Multiple Environmental Factors Shaping Hopanoid-Producing Microbes Across Different Ecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Sampling
2.3. Physicochemical Analysis
2.4. Genomic DNA Extraction and Functional Gene Sequencing
2.5. Gene Reads Analysis
2.6. Phylogenetic Analysis
2.7. Statistical Analysis
3. Results
3.1. Diversity and Composition of Hopanoid-Producing Microbe Communities in the Dajiuhu Peatland
3.2. Composition of Hopanoid-Producing Communities Across Different Ecosystems
3.3. Species Occurrence Patterns of Hopanoid Producers Among Different Ecosystems
3.4. Correlations Between Hopanoid-Producing Groups and Environmental Factors Across Different Ecosystems
3.5. Occurrence Network of Distribution of Hopanoid-Producing Microbes Among Various Ecosystems
4. Discussion
4.1. Characteristics of Hopanoid Producers from Profile C in Dajiuhu Peatland and Differences in Hopanoid Producers Between Peatland and Other Ecosystems
4.2. Multiple Environmental Factors Shaping Hopanoid-Producing Microbes Across These Various Ecosystems
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rao, B.D.; Gomez-Gil, E.; Peter, M.; Balogh, G.; Nunes, V.; MacRae, J.I.; Chen, Q.; Rosenthal, P.B.; Oliferenko, S. Horizontal acquisition of prokaryotic hopanoid biosynthesis reorganizes membrane physiology driving lifestyle innovation in a eukaryote. Nat. Commun. 2025, 16, 3291. [Google Scholar] [CrossRef] [PubMed]
- Blumenberg, M.; Berndmeyer, C.; Moros, M.; Muschalla, M.; Schmale, O.; Thiel, V. Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the central Baltic Sea. Biogeosciences 2013, 10, 2725–2735. [Google Scholar] [CrossRef]
- Xie, S.; Evershed, R.P.; Huang, X.; Zhu, Z.; Pancost, R.D.; Meyers, P.A.; Gong, L.; Hu, C.; Huang, J.; Zhang, S.; et al. Concordant monsoon-driven postglacial hydrological changes in peat and stalagmite records and their impacts on prehistoric cultures in central China. Geology 2013, 41, 827–830. [Google Scholar] [CrossRef]
- Pan, H.; Shim, A.; Lubin Matthew, B.; Belin Brittany, J. Hopanoid lipids promote soybean-Bradyrhizobium symbiosis. mBio 2024, 15, e0247823. [Google Scholar] [CrossRef]
- Pearson, A.; Rusch, D.B. Distribution of microbial terpenoid lipid cyclases in the global ocean metagenome. ISME J. 2008, 3, 352–363. [Google Scholar] [CrossRef]
- Schwartz-Narbonne, R.; Schaeffer, P.; Lengger, S.K.; Blewett, J.; Martin Jones, D.; Motsch, E.; Crombie, A.; Jetten, M.S.M.; Mikkelsen, D.; Normand, P.; et al. Bacterial physiology highlighted by the δ13C fractionation of bacteriohopanetetrol isomers. Org. Geochem. 2023, 181, 104617. [Google Scholar] [CrossRef]
- Tookmanian, E.M.; Belin, B.J.; Sáenz, J.P.; Newman, D.K. The role of hopanoids in fortifying rhizobia against a changing climate. Environ. Microbiol. 2021, 23, 2906–2918. [Google Scholar] [CrossRef]
- Hoshino, T.; Sato, T. Squalene-hopene cyclase: Catalytic mechanism and substrate recognition. Chem. Commun. 2002, 2002, 291–301. [Google Scholar] [CrossRef]
- Jones, D.S.; Albrecht, H.L.; Dawson, K.S.; Schaperdoth, I.; Freeman, K.H.; Pi, Y.; Pearson, A.; Macalady, J.L. Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm. ISME J. 2011, 6, 158–170. [Google Scholar] [CrossRef]
- Pearson, A.; Leavitt, W.D.; Sáenz, J.P.; Summons, R.E.; Tam, M.C.M.; Close, H.G. Diversity of hopanoids and squalene-hopene cyclases across a tropical land-sea gradient. Environ. Microbiol. 2009, 11, 1208–1223. [Google Scholar] [CrossRef]
