Status and Distribution of Diseases Caused by Phytoplasmas in Africa
Abstract
:1. Overview and Rationale
Phytoplasma Strain (Host Plant) | 16Sr | Related Ca. Species | Origin |
---|---|---|---|
Blackcurrant reversion (Ribes nigrum) | I-C | Phytoplasma asteris | Czech. |
Clover phyllody-England (Trifolium sp) | I-B | Phytoplasma asteris | UK |
Apricot chlorotic leaf roll (Prunus armeniaca L.) | I-F | Phytoplasma asteris | Spain |
Atypical aster yellows (various plants) | I-M | Phytoplasma asteris | Germany |
Lime witches’-broom (Citrus aurantifolia) | II-B | Phytoplasma aurantifolia | Arabia |
Faba bean phyllody (Vicia faba L.) | II-C | Phytoplasma aurantifolia | Sudan |
Crotalaria saltiana phyllody (Crotalaria saltiana) | II-C | Phytoplasma aurantifolia | Sudan |
Soybean phyllody (Glycine max (L.) Merr.) | II-C | Phytoplasma aurantifolia | Thailand |
Australian tomato big bud (Solanum lycopersicum) | II-D | Phytoplasma aurantifolia | Australia |
Sweet potato little leaf (Ipomoea batatas) | II-D | Phytoplasma aurantifolia | Australia |
Ipomoea (unspecified) | II-D | Phytoplasma aurantifolia | Fiji |
Peach western X (Prunus persica) | III-A | Phytoplasma pruni | USA |
Green valley X (most Stone fruits) | III-A | Phytoplasma pruni | USA |
Poinsettia branching factor (Euphorbia pulcherrima) | III-H | Phytoplasma pruni | USA |
Coconut lethal yellowing (Adonidia merrillii) | IV-A | Phytoplasma palmae | Serbia |
Coconut lethal yellowing (Hyophorbe verschafeltii) | IV-A | Phytoplasma palmae | USA |
Coconut lethal yellowing (Phoenix rupicola) | IV-A | Phytoplasma palmae | USA |
Tanzanian lethal decline (Cocos nucifera L.) | IV-B | Phytoplasma cocostanzaniae | Tanzania |
Ghanaian Cape St. Paul wilt (Cocos nucifera L.) | IV-C | Phytoplasma cocosnigeriae | Ghana |
Elm witches’-broom (Ulmus sp.) | V-A | Phytoplasma ulmi | France |
Potato witches’-broom (Solanum) | VI-A | Phytoplasma trifolii | USA |
Brinjal little leaf | VI-A | Phytoplasma trifolii | India |
Catharanthus phyllody (Catharanthus roseus) | VI-C | Phytoplasma trifolii | Sudan |
Ash yellows (Fraxinus sp.) | VII-A | Phytoplasma fraxini | USA |
Loofah witches’ broom (Luffa aegyptica Mill.) | VIII-A | Phytoplasma luffae | Australia |
Pigeon pea witches’-broom (Cajanus cajan) | IX-D | Phytoplasma phoenicium | - |
Apple proliferation (Malus domestica) | X-A | Phytoplasma mali | USA |
German stone fruit yellows (Prunus sp.) | X-B | Phytoplasma prunorum | Italy |
European stone fruit yellows (Prunus persica) | X-B | Phytoplasma prunorum | Germany |
Napier grass stunt (Pennisetum purpureum) | XI | Phytoplasma oryzae | Germany |
Cordyline Phytoplasma (Fragaria ananassa) | XII | Phytoplasma fragariae | Ethiopia |
Stolbur of pepper (Capsicum annuum) | XII-A | Phytoplasma solani | Jersey |
Mexican periwinkle virescence (Catharanthus roseus) | XIII | Phytoplasma hispanicum | Mexico |
Bermuda grass white leaf (Cynodon dictylon) | XIV-A | Phytoplasma cynodontis | - |
Hibiscus witches’ broom (Hibiscus rosa-sinensis) | XV-A | Phytoplasma brasiliense | - |
Sugarcane yellow leaf syndrome (Saccharum officinarum) | XVI-A | Phytoplasma graminis | - |
Papaya bunchy top (Carica papaya) | XVII-A | Phytoplasma caricae | - |
American potato purple top wilt (Solanum tuberosum) | XVIII-A | Phytoplasma americanum | - |
Japanese chestnut witches (Castanea crenata) | XIX-A | Phytoplasma castaneae | - |
Buckthorn witches’ broom (Rhamnus catharticus) | XX-A | Phytoplasma rhamni | - |
Pineshoot proliferation (Pinus halepensis) | XXI-A | Phytoplasma pini | - |
Nigerian coconut lethal decline (Cocos nucifera L.) | XXII-A | Phytoplasma palmicola | - |
Buckland Valley grapevine yellows (Vitis vinifera L.) | XXIII-A | Unnamed | - |
Sorghum bunchy shoot (Sorghum bicolor (L.) Moench) | XXIV-A | Unnamed | - |
Weeping tea tree witches’ (Leptospermum brachyandrum) | XXV-A | Unnamed | - |
Mauritius sugarcane yellows D3T1(Saccharum officinarum L.) | XXVI-A | Unnamed | - |
Mauritius sugarcane yellows D3T2(Saccharum officinarum L.) | XXVII-A | Unnamed | - |
Havana derbid | XXVIII-A | Unnamed | - |
Cassia witches’ broom (Cassia italica) | XXIX-A | Phytoplasma omanense | - |
Salt cedar witches’ broom (Tamarix chinensis Lour) | XXX-A | Phytoplasma tamaricis | - |
Soybean stunt phytoplasma (Glycine max) | XXXI-A | Phytoplasma costaricanum | - |
Malaysian periwinkle virescence (Catharanthus roseus) | XXXII-A | Phytoplasma malaysianum | - |
Allocasuarina (Allocasuarina mulleriana) | XXXIII-A | Phytoplasma allocasuarinae | - |
Grapevine yellows | XXXIV | Abolished | - |
Pepper witches’-broom | XXXV | Abolished | - |
foxtail palm yellow decline (Wodyetia bifurcata) | XXXVI | Phytoplasma wodyetiae | - |
Stylosanthes little leaf (Solanum tuberosum L.) | XXXVII | Phytoplasma stylosanthis | - |
Bogia coconut syndrome (Cocos nucifera) | XXXVIII | Phytoplasma noviguineense | - |
Palm lethal wilt (Dypsis poivreana) | XXXIX | Phytoplasma dypsidis | - |
2. Symptoms and Spread of Phytoplasma Diseases
2.1. Symptoms of Infection
2.2. Phytoplasma Transmission
2.2.1. Insect Vectors
Insect Vector | Phytoplasma Disease | References |
---|---|---|
Mgenia fuscovaria, Aconurella prolixa | Grapevine yellows disease | [63,72,73] |
Maiestas banda Leptodel phaxdymas Exiti anus | Napier grass stunt Phytoplasma | [65,66,67] |
Hebata decipiens | Goosegrass white leaf | [74] |
2.2.2. Other Modes of Transmission
3. Detection and Classification of Phytoplasma
3.1. Detection of Phytoplasma
Primers | Sequence (5′-3′) | Reference |
---|---|---|
P1 | AAGAGTTTGATCCTGGCTCAGGATT | [106] |
P4 | GAAGTCTGCAACTCGACTTC | [107] |
P6 | CGGTAGGGATACCTTGTTACGACTTA | [106] |
P7 | CGTCCTTCATCGGCTCTT | [108] |
R16F2n | GAAACGACTGCTAAGACTGG | [109] |
R16R2 | TGACGGGCGGTGTGTACAAACCCCG | [110] |
LYDSR (Lethal Disease Tanzania) | GGTGCCATATATATTAGATTG | [111] |
G813F (Lethal Disease Ghana) | CTAAGTGTCGGGGGTTTCC | [111] |
AKSR (Lethal Disease Nigeria) | TTGAATAAGAGGAATGTGG | [111] |
Rhode F (Lethal Disease Tanzania) | GAGTACTAAGTGTCGGGGCAA | [112] |
Rhode R (Lethal Disease Tanzania) | AAAAACTCGCGTTTCAGCTAC | [112] |
3.2. Classification System
4. Phytoplasma Diseases Status in Africa
4.1. Groups and Subgroups of Phytoplasmas in Africa
4.1.1. Grapevine Yellows Disease
4.1.2. Phyllody/Witches Broom/Virescence
4.1.3. Napier Grass Stunt Phytoplasma
4.1.4. Yellow Leaf Syndrome
4.1.5. Sugarcane Grassy Shoot
4.1.6. Lethal Yellowing Diseases of Coconut and Cassava
Lethal Yellowing Disease of Coconut
Cassava Phytoplasma
4.1.7. Bermuda and Hyparrhenia Grass White Leaf
4.1.8. Phytoplasma Disease of Date Palm
4.1.9. Phytoplasma Diseases of Papaya
4.1.10. Unclassified Phytoplasma Group
5. Impact of Phytoplasma Diseases in Africa
6. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, I.M.; Davis, R.E.; Gundersen-Rindal, D.E. Phytoplasma: Phytopathogenic mollicutes. Annu. Rev. Microbiol. 2000, 54, 221–255. [Google Scholar] [CrossRef] [PubMed]
- IRPCM, ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int. J. Syst. Evol. Microbiol. 2004, 54, 1243–1255. [CrossRef] [PubMed]
- Bertaccini, A.; Duduk, B. Phytoplasma and Phytoplasma diseases: A review of recent research. Phytopathol. Mediterr. 2009, 48, 355–378. Available online: http://www.jstor.org/stable/26463360 (accessed on 11 September 2024).
