- Ning, L.; Zhou, Y.-L.; Sun, H.; Zhang, Y.; Shen, C.; Wang, Z.; Xuan, B.; Zhao, Y.; Ma, Y.; Yan, Y.; et al. Microbiome and metabolome features in inflammatory bowel disease via multi-omics integration analyses across cohorts. Nat. Commun. 2023, 14, 7135. [Google Scholar] [CrossRef]
- Tarazona, S.; Arzalluz-Luque, A.; Conesa, A. Undisclosed, unmet and neglected challenges in multi-omics studies. Nat. Comput. Sci. 2021, 1, 395–402. [Google Scholar] [CrossRef] [PubMed]
Genes | Geography | Elevation | |||
---|---|---|---|---|---|
Slope | Ridge | Ele1 | Ele2 | ||
Regulatory genes | phoB | 204.72 a | 179.04 a | 188.88 a | 194.88 a |
phoR | 535.62 a | 488.44 a | 513.51 a | 510.56 a | |
phoP | 13.95 a | 13.02 a | 13.96 a | 13.02 a | |
phoU | 449.10 a | 421.67 b | 440.13 a | 430.64 a | |
Primary inorganic P transporters | pstA | 361.60 a | 326.45 a | 371.50 a | 316.56 b |
pstB | 490.82 a | 428.30 a | 475.59 a | 443.44 a | |
pstC | 421.14 a | 401.60 a | 430.13 a | 392.61 a | |
pstS | 726.31 a | 747.81 a | 763.23 a | 710.89 b | |
pit | 500.17 a | 429.74 b | 495.69 a | 434.22 a | |
Secondary inorganic P transporters | phnC | 107.69 a | 109.00 a | 88.52 b | 128.18 a |
phnD | 141.19 a | 135.93 a | 125.41 a | 151.72 a | |
phnE | 182.62 a | 166.87 a | 153.08 b | 196.41 a | |
Glycerol-3-hosphate transporter | ugpA | 103.11 a | 71.67 ab | 83.61 a | 91.17 a |
ugpB | 256.85 a | 187.96 b | 214.76 a | 230.05 a | |
ugpC | 136.72 a | 98.84 b | 120.88 a | 114.67 a | |
ugpE | 104.73 a | 82.44 b | 90.46 a | 96.71 a | |
Alkaline phosphatase | phoA | 80.10 a | 58.58 a | 67.76 a | 70.93 a |
phoD | 398.51 a | 320.52 b | 336.93 a | 382.10 a | |
Inorganic P solublization | gcd | 758.14 a | 765.52 a | 728.62 a | 795.04 a |
ppa | 223.32 a | 225.79 a | 245.29 a | 203.82 b | |
ppx | 672.01 a | 592.67 b | 633.53 a | 631.14 a | |
C–P lyase | phnG | 45.86 a | 44.91 a | 38.07 b | 52.70 a |
phnH | 47.39 a | 50.83 a | 40.09 b | 58.13 a | |
phnI | 95.84 a | 86.24 a | 83.68 b | 98.41 a | |
phnJ | 70.44 a | 67.69 a | 68.11 a | 70.02 a | |
phnL | 57.40 a | 57.52 a | 53.83 a | 61.09 a | |
phnM | 155.61 a | 144.59 a | 143.60 a | 156.60 a | |
phnN | 46.55 a | 42.21 a | 41.31 a | 47.45 a | |
phnP | 167.34 a | 152.23 a | 148.53 a | 171.04 a | |
phnK | 60.29 a | 62.82 a | 55.13 a | 67.97 a | |
phnF | 47.28 a | 43.89 a | 50.76 a | 40.40 a | |
Organic P mineralization | Phy | 0.48 b | 4.04 a | 1.73 a | 2.79 a |
phnX | 14.69 a | 17.08 a | 16.93 a | 14.84 a | |
phnW | 80.49 a | 68.22 a | 68.67 a | 80.04 a | |
phnA | 94.85 a | 96.37 a | 86.24 b | 104.98 a | |
phoN | 21.45 a | 20.48 a | 18.79 a | 23.14 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Pang, Y.; Yang, Y.; Wang, D.; Wang, Y. Habitat Heterogeneity of Nitrogen and Phosphorus Cycling Functional Genes in Rhizosphere Microorganisms of Pinus tabuliformis in Qinling Mountains, China. Microorganisms 2025, 13, 1275. https://doi.org/10.3390/microorganisms13061275
Yang H, Pang Y, Yang Y, Wang D, Wang Y. Habitat Heterogeneity of Nitrogen and Phosphorus Cycling Functional Genes in Rhizosphere Microorganisms of Pinus tabuliformis in Qinling Mountains, China. Microorganisms. 2025; 13(6):1275. https://doi.org/10.3390/microorganisms13061275
Chicago/Turabian StyleYang, Hang, Yue Pang, Ying Yang, Dexiang Wang, and Yuchao Wang. 2025. "Habitat Heterogeneity of Nitrogen and Phosphorus Cycling Functional Genes in Rhizosphere Microorganisms of Pinus tabuliformis in Qinling Mountains, China" Microorganisms 13, no. 6: 1275. https://doi.org/10.3390/microorganisms13061275
APA StyleYang, H., Pang, Y., Yang, Y., Wang, D., & Wang, Y. (2025). Habitat Heterogeneity of Nitrogen and Phosphorus Cycling Functional Genes in Rhizosphere Microorganisms of Pinus tabuliformis in Qinling Mountains, China. Microorganisms, 13(6), 1275. https://doi.org/10.3390/microorganisms13061275