- Kharbush, J.J.; Ugalde, J.A.; Hogle, S.L.; Allen, E.E.; Aluwihare, L.I. Composite bacterial hopanoids and their microbial producers across oxygen gradients in the water column of the California Current. Appl. Environ. Microbiol. 2013, 79, 7491–7501. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Wang, H.; Xiang, X.; Qiu, X.; Liu, Q.; Wang, R.; Zhao, R.; Wang, C. pH shaping the composition of sqhC-containing bacterial communities. Geomicrobiol. J. 2015, 32, 433–444. [Google Scholar] [CrossRef]
- Welander, P.; Hunter, R.; Zhang, L.; Sessions, A.; Summons, R.; Newman, D.K. Hopanoids play a role in membrane integrity and pH homeostasis in Rhodopseudomonas palustris TIE-1. J. Bacteriol. 2009, 191, 6145–6156. [Google Scholar] [CrossRef]
- Huang, X.; Meyers, P.A.; Xue, J.; Gong, L.; Wang, X.; Xie, S. Environmental factors affecting the low temperature isomerization of homohopanes in acidic peat deposits, central China. Geochim. Cosmochim. Acta 2015, 154, 212–228. [Google Scholar] [CrossRef]
- Kharbush, J.J.; Kejriwal, K.; Aluwihare, L.I. Distribution and abundance of hopanoid producers in low-oxygen environments of the Eastern Pacific Ocean. Microb. Ecol. 2016, 71, 401–408. [Google Scholar] [CrossRef]
- Huang, X.; Wang, C.; Xue, J.; Meyers, P.A.; Zhang, Z.; Tan, K.; Zhang, Z.; Xie, S. Occurrence of diploptene in moss species from the Dajiuhu Peatland in southern China. Org. Geochem. 2010, 41, 321–324. [Google Scholar] [CrossRef]
- Wang, R.-C.; Wang, H.-M.; Xiang, X.; Gao, Y.; Song, Q.-W.; Gong, L.-F. Temporal and spatial variations of microbial carbon utilization in water bodies from the Dajiuhu Peatland, central China. J. Earth Sci. 2018, 29, 969–976. [Google Scholar] [CrossRef]
- Wang, R.; Wang, H.; Xi, Z.; Tuovinen, O.H.; Gong, L.; Huang, X. Hydrology driven vertical distribution of prokaryotes and methane functional groups in a subtropical peatland. J. Hydrol. 2022, 608, 127592. [Google Scholar] [CrossRef]
- Najafpour, M.M. Hollandite as a functional and structural model for the biological water oxidizing complex: Manganese-calcium oxide minerals as a possible evolutionary origin for the CaMn4 cluster of the biological water oxidizing complex. Geomicrobiol. J. 2011, 28, 714–718. [Google Scholar] [CrossRef]
- Cao, W.; Fu, Y.; Cheng, Y.; Zhai, W.; Sun, X.; Ren, Y.; Pan, D. Modeling potential arsenic enrichment and distribution using stacking ensemble learning in the lower Yellow River Plain, China. J. Hydrol. 2023, 625, 129985. [Google Scholar] [CrossRef]
- Li, D.; Liu, C.-M.; Luo, R.; Sadakane, K.; Lam, T.-W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2014, 31, 1674–1676. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Lomsadze, A.; Borodovsky, M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 2010, 38, e132. [Google Scholar] [CrossRef]
- Li, W.; Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22, 1658–1659. [Google Scholar] [CrossRef] [PubMed]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2014, 12, 59–60. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gibson, T.J.; Higgins, D.G. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinforma. 2002, 2, 2.3.1–2.3.22. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef]
- Fischer, W.W.; Pearson, A. Hypotheses for the origin and early evolution of triterpenoid cyclases. Geobiology 2007, 5, 19–34. [Google Scholar] [CrossRef]
- Ricci, J.N.; Coleman, M.L.; Welander, P.V.; Sessions, A.L.; Summons, R.E.; Spear, J.R.; Newman, D.K. Diverse capacity for 2-methylhopanoid production correlates with a specific ecological niche. ISME J. 2013, 8, 675–684. [Google Scholar] [CrossRef]
- Lai, J. Canoco 5: A new version of an ecological multivariate data ordination program. Biodivers. Sci. 2013, 21, 765–768. [Google Scholar]