- Makarova, O.; Contaldo, N.; Paltrineri, S.; Kawube, G.; Bertaccini, A.; Nicolaisen, M. DNA barcoding for identification of ‘Candidatus phytoplasma’ using a fragment of the Elongation factor Tu Gene. PLoS ONE 2012, 7, e52092. [Google Scholar] [CrossRef]
- Bertaccini, A.; Duduk, B.; Paltrinieri, S.; Contaldo, N. Phytoplasmas and Phytoplasma Diseases: A Severe Threat to Agriculture. Am. J. Plant Sci. 2014, 5, 1763–1788. [Google Scholar] [CrossRef]
- Marcone, C. Advances in differentiation and classification of Phytoplasmas. Ann. Appl. Biol. 2012, 160, 201–203. [Google Scholar] [CrossRef]
- Marcone, C. Molecular biology and pathogenicity of Phytoplasmas. Ann. Biol. 2014, 165, 199–221. [Google Scholar] [CrossRef]
- Marcone, C. Comparison of Different Procedures for DNA Extraction for Routine Diagnosis of Phytoplasmas. In Phytoplasmas: Methods and Protocols; Methods in Molecular Biology; Musetti, R., Pagliari, L., Eds.; Humana: Louisville, Kentucky, 2019; Volume 1875, pp. 72–81. [Google Scholar] [CrossRef]
- Liu, J.; Gopurenko, D.; Fletcher, M.J.; Johnson, A.C.; Gurr, G.M. Phytoplasmas–The “Crouching Tiger” Threat of Australian Plant Pathology. Front. Plant Sci. 2017, 8, 599. [Google Scholar] [CrossRef]
- Wambua, L.; Bernd, S.; Allan, O.; Joseph, O.W.; Olive, I.; Peninah, N.W.; Lavender, A.; Cassandra, O.; Chris, S.J.; Daniel, M.; et al. Development of field-applicable tests for rapid and sensitive detection of Candidatus Phytoplasma oryzae. Mol. Cell Probes 2017, 35, 44–56. [Google Scholar] [CrossRef]
- Arocha, Y.; Gonzalez, L.; Peralta, E.L.; Jones, P. First Report of Virus and Phytoplasma Pathogens Associated with Yellow Leaf Syndrome of Sugarcane in Cuba. Plant Dis. 1999, 83, 1177. [Google Scholar] [CrossRef]
- Aljanabi, S.M.; Parmessur, Y.; Moutia, Y.; Saumtally, S.; Dookun, A. Further evidence of the association of a Phytoplasma and a virus with yellow leaf syndrome in sugarcane. Plant Pathol. 2001, 50, 628–636. [Google Scholar] [CrossRef]
- Doi, Y.; Teranaka, M.; Yora, K.; Asuyama, H. Mycoplasma or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows, or paulownia witches’ broom. Ann. Phytopath. Soc. Jpn. 1967, 33, 259–266. [Google Scholar] [CrossRef]
- ISPM 27. Annex 12. In Phytoplasmas; IPPC, FAO: Rome, Italy, 2016; 12p. [Google Scholar]
- Weisburg, W.G.; Tully, J.G.; Rose, D.L.; Petzel, J.P.; Oyaizu, H.; Mandelco, L.; Sechrest, J.; Lawrence, T.G.; Van Etten, J. A phylogenetic analysis of the mycoplasmas:basis for their classification. J. Bacteriol. 1989, 171, 6455–6467. [Google Scholar] [CrossRef]
- Harrison, N.A.; Gundersen-Rinda, D.; Davis, R.E.; May, M.; Brown, D.R. Candidatus Phytoplasma. In Bergey’s Manual of Systematics of Archaea and Bacteria; in Association with Bergey’s Manual Trust; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Hogenhout, S.A.; Kenro, O.; EL-Desouky, A.; Shigeyuki, K.; Heather, N.K.; Shigetou, N. Phytoplasmas: Bacteria that manipulate plants and insects. Mol. Plant Pathol. 2008, 9, 403–423. [Google Scholar] [CrossRef]
- Streten, C.; Gibb, K.S. Identification of genes in the tomato big bud Phytoplasma and coparison to those in sweet potato little leaf-V4 Phytoplasma. Microbiology 2003, 149, 1797–1805. [Google Scholar] [CrossRef]
- Tran-Nguyen, L.T.; Gibb, K.S. Optimizing Phytoplasma DNA purification for genome analysis. J. Biomol. Tech. 2007, 18, 104–112. [Google Scholar]
- Bertaccini, A.; Contaldo, N.; Calari, A.; Paltrinieri, S.; Windsor, H.M.; Windsor, D. Preliminary Results of Axenic Growth of Phytoplasmas from Micropropagated Infected Periwinkle Shoots. In Proceedings of the18th Congress of the International Organization for Mycoplasmology (IOM), Chianciano, Terme, 11–16 July 2010; pp. 147–153. [Google Scholar]
- Bendix, C.; Lewis, J.D. The enemy within: Phloem-limited pathogens. Mol. Plant Pathol. 2018, 19, 238–254. [Google Scholar] [CrossRef]
- Bove, J.M.; Garnier, M. Phloem-and xylem-restricted plant pathogenic bacteria. Plant Sci. 2003, 164, 423–438. [Google Scholar] [CrossRef]
- Gasparich, G.E. Spiroplasmas and Phytoplasmas: Microbes associated with plant hosts. Biologicals 2010, 38, 193–203. [Google Scholar] [CrossRef]
- Wei, W.; Zhao, Y. Phytoplasma Taxonomy: Nomenclature, Classification, and Identification. Biology 2022, 11, 1119. [Google Scholar] [CrossRef]
- Wang, R.; Bai, B.; Li, D.; Wang, J.; Huang, W.; Wu, Y.; Zhao, L. Phytoplasma: A plant pathogen that cannot be ignored in agricultural production-Research progress and outlook. Mol. Plant Pathol. 2024, 25, e13437. [Google Scholar] [CrossRef] [PubMed]
- Kirdat, K.; Tiwarekar, B.; Sathe, S.; Yadav, A. From sequences to species: Charting the phytoplasma classification and taxonomy in the era of taxogenomics. Front. Microbiol. 2023, 14, 1123783. [Google Scholar] [CrossRef] [PubMed]
- Asudi, G.O.; Van den Berg, J.; Midega, C.A.O.; Schneider, B.; Seem¨uller, E.; Pickett, J.A.; Khan, Z.R. Detection, identification, and significance of Phytoplasmas in wild grasses in East Africa. Plant Dis. 2016, 100, 108–115. [Google Scholar] [CrossRef]
- Gurr, G.M.; Johnson, A.C.; Ash, G.J.; Wilson, B.A.L.; Ero, M.M.; Pilotti, C.A.; Dewhurst, C.F.; You, M.S. Coconut Lethal Yellowing Diseases: A Phytoplasma Threat to Palms of Global Economic and Social Significance. Front. Plant Sci. 2016, 7, 1521. [Google Scholar] [CrossRef]
- Kumari, S.; Nagendran, K.; Rai, A.B.; Singh, B.; Rao, G.P.; Bertaccini, A. Global Status of Phytoplasma Diseases in Vegetable Crops. Front. Microbiol. 2019, 10, 1349. [Google Scholar] [CrossRef]
- Abeysinghe, S.; Kanatiwela-de Silva, C.; Abeysingbe, P.D.; Udagama, P.; Warawichanee, K.; Aljafar, N.; Kawicha, P.; Dickinson, M. Refinement of the Taxonomic structure of 16SrXI and 16SrXIV Phytoplasmas of gramineous plants using multilocus sequencing typing. Plant Dis. 2016, 100, 2001–2010. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, W.; Lee, M.; Shao, J.; Suo, X.; Davis, R.E. Construction of an interactive online Phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease Phytoplasma group (16SrIII). Int. J. Syst. Evol. Microbiol. 2009, 59, 2582–2593. [Google Scholar] [CrossRef]
- Zhao, Y.; Davis, R.E. Criteria for Phytoplasma 16Sr group/subgroup delineation and the need of a platform for proper registration of new groups and subgroups. Int. J. Syst. Evol. Microbiol. 2016, 66, 2121–2123. [Google Scholar] [CrossRef]
- Muirhead, K.; Pérez-López, E.; Bahder, B.W.; Hill, J.E.; Dumonceaux, T.J. The CpnClassiPhyR Facilitates Phytoplasma Classification and Taxonomy Using cpn60 Universal Target Sequences. In Sustainable Management of Phytoplasma Diseases in Crops Grown in the Tropical Belt; Sustainability in Plant and Crop Protection; Olivier, C.Y., Pérez-López, E., Dumonceaux, T.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 12. [Google Scholar] [CrossRef]
- Danet, J.-L.; Balakishiyeva, G.; Cimerman, A.; Sauvion, N.; Marie-Jeanne, V.; Labonne, G.; Laviña, A.; Batlle, A.; Križanac, I.; Škorić, D.; et al. Multilocus sequence analysis reveals the genetic diversity of European fruit tree Phytoplasmas and supports the existence of inter-species recombination. Microbiology 2011, 157, 438–450. [Google Scholar] [CrossRef]
- Li, Y.; Piao, C.-G.; Tian, G.-Z.; Liu, Z.-X.; Guo, M.-W.; Lin, C.-L.; Wang, X.-Z. Multilocus sequences confirm the close genetic relationship of four Phytoplasmas of peanut witches’-broom group 16SrII-A. J. Basic Microbiol. 2014, 54, 818–827. [Google Scholar] [CrossRef]
- Pilet, F.; Quaicoe, R.N.; Osagie, I.J.; Freire, M.; Foissac, X. Multilocus sequence analysis reveals three distinct populations of “Candidatus Phytoplasma palmicola” with a specific geographical distribution on the African continent. Appl. Environ. Microbiol. 2019, 85, e02716–e02718. [Google Scholar] [CrossRef] [PubMed]
- Quaglino, F.; Kube, M.; Jawhari, M.; Abou-Jawdah, Y.; Siewart, C.; Choueiri, E.; Sobh, H.; Casati, P.; Tedeschi, R.; Lova, M.M.; et al. ‘Candidatus Phytoplasma phoenicium’ associated with almond witches’-broom disease: From draft genome to genetic diversity among strain populations. BMC Microbiol. 2015, 15, 148. [Google Scholar] [CrossRef] [PubMed]
- Johnson, W.H. Annual Report of the Agricultural Department of Southern Provinces Nigeria for the Year 1917; Government Publication: Ibadan, Nigeria, 1918; Volume 14. [Google Scholar]
- Harrison, N.; Davis, R.E.; Oropeza, C.; Helmick, E.; Narvaez, M.; Eden-Green, S.; Dollet, M.; Dickinson, M.; Konan Konan, J.L. ‘Candidatus Phytoplasma palmicola’, a novel taxon associated with a lethal yellowing-type disease (LYD) of coconut (Cocos nucifera L.) in Mozambique. Int. J. Syst. Evol. Microbiol. 2014, 64, 1890–1899. [Google Scholar] [CrossRef] [PubMed]
- Contaldo, N.; Bertaccini, A.; Paltrinieri, S.; Windsor, H.M.; Windsor, D.G. Axenic culture of plant pathogenic Phytoplasmas. Phytopath. Medit. 2012, 51, 607–617. [Google Scholar]
- Contaldo, N.; Satta, E.; Zambon, Y.; Paltrinieri, S.; Bertaccini, A. Development and evaluation of different complex media for Phytoplasma isolation and growth. J. Microbiol. Meth. 2016, 127, 105–110. [Google Scholar] [CrossRef]
- Contaldo, N.; D’Amicoa, G.; Paltrinieria, S.; Diallob, H.A.; Bertaccinia, A.; Arocha-Rosete, Y. Molecular and biological characterization of Phytoplasmas from coconut palms affected by the lethal yellowing disease in Africa. Microbiol. Res. 2019, 223–225, 51–57. [Google Scholar] [CrossRef]
- Trivellone, V. An online global database of Hemiptera-Phytoplasma-Plant biological interactions. Biodivers. Data J. 2019, 7, e32910. [Google Scholar] [CrossRef]
- Bertaccini, A. Phytoplasmas: Diversity, taxonomy, and epidemiology. Front. Front. Biosci. 2007, 12, 673–689. [Google Scholar] [CrossRef]
- Ermacora, P.; Osler, R. Symptoms of Phytoplasma Diseases. In Phytoplasmas: Methods and Protocols, Methods in Molecular Biology; Musetti, R., Pagliari, L., Eds.; Springer Nature: Berlin/Heidelberg, Germany, 2019; Volume 1875, pp. 53–67. [Google Scholar] [CrossRef]
- Wei, W.; Shao, J.; Zhao, Y.; Inaba, J.; Ivanauskas, A.; Bottner-Parker, K.D.; Costanzo, S.; Kim, B.M.; Flowers, K.; Escobar, J. iPhyDSDB: Phytoplasma Disease and Symptom Database. Biology 2024, 13, 657. [Google Scholar] [CrossRef]
- Pracros, P.; Renaudin, J.; Eveillard, S.; Mouras, A.; Hernould, M. Tomato flower abnormalities induced by stolbur Phytoplasma infection are associated with changes of expression of floral development genes. Mol. Plant-Microbe Interact. 2006, 19, 62–68. [Google Scholar] [CrossRef]
- Maejima, K.; Iwai, R.; Himeno, M.; Komatsu, K.; Kitazawa, Y.; Fujita, N.; Ishikawa, K.; Fukuoka, M.; Minato, N.; Yamaji, Y.; et al. Recognition of floral homeotic MADS domain transcription factors by a Phytoplasma effector, phyllogen, induces phyllody. Plant J. 2014, 78, 541–554. [Google Scholar] [CrossRef] [PubMed]
- Kruger, K.; Fiore, N. Sampling Methods for Leafhopper, Planthopper, and Psyllid Vectors. In Phytoplasmas: Methods and Protocols, Methods in Molecular Biology; Musetti, R., Pagliari, L., Eds.; Springer Nature: New York, NY, USA, 2019; Volume 1875, pp. 37–52. [Google Scholar] [CrossRef]
- Tedeschi, R.; Bertaccini, A. Transovarial Transmission in Insect Vectors. In Phytoplasmas: Plant Pathogenic Bacteria—II; Bertaccini, A., Weintraub, P.G., Rao, G.P., Mori, N., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2019; pp. 115–130. [Google Scholar]
- Alberto, A.; Lessio, F.; Nickel, H. Insects as Phytoplasma Vectors: Ecological and Epidemiological Aspects.2019. In Phytoplasmas: Plant Pathogenic Bacteria—II; Bertaccini, A., Weintraub, P.G., Rao, G.P., Mori, N., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2019; pp. 1–25. [Google Scholar] [CrossRef]
- Weintraub, P.G.; Beanland, L. Insect vectors of Phytoplasmas. Annu. Rev. Entomol. 2006, 51, 91–111. [Google Scholar] [CrossRef] [PubMed]
- Jarausch, B.; Tedeschi, R.; Sauvion, N.; Gross, J.; Jarausch, W. Psyllid Vectors: Plant Pathogenic Bacteria—II; Bertaccini, A., Weintraub, P.G., Rao, G.P., Mori, N., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2019; pp. 54–78. [Google Scholar] [CrossRef]
- Jović, J.; Riedle-Bauer, M.; Chuche, J. Vector Role of Cixiids and Other Planthopper Species. In Phytoplasmas: Plant Pathogenic Bacteria—II; Bertaccini, A., Weintraub, P.G., Rao, G.P., Mori, N., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2019; pp. 79–113. [Google Scholar] [CrossRef]
- Weintraub, P.G.; Trivellone, V.; Krüger, K. The Biology and Ecology of Leafhopper Transmission of Phytoplasmas. In Phytoplasmas: Plant Pathogenic Bacteria—II; Bertaccini, A., Weintraub, P.G., Rao, G.P., Mori, N., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2019; pp. 27–53. [Google Scholar] [CrossRef]
- Carraro, L.; Loi, N.; Ermacora, P. Transmission characteristics of the European stone fruit yellows Phytoplasma and its vector Cacopsyllapruni. Eur J. Plant Pathol 2001, 107, 695–700. [Google Scholar] [CrossRef]
- Ammar, E.; Hogenhout, S. Mollicutes associated with arthropods and plants. In Insect Symbiosis; Kostas, B., Miller, T., Eds.; CRC Press, Taylor & Francis Group, II.: Boca Raton, FL, USA, 2006; pp. 97–118. [Google Scholar]
- Kingdom, H. Insect Maintenance and Transmission. In Phytoplasma: Methods and Protocols; Methods in Molecular Biology; Dickinson, M., Hodgetts, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 938, pp. 47–59. [Google Scholar] [CrossRef]
- Bosco, D.; Tedeschi, R. Insect Vector Transmission Assays. In Phytoplasma: Methods and Protocols; Methods in Molecular Biology; Dickinson, M., Hodgetts, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 938, pp. 73–85. [Google Scholar] [CrossRef]
- Bertin, S.; Bosco, D. Molecular Identification of Phytoplasma Vector Species. In Phytoplasma: Methods and Protocols; Methods in Molecular Biology; Dickinson, M., Hodgetts, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 938, pp. 87–108. [Google Scholar] [CrossRef]
- Pagliari, L.; Chuche, J.; Bosco, D.; Thiery, D. Phytoplasma Transmission: Insect Rearing and Infection Protocols. In Phytoplasmas: Methods and Protocols; Methods in Molecular Biology; Musetti, R., Pagliari, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 1875, pp. 21–36. [Google Scholar] [CrossRef]
- Weintraub, P.; Jürgen, G. Capturing Insect Vectors of Phytoplasmas. In Phytoplasma: Methods and Protocols; Methods in Molecular Biology; Dickinson, M., Hodgetts, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 938, pp. 61–72. [Google Scholar] [CrossRef]
- Kruger, K.; Stiller, M.; Van Wyk, D.J.; de Klerk, A. Diversity of leafhopper and plantjopper species in South African vineyards. In Proceedings of the 5th European Bois Noir Workshop, Ljubljana, Slovenia, 18–19 September 2018. [Google Scholar]
- Nahdi, S.; Bouhachem, S.B.; Mahfoudhi, N.; Paltrinieri, S.; Bertaccini, A. Identification of Phytoplasmas and Auchenorryncha in Tunisian vineyards. Phytopathogenic Mollicutes 2020, 10, 25–35. [Google Scholar] [CrossRef]
- Jones, P.; Arocha, Y.; Zerfy, T.; Proud, J.; Abebe, G.; Hanson, J. A stunting syndrome of Napier grass in Ethiopia is associated with a 16SrIII group Phytoplasma. Plant Pathol. 2007, 56, 345. [Google Scholar] [CrossRef]
- Arocha, Y.; Pinol, B.; Acosta, K.; Almeida, R.; Devonshire, J.; Van de Meene, A.; Boa, E.; Lucas, J. Detection of Phytoplasma and potyvirus pathogens in papaya (Carica papaya L.) affected by Bunchy top symptom (BTS) in eastern Cuba. Crop Prot. 2009, 28, 640–646. [Google Scholar] [CrossRef]