- Hemerik, J.; Goeman, J. Exact testing with random permutations. Test 2018, 27, 811–825. [Google Scholar] [CrossRef] [PubMed]
- Ihaka, R.; Gentleman, R. R: A language for data analysis and graphics. J. Comput. Graph. Stat. 1996, 5, 299–314. [Google Scholar] [CrossRef]
- Ward, N.; Challacombe, J.; Janssen, P.; Henrissat, B.; Coutinho, P.; Wu, M.; Xie, G.; Haft, D.H.; Sait, M.; Badger, J.; et al. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl. Environ. Microbiol. 2009, 75, 2046–2056. [Google Scholar] [CrossRef]
- Jones, R.; Robeson, M.; Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 2009, 3, 442–453. [Google Scholar] [CrossRef]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef]
- Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 2009, 75, 5111–5120. [Google Scholar] [CrossRef]
- Bengtsson, M.; Øvreås, L. Planctomycetes dominate biofilms on surfaces of the kelp Laminaria hyperborea. BMC Microbiol. 2010, 10, 261. [Google Scholar] [CrossRef]
- Xiang, X.; Wang, H.; Gong, L.; Liu, Q. Vertical variations and associated ecological function of bacterial communities from Sphagnum to underlying sediments in Dajiuhu Peatland. Sci. China Earth Sci. 2014, 57, 1013–1020. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, H.; Xiang, X.; Wang, R.; Tian, W. Vertical variation of nitrogen fixers and ammonia oxidizers along a sediment profile in the Dajiuhu peatland, central China. J. Earth Sci. 2019, 30, 397–406. [Google Scholar] [CrossRef]
- Kits, K.D.; Sedlacek, C.J.; Lebedeva, E.V.; Han, P.; Bulaev, A.; Pjevac, P.; Daebeler, A.; Romano, S.; Albertsen, M.; Stein, L.Y.; et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 2017, 549, 269–272. [Google Scholar] [CrossRef]
- Huang, L.-N.; Kuang, J.-L.; Shu, W.-S. Microbial ecology and evolution in the acid mine drainage model system. Trends Microbiol. 2016, 24, 581–593. [Google Scholar] [CrossRef] [PubMed]
- Shu, W.-S.; Huang, L.-N. Microbial diversity in extreme environments. Nat. Rev. Microbiol. 2022, 20, 219–235. [Google Scholar] [CrossRef] [PubMed]
- Schmerk, C.L.; Welander, P.V.; Hamad, M.A.; Bain, K.L.; Bernards, M.A.; Summons, R.E.; Valvano, M.A. Elucidation of the Burkholderia cenocepacia hopanoid biosynthesis pathway uncovers functions for conserved proteins in hopanoid-producing bacteria. Environ. Microbiol. 2015, 17, 735–750. [Google Scholar] [CrossRef]
- Christie-Oleza, J.A.; Sousoni, D.; Lloyd, M.; Armengaud, J.; Scanlan, D.J. Nutrient recycling facilitates long-term stability of marine microbial phototroph-heterotroph interactions. Nat. Microbiol. 2017, 2, 17100. [Google Scholar] [CrossRef]
- Pancost, R.D.; van Geel, B.; Baas, M.; Damsté, J.S.S. δ13C values and radiocarbon dates of microbial biomarkers as tracers for carbon recycling in peat deposits. Geology 2000, 28, 663–666. [Google Scholar] [CrossRef]
- Pancost, R.D.; Sinninghe Damsté, J.S. Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings. Chem. Geol. 2003, 195, 29–58. [Google Scholar] [CrossRef]
- Rentz, J.A.; Alvarez, P.J.J.; Schnoor, J.L. Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates: Implications for phytoremediation. Environ. Pollut. 2005, 136, 477–484. [Google Scholar] [CrossRef]
- Sáenz, J.P.; Wakeham, S.G.; Eglinton, T.I.; Summons, R.E. New constraints on the provenance of hopanoids in the marine geologic record: Bacteriohopanepolyols in marine suboxic and anoxic environments. Org. Geochem. 2011, 42, 1351–1362. [Google Scholar] [CrossRef]
- Rush, D.; Sinninghe Damsté, J.S.; Poulton, S.W.; Thamdrup, B.; Garside, A.L.; Acuña González, J.; Schouten, S.; Jetten, M.S.M.; Talbot, H.M. Anaerobic ammonium-oxidising bacteria: A biological source of the bacteriohopanetetrol stereoisomer in marine sediments. Geochim. Cosmochim. Acta 2014, 140, 50–64. [Google Scholar] [CrossRef]