- Obura, E.; Midega, C.A.O.; Masiga, D.; Pickett, J.A.; Hassan, M.; Koji, S.; Khan, Z.R. Recilia banda Kramer (Hemiptera: Cicadellidae), a vector of Napier stunt Phytoplasma in Kenya. Naturwissenschaften 2009, 96, 1169–1176. [Google Scholar] [CrossRef]
- Philippe, R.; Nkansah, J.; Fabre, S.; Quaicoe, R.; Pilet, F.; Dollet, M. Search for the vector of Cape Saint Paul wilt (coconut lethal yellowing) in Ghana. Bull. Insectology 2007, 60, 179–180. [Google Scholar]
- Bila, J.; Mondjana, A.; Samils, B.; Hogberg, H.; Wilson, M.R.; Santos, L. First report of ‘Candidatus Phytoplasma palmicola’ detection in the planthopper Diostrombus mkurangai in Mozambique. Bull. Insectology 2017, 70, 45–48. [Google Scholar]
- Trivellone, V.; Dietrich, C.H. Evolutionary Diversification in Insect Vector–Phytoplasma–Plant Associations. Ann. Entomol. Soc. Am. 2021, 114, 137–150. [Google Scholar] [CrossRef]
- Trivellone, V.; Wei, W.; Filippin, L.; Dietrich, C.H. Screening potential insect vectors in a museum biorepository reveals undiscovered diversity of plant pathogens in natural areas. Ecol. Evol. 2021, 11, 6493–6503. [Google Scholar] [CrossRef] [PubMed]
- Kruger, K.; De Klerk, A.; Douglas-Smit, N.; Joubert, J.; Pietersen, G.; Stiller, M. Aster yellows Phytoplasma in grapevines:identification of vectors in South Africa. Bull. Insectology 2011, 64, S137–S138. [Google Scholar]
- Pietersen, G.; Pietersen Jnr, G.; Pietersen, I.; Stiller, M. Identification of Mgenia fuscovaria (Stal) (Hemiptera: Cicadellidae), a vector of aster yellows disease on grapevines in South Africa, and differentiation from Mgenia augusta (Theron) by nucleotide sequences of the mitochondrial cytochrome oxidase 1 (cox1) gene. S. Afr. J. Enol. Vitic 2018, 39, 1–4. [Google Scholar] [CrossRef]
- Amr, M.; Kheder, A.; Ahmed, G.; El-Habbaa Mahdy, A. Identification and molecular characterization of Phytoplasma associated carrot plant (Daucus carota L.) in Qalyubia Governorate, Egypt. Ann. Agric. Sci. Moshtohor 2024, 62, 21–36. [Google Scholar] [CrossRef]
- Marcone, C.; Hergenhahn, F.; Ragozzino, A.; Seemuller, E. Dodder transmission of pear decline, European stone fruit yellows, rubus stunt, Picris echioides yellows and cotton phyllody Phytoplasmas to periwinkle. J. Phytopathol. 1999, 147, 187–192. [Google Scholar] [CrossRef]
- Pribylova, J.; Spak, J. Dodder transmission of Phytoplasmas. In Phytoplasma: Methods and Protocols; Dickinson, M., Hodgetts, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 938, pp. 41–46. [Google Scholar] [CrossRef]
- Caglayan, K.; Choueiri, E.; Rao, G.P. Graft and vegetative transmission of Phytoplasma-associated diseases in Asia and their management. In Phytoplasma Diseases in Asian Countries, Characterization, Epidemiology, and Management; Tiwari, A.K., Oshima, K., Yadav, A., Esmaeilzadeh-Hosseini, S.A., Hanboonsong, Y., Lakhanpaul, S., Eds.; Academic Press: Cambridge, MA, USA, 2023; Volume 3, pp. 21–36. [Google Scholar] [CrossRef]
- Chang, H.C.; Chen, J.C. An efficient grafting method for Phytoplasma transmission in Catharanthus roseus. Plant Methods 2024, 20, 13. [Google Scholar] [CrossRef]
- Satta, E.; Paltrinieri, S.; Bertaccini, A. Phytoplasma transmission by seed. In Phytoplasmas: Plant Pathogenic Bacteria-II. Transmission and Management of Phytoplasma Associated Diseases; Bertaccini, A., Weintraub, P.G., Rao, G.P., Eds.; Springer: Singapore, 2019; Chapter 6; pp. 131–147. [Google Scholar]
- Khan, A.J.; Botti, S.; Paltrinieri, S.; Al-Subhi, A.M.; Bertaccini, A.F. Phytoplasmas in alfalfa seedlings: Infected or contaminated seeds? In Proceedings of the Abstracts, 14th International Organization of Mycoplasmology Conference, Vienna, Austria, 7–12 July 2002; p. 148. [Google Scholar]
- Cordova, I.; Jones, P.; Harrison, N.A.; Oropeza, C. In situ PCR detection of Phytoplasma DNA in embryos from coconut palms with lethal yellowing disease. Mol. Plant Pathol. 2003, 4, 99–108. [Google Scholar] [CrossRef]
- Zwolińska, A.; Krawczyk, K.; Pospieszny, H. First report of “stolbur” Phytoplasma infecting pea plants. In Proceedings of the 18th Congress of the International Organization for Mycoplasmology (IOM), Chianciano Terme, Italy, 11–16 July 2010; Volume 11, p. 16. [Google Scholar]
- Contaldo, N.; Bertaccini, A. Phytoplasma Cultivation. In Phytoplasmas: Plant Pathogenic Bacteria—III; Bertaccini, A., Kube, M., Oshima, K., Rao, G.P., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2019; pp. 89–103. [Google Scholar] [CrossRef]
- Botti, S.; Bertaccini, A. Phytoplasma infection through seed transmission: Further observations. In Proceedings of the Abstracts, 16th International Organization of Mycoplasmology Conference, Cambridge, UK, 9–14 July 2006; p. 76. [Google Scholar]
- Calari, A.; Paltrinieri, S.; Contaldo, N.; Sakalieva, D.; Mori, N.; Duduk, B.; Bertaccini, A. Molecular evidence of Phytoplasmas in winter oilseed rape, tomato and corn seedlings. Bull. Insectology 2011, 64, S157–S158. [Google Scholar]
- Hanboonsong, Y.; Choosai, C.; Panyim, S.; Damak, S. Transovarial transmission of sugarcane white leaf Phytoplasma in the insect vector Matsumuratettix hiroglyphicus (Matsumara). Insect Mol. Biol. 2002, 11, 97–103. [Google Scholar] [CrossRef]
- Tedeschi, R.; Ferrato, V.; Rossi, J.; Alma, A. Possible Phytoplasma transovarial transmission in the psyllids Cacopsylla melanoneura and Cacopsylla pruni. Plant Pathol. 2006, 55, 18–24. [Google Scholar] [CrossRef]
- Musetti, R.; Pagliari, L. (Eds.) Phytoplasmas: Methods and Protocols, Methods in Molecular Biology; Springer: Berlin/Heidelberg, Germany, 2019; Volume 1875. [Google Scholar] [CrossRef]
- Pusz-Bochenska, K.; Perez-lopez, E.; Dumonceaux, T.J.; Olivier, C.; Wist, T.J. A rapid, simple, laboratory and field adaptable DNA extraction and Diagnosis method suitable for insect transmitted plant pathogens and insect identification. Plant Health Progress 2020, 21, 63–68. [Google Scholar] [CrossRef]
- Ustun, N.; Zamharir, M.G.; Al-Sadi, A.M. Updates on Phytoplasma diseases management. In Phytoplasma Diseases in Asian Countries, Characterization, Epidemiology, and Management; Tiwari, A.K., Oshima, K., Yadav, A., Esmaeilzadeh-Hosseini, S.A., Hanboonsong, Y., Lakhanpaul, S., Eds.; Academic Press: Cambridge, MA, USA, 2023; Volume 3, pp. 97–123. [Google Scholar] [CrossRef]
- Chiykowski, L.N.; Sinha, R.C. Differentiation of MLO disease by means of symptomatology and vector transmission. Zentralblatt Für Bakteriol. Parasitenkd. Infekt. Und Hyg Suppl. 1989, 20, 280–287. [Google Scholar]
- Errampalli, D.; Fletcher, J.; Claypool, P.L. Incidence of yellows in carrot and lettuce and characterization of mycoplasmalike organism isolates in Oklahoma. Plant Dis. 1991, 75, 579–584. [Google Scholar] [CrossRef]
- Cai, W.; Shao, J.; Zhao, Y.; Davis, R.E.; Stefano, C. Draft genom Sequence of ‘Candidatus Phytoplasma pini’-related strain MDPP: A resource for comparative Genomics of Gymnosperm-infecting. Plant Dis. 2020, 104, 1009–1010. [Google Scholar] [CrossRef]
- Obura, E.; Masiga, D.; Wachira, F.; Gurja, B.; Khan, Z.R. Detection of Phytoplasma by loop-mediated isothermal amplification of DNA (LAMP). J. Microbiol. Methods 2011, 84, 312–316. [Google Scholar] [CrossRef]
- Tomlinson, J.A.; Boonham, N.; Dickinson, M. Development and evaluation of a one-hour DNA extraction and loop-mediated isothermal amplification assay for rapid detection of Phytoplasmas. Plant Pathol. 2010, 59, 465–471. [Google Scholar] [CrossRef]
- Bekele, B.; Hodgetts, J.; Tomlinson, J.; Boonham, N.; Nikolić, P.; Swarbrick, P.J.; Dickinson, M.J. Use of a real-time LAMP isothermal assay for detecting 16SrII and XII Phytoplasmas in fruit and weeds of the Ethiopian Rift Valley. Plant Pathol. 2011, 60, 345–355. [Google Scholar] [CrossRef]
- Hodgetts, J.; Tomlinson, J.; Boonham, N.; González-Martín, I.; Nikolić, P. Development of rapid in-field loop-mediated isothermal amplification (LAMP) assays for Phytoplasmas. Bull. Insectol. 2011, 64, S41–S42. [Google Scholar]
- Bertaccini, A.; Fiore, N.; Zamorano, A.; Tiwari, A.K.; Rao, G.P. Molecular and Serological Approaches in Detection of Phytoplasmas in Plants and Insects. In Phytoplasmas: Plant Pathogenic Bacteria—III; Bertaccini, A., Kube, M., Oshima, K., Rao, G.P., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2019; pp. 105–136. [Google Scholar] [CrossRef]
- Yankey, E.N.; Swarbrick, P.; Dickinson, M.; Tomlinson, J.; Boonham, N.; Nipah, J.O.; Quaicoe, R.N. Improving molecular diagnostics for the detection of lethal disease phytoplasma of coconut in Ghana. Bull. Insectol. 2011, 64, S47–S48. [Google Scholar]
- Alič, Š.; Dermastia, M.; Burger, J.; Dickinson, M.; Pietersen, G.; Pietersen, G.; Dreo, T. Genome-Informed Design of a LAMP Assay for the Specific Detection of the Strain of ‘Candidatus Phytoplasma asteris’ Phytoplasma Occurring in Grapevines in South Africa. Plant Dis. 2022, 106, 2927–2939. [Google Scholar] [CrossRef]
- Minguzzi, S.; Terlizzi, F.; Lanzoni, C.; Poggi Pollini, C.; Ratti, C. A Rapid Protocol of Crude RNA/DNA Extraction for RT-qPCR Detection and Quantification of ‘Candidatus Phytoplasma prunorum’. PLoS ONE 2016, 11, e0146515. [Google Scholar] [CrossRef] [PubMed]
- Hodgetts, J.; Boonham, N.; Mumford, R.; Harrison, N.; Dickinson, M. Phytoplasma phylogenetics based on analysis of the secA and 23S rRNA gene sequences for improved resolution of the ‘Candidatus Phyto plasma’ species. Int. J. Syst. Evol. Microbiol. 2008, 58, 1826–1837. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.-M.; Zhao, Y.; Bottner, K.D. SecY Gene Sequence Anaylysis for finer differentiation of diverse strains in the Aster Yellows Phytoplasma group. Mol. Cell Probes 2006, 20, 87–91. [Google Scholar] [CrossRef]
- Dickinson, M.; Hodgetts, J. PCR Analysis of Phytoplasmas Based on the secA Gene. In Phytoplasma. Methods in Molecular Biology; Dickinson, M., Hodgetts, J., Eds.; Humana Press: Totowa, NJ, USA, 2013; Volume 938. [Google Scholar] [CrossRef]
- Wei, W.; Lee, I.M.; Davis, R.E.; Suo, X.; Zhao, Y. Automated RFLP pattern comparison and similarity coefficient calculation for rapid delineation of new and distinct Phytoplasma 16Sr subgroup lineages. Int. J. Syst. Evol. Microbiol. 2008, 58, 2368–2377. [Google Scholar] [CrossRef]
- Deng, S.J.; Hiruki, C. Amplification of 16S rRNA from culturable and non-culturable mollicutes. J. Microbiol. Method 1991, 14, 53–61. [Google Scholar] [CrossRef]
- Kirkpatrick, B.C.; Smart, C.D.; Gardner, S.L.; Gao, J.-L.; Ahrens, U.; Maurer, R.; Schneider, B.; Lorenz, K.-H.; Seemuller, E.; Harrison, N.A.; et al. Phylogenetic relationships of plant pathogenic MLOs established by 16/23S rDNA spacer sequences. IOM Lett 1994, 3, 228–229. [Google Scholar]
- Smart, C.D.; Schneider, B.; Blomquist, C.L.; Guerra, L.J.; Harrison, N.A.; Ahrens, U.; Lorenz, K.H.; Seemüller, E.; Kirkpatrick, B.C. Phytoplasma-specific PCR primers based on sequences of the 16S-23S rRNA spacer region. Appl. Environ. Microbiol. 1996, 62, 2988–2993. [Google Scholar] [CrossRef]
- Gundersen, D.E.; Lee, I.-M. Ultrasensitive detection of Phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathol. Mediterr. 1996, 35, 144–151. [Google Scholar]
- Lee, I.-M.; Hammod, R.; Davis, R.; Gundersen-Rindal, D.E. Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasmalike organisms. Phytopathology 1993, 83, 834–842. [Google Scholar] [CrossRef]
- Tymon, A.M.; Jones, P.; Harrison, N.A. Detection and differentiation of African coconut phytoplasamas: RFLP analysis of PCR-amplified 16S rDNA and DNA hybridization. Ann. Appl. Biol. 1997, 131, 91–102. [Google Scholar] [CrossRef]
- Rohde, W.; Kullaya, A.; Mpunami, A.A.; Becker, D. Rapid and sensitive diagnosis of mycoplasmalike organisms associated with lethal disease of coconut palm by a specifically primed polymerase chain reaction for the amplification of 16S rDNA. Oleagineux 1993, 48, 319–322. [Google Scholar]
- Lee, I.-M.; Gundersen-Rindal, D.E.; Davis, R.E.; Bartoszyk, I.M. Revised classification scheme of Phytoplasma based on RFLP analysis of 16S rRNA and ribosomal protein gene sequences. Int. J. Syst. Bacteriol. 1998, 48, 1153–1169. [Google Scholar] [CrossRef]
- Wei, W.; Davis, R.E.; Lee, I.-M.; Zhao, Y. Computer-simulated RFLP analysis of 16S rRNA genes: Identification of ten new Phytoplasma groups. Int. J. Syst. Evol. Microbiol. 2007, 57, 1855–1867. [Google Scholar] [CrossRef] [PubMed]
- Naderali, N.; Nejat, N.; Vadamalai, G.; Davis, R.E.; Wei, W.; Harrison, N.A.; Kong, L.; Kadir, J.; Tan, Y.-H.; Zhao, Y. ‘Candidatus Phytoplasma wodyetiae’, a new taxon associated with yellow decline disease of foxtail palm (Wodyetiabifurcata) in Malaysia. Int. J. Syst. Evol. Microbiol. 2017, 67, 3765–3772. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, W.; Davis, R.E.; Lee, I.M.; Bottner-Parker, K.D. The agent associated with blue dwarf disease in wheat represents a new Phytoplasma taxon, ‘Candidatus Phytoplasma tritici’. Int. J. Syst. Evol. Microbiol. 2021, 71, ijsem004604. [Google Scholar] [CrossRef]
- Bertaccini, A.; Arocha-Rosete, Y.; Contaldo, N.; Duduk, B.; Fiore, N.; Montano, H.G.; Kube, M.; Kuo, C.H.; Martini, M.; Oshima, K.; et al. Revision of the ‘Candidatus Phytoplasma’species description guidelines. Int. J. Syst. Evol. Microbiol. 2022, 72, 005353. [Google Scholar] [CrossRef]
- Martini, M.; Lee, I.M.; Bottner, K.D.; Zhao, Y.; Botti, S.; Bertaccini, A.; Harrison, N.A.; Carraro, L.; Marcone, C.; Khan, A.J.; et al. Ribosomal protein gene-based phylogeny for finer differentiation and classification of Phytoplasmas. Int. J. Syst. Evol. Microbiol. 2007, 57, 2037–2051. [Google Scholar] [CrossRef]
- Pérez-López, E.; Luna-Rodríguez, M.; Olivier, C.Y.; Dumonceaux, T.J. The underestimated diversity of Phytoplasmas in Latin America. Int. J. Syst. Evol. Microbiol. 2016, 66, 492–513. [Google Scholar] [CrossRef]
- Cho, S.T.; Zwolińska, A.; Huang, W.; Wouters, R.H.M.; Mugford, S.T.; Hogenhout, S.A.; Kuo, C.H. Complete Genome Sequence of “Candidatus Phytoplasma asteris” RP166, a Plant Pathogen Associated with Rapeseed Phyllody Disease in Poland. Microbiol. Resour. Announc. 2020, 9, e00760-20. [Google Scholar] [CrossRef]
- Hugenholtz, P.; Chuvochina, M.; Oren, A.; Parks, D.H.; Soo, R.M. Prokaryotic taxonomy and nomenclature in the age of big sequence data. ISME J. 2021, 15, 1879–1892. [Google Scholar] [CrossRef]
- Schneider, B.; Gibb, K.S.; Seemüller, E. Sequence and RFLP Analysis of the Elongation Factor Tu Gene Used in Differentiation and Classification of Phytoplasmas. Microbiology 1997, 143, 3381–3389. [Google Scholar] [CrossRef] [PubMed]
- Hodgetts, J.; Dickson, M. T-RFLP for detection and identification of Phytoplasmas in plants. Methods Mol. Biol. 2012, 938, 233–244. [Google Scholar]
- Martini, M.; Bottner-Parker, K.D.; Lee, I.-M. PCR-Based Sequence Analysis on Multiple Genes Other than 16S rRNA Gene for Differentiation of Phytoplasmas. In Phytoplasmas: Methods and Protocols; Methods in Molecular Biology; Musetti, R., Pagliari, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 1875, pp. 97–115. [Google Scholar] [CrossRef]
- Zambon, Y.; Contaldo, N.; Richards, R.S.; Bertaccini, A.; Burger, J. Multigene characterization of aster yellows Phytoplasmas infecting grapevine in South Africa. Phytopathogenic Mollicutes 2015, 5, S21–S22. [Google Scholar] [CrossRef]
- M’hirsi, S.; Acheche, H.; Fattouch, S.; Boccardo, G.; Marrackchi, M.; Marzouki, N. First report of Phytoplasmas in the aster yellows group infecting grapevine in Tunisia. Plant Pathol. 2004, 53, 521. [Google Scholar] [CrossRef]
- IPPC. Pest Reports from South Africa on Aster Yellows Phytoplasma on Grapevine. 2008. Available online: https://www.ippc.int (accessed on 11 September 2024).