- Summons, R.E.; Jahnke, L.; Hope, J.M.; Logan, G. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 1999, 400, 554–557. [Google Scholar] [CrossRef]
- Rashby, S.E.; Sessions, A.; Summons, R.; Newman, D.K. Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph. Proc. Natl. Acad. Sci. USA 2007, 104, 15099–15104. [Google Scholar] [CrossRef] [PubMed]
- Welander, P.V.; Coleman, M.L.; Sessions, A.L.; Summons, R.E.; Newman, D.K. Identification of a methylase required for 2-methylhopanoid production and implications for the interpretation of sedimentary hopanes. Proc. Natl. Acad. Sci. USA 2010, 107, 8537–8542. [Google Scholar] [CrossRef] [PubMed]
- Talbot, H.M.; Rohmer, M.; Farrimond, P. Rapid structural elucidation of composite bacterial hopanoids by atmospheric pressure chemical ionisation liquid chromatography/ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 880–892. [Google Scholar] [CrossRef]
- Cooke, M.; Talbot, H.; Farrimond, P. Bacterial populations recorded in bacteriohopanepolyol distributions in soils from Northern England. Org. Geochem. 2008, 39, 1347–1358. [Google Scholar] [CrossRef]
- Xu, Y.; Cooke, M.; Talbot, H.; Simpson, M. Bacteriohopanepolyol signatures of bacterial populations in Western Canadian soils. Org. Geochem. 2009, 40, 79–86. [Google Scholar] [CrossRef]
- Fang, J.; Chan, O.; Joeckel, R.M.; Huang, Y.; Wang, Y.; Bazylinski, D.A.; Moorman, T.B.; Ang Clement, B.J. Biomarker analysis of microbial diversity in sediments of a saline groundwater seep of Salt Basin, Nebraska. Org. Geochem. 2006, 37, 912–931. [Google Scholar] [CrossRef]
- Fan, L.; Xu, B.; Chen, S.; Liu, Y.; Li, F.; Xie, W.; Prabhu, A.; Zou, D.; Wan, R.; Li, H.; et al. Gene inversion led to the emergence of brackish archaeal heterotrophs in the aftermath of the Cryogenian Snowball Earth. PNAS Nexus 2024, 3, pgae057. [Google Scholar] [CrossRef]
- Logares, R.; Bråte, J.; Bertilsson, S.; Clasen, J.L.; Shalchian-Tabrizi, K.; Rengefors, K. Infrequent marine-freshwater transitions in the microbial world. Trends Microbiol. 2009, 17, 414–422. [Google Scholar] [CrossRef]
Sample | Sobs | ACE | Chao1 | Shannon | Simpson (1/D) |
---|---|---|---|---|---|
PC5 | 26 | 125.67 | 89.25 | 3.22 | 135.34 |
PC25 | 27 | 378 | 189.5 | 3.28 | 377.93 |
PC55 | 8 | 11.8 | 9.5 | 1.95 | 10.11 |
PC105 | 8 | 36 | 18.5 | 2.04 | 36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Xi, Z.; Gong, L.; Zhu, H.; Xiang, X.; Man, B.; Liu, R.; Shao, Z.; Wang, H. Multiple Environmental Factors Shaping Hopanoid-Producing Microbes Across Different Ecosystems. Microorganisms 2025, 13, 1250. https://doi.org/10.3390/microorganisms13061250
Wang R, Xi Z, Gong L, Zhu H, Xiang X, Man B, Liu R, Shao Z, Wang H. Multiple Environmental Factors Shaping Hopanoid-Producing Microbes Across Different Ecosystems. Microorganisms. 2025; 13(6):1250. https://doi.org/10.3390/microorganisms13061250
Chicago/Turabian StyleWang, Ruicheng, Zhiqin Xi, Linfeng Gong, Han Zhu, Xing Xiang, Baiyin Man, Renju Liu, Zongze Shao, and Hongmei Wang. 2025. "Multiple Environmental Factors Shaping Hopanoid-Producing Microbes Across Different Ecosystems" Microorganisms 13, no. 6: 1250. https://doi.org/10.3390/microorganisms13061250
APA StyleWang, R., Xi, Z., Gong, L., Zhu, H., Xiang, X., Man, B., Liu, R., Shao, Z., & Wang, H. (2025). Multiple Environmental Factors Shaping Hopanoid-Producing Microbes Across Different Ecosystems. Microorganisms, 13(6), 1250. https://doi.org/10.3390/microorganisms13061250