- Engelbrecht, M.; Joubert, J.; Burger, J.T. First report of aster yellows Phytoplasma in grapevines in South Africa. Plant Dis. 2010, 94, 373. [Google Scholar] [CrossRef]
- Coetzee, B.; Douglas-Smit, N.; Maree, H.J.; Burger, J.T.; Krüger, K.; Pietersen, G. Draft genome sequence of a “Candidatus Phytoplasma asteris”-related strain (aster yellows, subgroup 16SrI-B) from South Africa. Microbiol Resour. Announc. 2019, 8, e00148-19. [Google Scholar] [CrossRef]
- Cousin, M.T.; Maillet, P.L.; Gourret, J.P. La virescence du cotonnier (Gossypium hirsutum L.) nouvelle maladie à mycoplasmes. CompteRendues Académie Des Sci. Paris Série D 1969, 268, 2382–2384. [Google Scholar]
- Laboucheix, J.; van Offeren, A.; Desmidts, M. Etude de la transmission par Orosiuscellulosus (Lindberg) (Homoptera, Cicadellidae) de la virescence florale du cotonnier et de Sida sp. Coton Fibres Tropicaux 1973, 28, 461–471. [Google Scholar]
- Delattre, R.; Joly, A. Résultats des enquêtes sur la virescence florale du cotonniereffectuéesen Haute-Volta de 1970 à 1978. Coton Fibres Trop. 1981, 36, 167–185. [Google Scholar]
- Marzachì, C.; Coulibaly, A.; Coulibaly, N.; Sangaré, A.; Diarra, M.; De Gregorio, T.; Bosco, D. Cotton virescence Phytoplasma and its weed reservoir in mali. J. Plant Pathol. 2009, 91, 717–721. [Google Scholar]
- El-Banna, O.H.M.; Mikhail, M.S.; Farag, A.G.; Mohammed, A.M.S. Detection of Phytoplasma in tomato and pepper plants by electron microscopy and molecular biology-based methods. Egypt J. Virol. 2007, 4, 93–111. [Google Scholar]
- Omar, A.F.; Fossiac, X. Occurrence and incidene of Phytoplasmas of the 16SrII-D subgroup on solananceous and curcurbit crops in Egypt. Eur. J. Plant Pathol. 2012, 133, 353–360. [Google Scholar] [CrossRef]
- El-Sisi, Y.; Omar, A.F.; Sidaros, S.A.; Elsharkawy, M.M. Characterization of 16SrII-D subgroup associated Phytoplasmas in new host plants in Egypt. Arch. Phytopathol. Plant Prot. 2017, 50, 504–513. [Google Scholar] [CrossRef]
- Kumar, L.P.; Sharma, K.; Boahen, S.; Tefera, H.; Tamò, M. First Report of Soybean Witches’-Broom Disease Caused by Group 16SrII Phytoplasma in Soybean in Malawi and Mozambique. Plant Dis. 2011, 95, 492. [Google Scholar] [CrossRef] [PubMed]
- Murithi, H.; Owati, A.; Madata, C.S.; Joosten, M.; Beed, F.; Kumar, L.P. First report of 16SrII-C subgroup Phytoplasma causing phyllody and witches’-broom disease in Soybean in Tanzania: Disease notes. Plant Disease 2015, 99, 886. [Google Scholar] [CrossRef]
- Alfaro-Fernández, A.; Ali, M.A.; Abdelraheem, F.M.; Saeed, E.A.E.; Font- San-Ambrosio, M.I. Molecular identification of 16SrII-D subgroup Phytoplasmas associated with chickpea and faba bean in Sudan. Eur. J. Plant Pathol. 2012, 133, 791–795. [Google Scholar] [CrossRef]
- Dafalla, G.A.; Cousin, M.T. Cousin. Natural occurrence of virescence disease on Catharanthus roseus and Zinna elegans in the Gezira, Sudan. J. Plant Dis. Prot. 1988, 95, 414–418. [Google Scholar]
- Omar, A.F.; Emeran, A.A.; Abass, J.M. Detection of perinwinkle virescence in Egypt. Plant Pathol. J. 2008, 7, 92–97. [Google Scholar] [CrossRef]
- Gad, S.M.; Kheder, A.A.; Awad, M.A. Detection and Molecular identification of Phytoplasma associated with Gazania in Egypt. J. Virol. Sci. 2019, 6, 12–23. [Google Scholar]
- Lukuyu, B.; Ngunga, D.; Bekunda, M. Improved Napier Grass Varieties for Smallholder Farmers in East Africa; ILRI: Nairobi, Kenya, 2021. [Google Scholar]
- Midega, C.A.O.; Pittchar, J.O.; Pickett, J.A.; Hailu, G.W.; Khan, Z.R. A climate-adapted push-pull system effectively controls fall armyworm, Spodoptera frugiperda (J.E. Smith) in maize in East Africa. Crop Prot. 2018, 105, 10–15. [Google Scholar] [CrossRef]
- Scheidegger, L.; Niassy, S.; Midega, C.; Chiriboga, X.; Delabays, N.; Lefort, F.; Zurcher, R.; Hailu, G.; Khan, Z.; Subramanian, S. The role of Desmodium intortum, Brachiaria sp. and Phaseolus vulgaris in the management of fall armyworm Spodoptera frugiperda (J.E. Smith) in maize cropping system in Africa. Pest Manag. Sci. 2021, 77, 2350–2357. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.C.; Luo, P.Q.; Sung, C.L.; Li, Y.; Hu, F.Y.; Wang, C.L.; Chen, Y.N.; Hsu, J.H.; Liao, C.E.; Chang, S.R.; et al. Evaluating local plant species for effective fall armyworm management strategies in Taiwan. Bot. Stud. 2024, 65, 18. [Google Scholar] [CrossRef] [PubMed]
- Asudi, G.O.; Muyekho, F.N.; Midega, C.A.O.; Khan, Z.R. Integrated Management of Napier Grass Stunt Disease in East Africa. In Sustainable Management of Phytoplasma Diseases in Crops Grown in the Tropical Belt; Sustainability in Plant and Crop Protection; Springer: Berlin/Heidelberg, Germany, 2019; Volume 12. [Google Scholar] [CrossRef]
- Jones, P.; Devonshire, B.J.; Holman, T.J.; Ajanga, S. Napier grass stunt: A new disease associated with a 16SrXI group Phytoplasma in Kenya. Plant Pathol. 2004, 53, 519. [Google Scholar] [CrossRef]
- Nielsen, S.L.; Ebong, C.; Kabirizi, J.; Nicolaisen, M. First report of a 16SrXI group Phytoplasma (Candidatus Phytoplasma oryzae) associated with Napier grass stunt disease in Uganda. Plant Pathol. 2007, 56, 1039. [Google Scholar] [CrossRef]
- Asudi, G.O. The dynamics of Napier grass stunt Phytoplasma in East Africa. Endocytobiosis Cell Res. 2018, 29, 13–17. [Google Scholar]
- Fischer, A.; Santana-Cruz, I.; Wambua, L.; Olds, C.; Midega, C.; Dickinson, M.; Kawicha, P.; Khan, Z.; Masiga, D.; Jores, J.; et al. Draft genome sequence of “Candidatus Phytoplasma oryzae” strain Mbita1, the causative agent of Napier grass stunt disease in Kenya. Genome Announc. 2016, 4, e00297-16. [Google Scholar] [CrossRef]
- Asudi, G.O.; Omenge, K.M.; Paulmann, M.K.; Reichelt, M.; Grabe, V.; Mithöfer, A.; Oelmüller, R.; Furch, A.C.U. The Physiological and Biochemical Effects on Napier Grass Plants Following Napier Grass Stunt Phytoplasma Infection. Phytopathology 2021, 111, 703–712. [Google Scholar] [CrossRef]
- Kabirizi, J.; Nielsen, S.L.; Nicolaisen, M.; Byenkya, S.; Alicai, T. Napier stunt disease in Uganda: Farmers’ perceptions and impact on fodder production. Afr. Crop Sci. Conf. Proc. 2007, 8, 895–897. [Google Scholar]
- Asudi, G.O.; Van den Berg, J.; Midega, C.A.O.; Pickett, J.A.; Khan, Z.R. The significance of Napier grass stunt Phytoplasma and its transmission to cereals and sugarcane. J. Phytopathol. 2016, 164, 378–385. [Google Scholar] [CrossRef]
- Kawube, G.; Talwana, H.; Nicolaisen, M.; Alicai, T.; Otim, M.; Kabirizi, J.; Mukwaya, A.; Nielsen, S.L. Napier grass stunt disease prevalence, incidence, severity and genetic variability of the associated Phytoplasma in Uganda. Crop Prot. 2015, 75, 63–69. [Google Scholar] [CrossRef]
- Ricaud, C. Yellow wilt of sugarcane in eastern Africa. Sugarcane Pathol. Newsl. 1968, 1, 45–49. [Google Scholar]
- Cronje, C.P.R.; Tymon, A.M.; Jones, P.; Bailey, R.A. Association of a Phytoplasma with a yellow leaf syndrome of sugarcane in Africa. Ann. Appl. Biol. 1998, 133, 177–186. [Google Scholar] [CrossRef]
- El Sayed, A.I.; Soufi, Z.; Wahdan, K.M.; Komor, E. Detection and characterization of Phytoplasma and sugarcane yellow leaf virus associated with leaf yellowing of sugarcane. J. Phytopathol. 2015, 164, 4217–4225. [Google Scholar] [CrossRef]
- Scagliusi, S.M.; Lockhart, B.E.L. Transmission, characterization and serology of a luteovirus associated with yellow leaf syndrome of sugarcane. Phytopathology 2000, 90, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Marcone, C. Phytoplasma diseases of sugarcane. Sugar Tech. 2022, 4, 79–85. [Google Scholar] [CrossRef]
- Rutherford, R.S.; Brune, A.E.; Nuss, K.J. Current status of research on sugarcane yellow leaf syndrome in Southern Africa. Proc S Afr. Sug. Technol. 2004, 78, 173–180. [Google Scholar]
- Rott, P.; Comstock, J.C.; Croft, B.J.; Kusalwong, A.; Saumtally, S.A. Advances and Challenges in sugarcane pathology. Proc. Inten. Soc. Sugar Cane Technol. Congr. 2005, 25, 607–614. [Google Scholar]
- Rogers, P.F. Proceedings of the Special Meeting on the Yellow Wilt Condition of Sugarcane, 25–26 June 1969, Nairobi, Kenya, East Africa. East Africa Specialist Committee on Sugarcane Research. 47p. Available online: www.cabidigitallibrary.org/doi/full/10.5555/19701102985 (accessed on 21 September 2024).
- Arocha, Y.; López, M.; Fernández, M.; Piñol, B.; Horta, D.; Peralta, E.L.; Almeida, R.; Carvajal, O.; Picornell, S.; Wilson, M.R.; et al. Transmission of a sugarcane yellow leaf phytoplasma by the delphacid planthopper Saccharosydne saccharivora, a new vector of sugarcane yellow leaf syndrome. Plant Pathol. 2005, 54, 634–642. [Google Scholar] [CrossRef]
- Abdelmajid, N.; Mohamed, A.; Cronje, P.; Jones, P. First Report of Yellow Leaf Syndrome of Sugarcane in Morocco. Plant Dis. 1999, 83, 398. [Google Scholar] [CrossRef]
- Lockhart, B.E.L.; Cronjé, P.R. Yellow leaf syndrome. In Guide to Sugarcane Diseases; Rott, P., Bailey, R.A., Croft, B.J., Comstock, J.C., Saumtally, A.S., Eds.; CIRAD: Paris, France, 2000; pp. 291–295. [Google Scholar]
- El Sayed, A.I.; Boulila, M. Molecular Identification and phylogenetic analysis of sugarcane yellow leaf Phytoplasma (SCYLP) in Egypt. J. Phytopathol. 2014, 162, 89–97. [Google Scholar] [CrossRef]
- Nithya, K.; Kirdat, K.; Parameswari, B.; Tiwarekar, B.; Tiwari, A.K.; Rao, G.P.; Nikpay, A.; Hoat, T.X.; Viswanathan, R.; Yadav, A. Updates on Phytoplasma diseases associated with sugarcane in Asia. In Phytoplasma Diseases in Asian Countries, Characterization, Epidemiology, and Management; Tiwari, A.K., Oshima, K., Yadav, A., Esmaeilzadeh-Hosseini, S.A., Hanboonsong, Y., Lakhanpaul, S., Eds.; Academic Press: Cambridge, MA, USA, 2023; Volume 2, pp. 215–232. [Google Scholar] [CrossRef]
- Nithya, K.; Parameswari, B.; Viswanathan, R. Mixed infection of sugarcane yellow leaf virus and grassy shoot Phytoplasma in yellow leaf affected Indian sugarcane cultivars. Plant Pathol. J. 2020, 36, 364. [Google Scholar] [CrossRef] [PubMed]
- Kirdat, K.; Tiwarekar, B.; Thorat, V.; Narawade, N.; Dhotre, D.; Sathe, S.; Shouche, Y.; Yadav, A. Draft genome sequences of two Phytoplasma strains associated with sugarcane grassy shoot (SCGS) and Bermuda grass white leaf (BGWL) diseases. Mol. Plant-Microbe Interact 2020, 33, 715–717. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, R. Grassy shoot. In A Guide to Sugarcane Diseases; Rott, P., Bailey, R.A., Comstock, J.C., Croft, B.J., Saumtally, A.S., Eds.; Centre de Cooperation International en Recherche Agronomique Pour le Development (CIRAD) and International Society of Sugar Cane Technologists (ISSCT) Montpellier: Versailles, France, 2000; pp. 215–220. [Google Scholar]
- Ekpo, E.N.; Ojomo, E.E. The spread of lethal coconut diseases in West Africa: Incidence of akwa disease or bronze leaf wilt in the Ishan area of Bendel State of Nigeria. Principes 1990, 34, 143–146. [Google Scholar]
- Mpunami, A.; Tymon, A.; Jones, P.; Dickinson, M.J. Genetic diversity in the coconut lethal yellowing disease Phytoplasmas of East Africa. Plant Pathol. 1999, 48, 109–114. [Google Scholar] [CrossRef]
- Dollet, M.; Quaicoe, R.; Pillet, F. Review of coconut “lethal yellowing” type diseases. Diversity, variability and diagnosis. Oléagineux Corps Gras Lipides 2009, 16, 97–101. [Google Scholar] [CrossRef]
- Eziashi, E.; Omamor, I. Lethal yellowing disease of the coconut palms (Cocos nucifera L.): An Overwiew of the crises. Afr. J. Biotechnol. 2010, 9, 9122–9127. [Google Scholar]
- Eden-Green, S.J. History, distribution and research on coconut lethal yellowing-like diseases of palms. In Proceedings of the International Workshop on Lethal Yellowing-like Diseases of Coconut, Elmina, Ghana; Eden-Green, S.J., Ofori, F., Eds.; NRI: Chatham, UK, 1997; pp. 9–25. [Google Scholar]
- Konan Konan, J.L.; Allou, K.; Atta Diallo, H.; Yao, S.D.; Koua, B.; Kouassi, N.; Benabid, R.; Michelutti, R.; Scott, J.A.; Arocha-Rosete, Y. First report on the molecular identification of the Phytoplasma associated with a lethal yellowing-type disease of coconut palms in Cote d’Ivoire. New Dis. Rep. 2013, 28, 3. [Google Scholar] [CrossRef]
- Osagie, I.J.; Ojomo, E.E.; Pilet, F. Occurrence of Awka wilt disease of coconut in Nigeria for one century. Phytopathogenic Mollicutes 2015, 5, S61–S62. [Google Scholar] [CrossRef]
- Ofori, F.; Nkansah-Poku, J. Cape Saint Paul wilt disease of coconut in Ghana: History of its occurrence and spread. In Proceedings of an International Workshop on Lethal Yellowing-like Diseases of Coconut, Elmina, Ghana, November 1995; Eden-Green, S.J., Ofori, F., Eds.; NRI: Chatham, UK, 1997; pp. 27–32. [Google Scholar]
- Dabek, A.J.; Johnson, C.G.; Harries, H.C. Mycoplasma-like organisms associated with Kaincope and Cape St. Paul wilt diseases of coconut palms in West Africa. Pest Artic. News Summ. 1976, 22, 354–358. [Google Scholar] [CrossRef]
- Dollet, M.; Gianotti, J.; Renard, J.-L.; Ghosh, S.K. Study of a lethal yellowing of coconut trees in Cameroon: Kribi disease. Observations of mycoplasma-type organisms. Oleagieux 1977, 32, 317–322. [Google Scholar]
- Bila, J.; Mondjana, A.; Samils, B.; Hogberg, N. High diversity, expanding populations and purifying selection in Phytoplasmas causing coconut lethal yellowing in Mozambique. Plant Pathol. 2015, 64, 597–604. [Google Scholar] [CrossRef]
- Cordova, I.; Oropeza, C.; Puch-Hau, C.; Harrison, N.; Colli-Rodriguez, A.; Narvaez, M.; Nic-Matos, G.; Reyes, C.; Saenz, L. A real-time PCR assay for detection of coconut lethal yellowing Phytoplasmas of group 16S IV subgroups A, D and E found in the Americas. J. Plant Pathol. 2014, 96, 343–352. [Google Scholar]
- Bila, J.; Hogberg, N.; Mondjana, A.; Samils, B. African fan palm (Borassus aethiopum) and Oil palm (Elaeis guineensis) are alternate host of coconut lethal yellowing Phytoplasma in Mozambique. Afr. J. Biotechnol. 2015, 14, 3359–3367. [Google Scholar]
- Danyo, G. Review of scientific research into the Cape Saint Paul wilt disease of coconut in Ghana. Afr. J. Agric. Res. 2011, 6, 4567–4578. [Google Scholar] [CrossRef]
- Nipah, J.O.; Jones, P.; Dickinson, M.J. Detection of lethal yellowing Phytoplasma in embryos from coconut palms infected with cape St Paul wilt disease in Ghana. Plant Pathol. 2007, 56, 777–784. [Google Scholar] [CrossRef]
- Oropeza, C.; Cordova, I.; Puch-Hau, C.; Castillo, R.; Chan, J.; Sáenz, L. Detection of lethal yellowing Phytoplasma in coconut plantlets obtained through in vitro germination of zygotic embryos from the seeds of infected palms. Ann. Appl. Biol. 2017, 171, 28–36. [Google Scholar] [CrossRef]
- Mpunami, A.; Tymon, A.; Jones, P.; Dickinson, M.J. Identification of potential vectors of the coconut lethal disease Phytoplasma. Plant Pathol. 2000, 49, 355–361. [Google Scholar] [CrossRef]
- Kwadjo, K.E.; Beugré, N’.D.I.; Dietrich, C.H.; Kodjo, A.T.T.; Diallo, H.A.; Yankey, N.; Dery, S.; Wilson, M.; Konan Konan, J.L.; Contaldo, N.; et al. Identification of Nedotepa curta Dmitriev as a potential vector of the Côte d’Ivoire lethal yellowing Phytoplasma in coconut palms sole or in mixed infection with a ‘Candidatus Phytoplasma asteris’-related strain. Crop Prot. 2018, 110, 48–56. [Google Scholar] [CrossRef]
- Bila, J. Coconut Lethal Yellowing Phytoplasma Disease in Mozambique. Doctoral Thesis, Swedish University of Agricural Sciences, Uppsal, Sweden, 2016. [Google Scholar]
- Kra, K.D.; Toualy, Y.M.N.; Kouamé, A.C.; Diallo, H.A.; Arocha-Rosete, Y. First report of a Phytoplasma affecting cassava orchards in Cote d’Ivoire. New Dis. Rep. 2017, 35, 21. [Google Scholar] [CrossRef]
- Arocha-Rosete, Y.; Diallo, H.A.; Konan Konan, J.L.; Yankey, N.; Saleh, M.; Pilet, F.; Contaldo, N.; Paltrinieri, S.; Bertaccini, A.; Scott, J. Detection and differentiation of the coconut lethal yellowing Phytoplasma in coconut growing villages of Grand-Lahou, Côte d’Ivoire. Ann. Appl. Biol. 2017, 170, 333–347. [Google Scholar] [CrossRef]
- Bila, J.; Mondjana, A.; Samils, B.; Santos, L.; Hogberg, N. Integrated Management of Coconut Lethal Yellowing Phytoplasma Disease in Mozambique: Current Challenges and Future Perspectives. In Sustainable Management of Phytoplasma Diseases in Crops Grown in the Tropical Belt; Sustainability in Plant and Crop Protection 12; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Álvarez, E. Phytoplasma Diseases Affecting Cassava. In Sustainable Management of Phytoplasma Diseases in Crops Grown in the Tropical Belt; Sustainability in Plant and Crop Protection 12; Olivier, C.Y., Dumonceaux, T.J., Pérez-López, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Arocha, Y.; Jones, P. Phytoplasma Disease of Graminae; Weintraub, P., Jones, P., Eds.; Phytoplasmas: Genome, plants hosts and vectors; CABI International: Wallingford, UK, 2010; pp. 170–187. [Google Scholar]
- Obura, E.; Masiga, D.; Midega, C.A.O.; Wachira, F.; Pickett, J.A.; Deng, A.L.; Khan, Z.R. First report of a Phytoplasma associated with Bermuda grass white leaf disease in Kenya. New Dis. Rep. 2010, 21, 23. [Google Scholar] [CrossRef]
- Obura, E.; Masiga, D.; Midega, C.A.O.; Otim, M.; Wachira, F.; Pickett, J.; Khan, Z.R. Hyparrhenia grass white leaf disease, associated with a 16SrXI Phytoplasma, newly reported in Kenya. New Dis. Rep. 2011, 24, 17. [Google Scholar] [CrossRef]
- Cronje, P.; Dabek, A.J.; Jones, P.; Tymon, A.M. First report of a Phytoplasma associated with a disease of date palms in North Africa. Plant Pathol. 2000, 49, 801. [Google Scholar] [CrossRef]
- Cronje, P.; Dabek, A.J.; Jones, P.; Tymon, A.M. Slow decline: A new disease of matured date palms in North Africa associated with Phytoplasma. Plant Pathol. 2000, 49, 804. [Google Scholar] [CrossRef]
- Ammar, M.I.; Amer, M.A.; Rashed, M.F. Detection of Phytoplasma associated with yellow streak disease of date palms in Egypt. Egyptian, J. Virol. 2005, 2, 74–86. [Google Scholar]
- Alkhazinder, M. Detection and molecular identification of Aster Yellows Phytoplasma in date palm in Egypt. J. Phytopathol. 2014, 162, 621–625. [Google Scholar] [CrossRef]
- Guthrie, J.N.; White, D.T.; Walsh, K.B.; Scott, P.T. Epidemiology of Phytoplasma associated papaya diseases in Queensland, Australia. Plant Dis. 1998, 82, 1107–1111. [Google Scholar] [CrossRef]
- Padovan, A.; Gibb, K. Epidemiology of Phytoplasma diseases in papaya in Northern Australia. J. Phytopathol. 2001, 149, 649–658. [Google Scholar] [CrossRef]
- Elder, R.; Milne, J.; Reid, D.; Guthrie, J.; Persley, D. Temporal incidence of three Phytoplasma associated diseases of Carica papaya and their potential hemipteran vectors in central and south-east Queensland. Aust. Plant. Pathol. 2002, 31, 165–176. [Google Scholar] [CrossRef]
- Gera, A.; Mawassi, M.; Zeidan, M.; Spiegel, S.; Bar-Joseph, M. An isolate of ‘Candidatus Phytoplasma australiense’ group associated with Nivun Haamir dieback disease of papaya in Israel. Plant Pathol. 2005, 54, 560. [Google Scholar] [CrossRef]
- Arocha, Y.; Bekele, B.; Tadesse, D.; Jones, P. First report of a 16SrII group associated with die-back diseases of papaya and citrus in Ethiopia. Plant Pathol. 2007, 56, 1039. [Google Scholar] [CrossRef]
- Kazeem, S.A.; Inaba, J.; Zhao, Y.; Zwolińska, A.; Ogunfunmilayo, A.O.; Arogundade, O.; Wei, W. Molecular identification and characterization of ‘Candidatus Phytoplasma convolvuli’-related strains (representing a new 16SrXII-O subgroup) associated with papaya bunchy top disease in Nigeria. Crop Prot. 2021, 148, 105731. [Google Scholar] [CrossRef]
- Lobognon, N.P.A.; Kra, K.D.; Toualy, M.-N. First Detection of Ca. Phytoplasma asteris in Papaya orchards in Ivory Coast. Pak. J. Phytopathol. 2014, 36, 347–358. [Google Scholar] [CrossRef]
- Inaba, J.; Kazeem, S.A.; Zhao, Y.; Zwolińska, A.; Ogunfunmilayo, A.O.; Arogundade, O.; Wei, W. Tomato and Jute Mallow are Two New Hosts of Papaya Bunchy Top Phytoplasma, a ‘Candidatus Phytoplasma convolvuli’-Related Strain in Nigeria. Plant Dis. 2023, 107, 1937. [Google Scholar] [CrossRef]
- El-Banna, O.H.M.; El-Deeb, S.H. Phytoplasma associated with mango malformation disease in Egypt. J. Phytopathol. 2007, 157, 639–641. [Google Scholar]
- SA Wine Industry Statistics. South Africa Wine Industry Information and Systems SAWIS. 2023. Available online: https://www.sawis.co.za or https://wosa.co.za (accessed on 1 September 2024).
- Carstens, R. 2014. The Incidence and Distribution of Grapevine Yellows Diseases in South African Vineyards. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2014; p. 95. [Google Scholar]
- Kruger, K. Grapevine Yellows Management in South Africa: Manangement Strategies for Aster Yellows Phytoplasma in Grapevine in South Africa. Tropicsafe Technical Innovative Factsheet. 2020. Available online: https://www.tropicsafe.eu (accessed on 16 September 2024).
- Yankey, E.N.; Aidoo, O.F.; Sossah, F.L. A critical review of Cape Saint Paul Wilt Disease: A devastating Phytoplasma-associated infection affecting coconut trees in Ghana. Crop Prot. 2024, 184, 106830. [Google Scholar] [CrossRef]
- Asudi, G.O.; Van den Berg JMidega, C.A.O.; Pittchar, J.; Pickett, J.; Khan, Z. Napier grass stunt disease in East Africa: Farmers’ perspectives on disease management. Crop Prot. 2015, 71, 116–124. [Google Scholar] [CrossRef]
- Khan, Z.R.; Midega, C.A.O.; Nyang’au, M.I.; Murage, A.; Pittchar, J.; Agutu, L.; Amudavi, D.M.; Pickett, J.A. Farmers’ knowledge and perceptions of the stunting disease of Napier grass in western Kenya. Plant Pathol. 2014, 63, 1426–1435. [Google Scholar] [CrossRef]
- Jibrin, M.O.; Olson JWallace, S.; Walker, N.; Marek, S.M. First Report of ‘Candidatus Phytoplasma asteris’-Related Strains (Subgroup 16SrI-A) Associated With Aster Yellows on Chrysanthemums in Oklahoma. Plant Dis. 2024, 108, 3406. [Google Scholar] [CrossRef]
- Singh, K.; Ranebennur, H.; Rawat, K.; Chalam, V.C.; Gupta, S.; Choudhary, M.; Meena, V.S.; Shekhawat, N.; Sharma, M.; Chawla, M.P.; et al. First Report of ‘Candidatus Phytoplasma asteris’ (16SrI-B Subgroup) Associated with Stunting and Little Leaves of Guar (Cyamopsis tetragonoloba) in World. Plant Disease 2025, 108, 710. [Google Scholar] [CrossRef]
- Dutta, D.S.; Kalita, M.K.; Nath, P.D. First report of Candidatus Phytoplasma trifolii (16SrVI-D) associated with little leaf disease of Nyctanthes arbor-tristis in the world. J. Plant Pathol. 2024, 106, 1403–1404. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazeem, S.A.; Zwolińska, A.; Mulema, J.; Ogunfunmilayo, A.O.; Salihu, S.; Nwogwugwu, J.O.; Ajene, I.J.; Ogunsola, J.F.; Adediji, A.O.; Oduwaye, O.F.; et al. Status and Distribution of Diseases Caused by Phytoplasmas in Africa. Microorganisms 2025, 13, 1229. https://doi.org/10.3390/microorganisms13061229
Kazeem SA, Zwolińska A, Mulema J, Ogunfunmilayo AO, Salihu S, Nwogwugwu JO, Ajene IJ, Ogunsola JF, Adediji AO, Oduwaye OF, et al. Status and Distribution of Diseases Caused by Phytoplasmas in Africa. Microorganisms. 2025; 13(6):1229. https://doi.org/10.3390/microorganisms13061229
Chicago/Turabian StyleKazeem, Shakiru Adewale, Agnieszka Zwolińska, Joseph Mulema, Akindele Oluwole Ogunfunmilayo, Shina Salihu, Joy Oluchi Nwogwugwu, Inusa Jacob Ajene, Justina Folasayo Ogunsola, Adedapo Olutola Adediji, Olubusola Fehintola Oduwaye, and et al. 2025. "Status and Distribution of Diseases Caused by Phytoplasmas in Africa" Microorganisms 13, no. 6: 1229. https://doi.org/10.3390/microorganisms13061229
APA StyleKazeem, S. A., Zwolińska, A., Mulema, J., Ogunfunmilayo, A. O., Salihu, S., Nwogwugwu, J. O., Ajene, I. J., Ogunsola, J. F., Adediji, A. O., Oduwaye, O. F., Kra, K. D., Jibrin, M. O., & Wei, W. (2025). Status and Distribution of Diseases Caused by Phytoplasmas in Africa. Microorganisms, 13(6), 1229. https://doi.org/10.3390/microorganisms13061229