The Emergence of Bacteroides pyogenes as a Human Pathogen of Animal Origin: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Inclusion and Exclusion Criteria
2.2. Data Extraction
3. Results
3.1. Literature Search
3.2. Epidemiology of B. pyogenes Infections
3.3. Pathogenesis of B. pyogenes Infections
3.4. Diagnosis of B. pyogenes in Humans
3.4.1. Identification of B. pyogenes
3.4.2. Antimicrobial Susceptibility of B. pyogenes
4. Treatment and Outcomes of B. pyogenes Infections
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shin, J.H.; Tillotson, G.; MacKenzie, T.N.; Warren, C.A.; Wexler, H.M.; Goldstein, E.J.C. Bacteroides and Related Species: The Keystone Taxa of the Human Gut Microbiota. Anaerobe 2024, 85, 102819. [Google Scholar] [CrossRef]
- Wexler, H.M. Bacteroides: The Good, the Bad, and the Nitty-Gritty. Clin. Microbiol. Rev. 2007, 20, 593–621. [Google Scholar] [CrossRef]
- Majewska, A.; Kierzkowska, M.; Kawecki, D. What We Actually Know about the Pathogenicity of Bacteroides Pyogenes. Med. Microbiol. Immunol. 2021, 210, 157–163. [Google Scholar] [CrossRef]
- Rajilić-Stojanović, M.; De Vos, W.M. The First 1000 Cultured Species of the Human Gastrointestinal Microbiota. FEMS Microbiol. Rev. 2014, 38, 996–1047. [Google Scholar] [CrossRef] [PubMed]
- Benno, Y.; Watabe, J.; Mitsuoka, T. Bacteroides Pyogenes Sp. Nov., Bacteroides Suis Sp. Nov., and Bacteroides Helcogenes Sp. Nov., New Species from Abscesses and Feces of Pigs. Syst. Appl. Microbiol. 1983, 4, 396–407. [Google Scholar] [CrossRef]
- Jeon, S.J.; Cunha, F.; Ma, X.; Martinez, N.; Vieira-Neto, A.; Daetz, R.; Bicalho, R.C.; Lima, S.; Santos, J.E.P.; Jeong, K.C.; et al. Uterine Microbiota and Immune Parameters Associated with Fever in Dairy Cows with Metritis. PLoS ONE 2016, 11, e0165740. [Google Scholar] [CrossRef] [PubMed]
- Ovesen, A.L.; Riihimäki, M.; Båverud, V.; Pringle, M. Antimicrobial Susceptibility of Bacteroides Spp. from Clinical Samples from Horses. J. Equine Vet. Sci. 2016, 45, 46–52. [Google Scholar] [CrossRef]
- Cunha, F.; Jeon, S.J.; Jeong, K.C.; Galvão, K.N. Draft Genome Sequences of Bacteroides Pyogenes Strains Isolated from the Uterus of Holstein Dairy Cows with Metritis. Microbiol. Resour. Announc. 2019, 8, e01043-19. [Google Scholar] [CrossRef]
- Forsblom, B.; Love, D.N.; Sarkiala–Kessel, E.; Jousimies–Somer, H. Characterization of Anaerobic, Gram-Negative, Nonpigmented, Saccharolytic Rods from Subgingival Sites in Dogs. Clin. Infect. Dis. 1997, 25, S100–S106. [Google Scholar] [CrossRef]
- Sakamoto, M.; Suzuki, N.; Benno, Y. Hsp60 and 16S rRNA Gene Sequence Relationships among Species of the Genus Bacteroides with the Finding That Bacteroides Suis and Bacteroides Tectus Are Heterotypic Synonyms of Bacteroides Pyogenes. Int. J. Syst. Evol. Microbiol. 2010, 60, 2984–2990. [Google Scholar] [CrossRef]
- Sakamoto, M.; Oshima, K.; Suda, W.; Kitamura, K.; Iida, T.; Hattori, M.; Ohkuma, M. Draft Genome Sequences of Three Strains of Bacteroides Pyogenes Isolated from a Cat and Swine. Genome Announc. 2014, 2, e01242-13. [Google Scholar] [CrossRef]
- Jean, S.; Wallace, M.J.; Dantas, G.; Burnham, C.-A.D. Time for Some Group Therapy: Update on Identification, Antimicrobial Resistance, Taxonomy, and Clinical Significance of the Bacteroides Fragilis Group. J. Clin. Microbiol. 2022, 60, e02361-20. [Google Scholar] [CrossRef] [PubMed]
- Fernández Vecilla, D.; Urrutikoetxea Gutiérrez, M.J.; Roche Matheus, M.P.; Angulo López, I.; Aspichueta Vivanco, C.; Calvo Muro, F.E.; Díaz De Tuesta Del Arco, J.L. Description of Eight Human Infections Caused by Bacteroides Pyogenes in a Tertiary Hospital of Northern Spain. Anaerobe 2023, 82, 102759. [Google Scholar] [CrossRef] [PubMed]
- Love, D.N.; Johnson, J.L.; Moore, L.V.H. Bacteroides Species from the Oral Cavity and Oral-Associated Diseases of Cats. Vet. Microbiol. 1989, 19, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Statista. Available online: https://www.statista.com/statistics/414956/dog-population-european-union-eu-by-country/ (accessed on 25 February 2025).
- Statista. Available online: https://www.statista.com/statistics/515410/cat-population-european-union-eu-by-country/ (accessed on 25 February 2025).
- Sadhwani, S.; DiAngelis, D.; Brown, M.; Ferguson, C.; Angerett, N. Unique Presentation of an Intramuscular Abscess Caused by Bacteroides Pyogenes in the Setting of a Cat Bite: A Case Report. SAGE Open Med. Case Rep. 2024, 12, 2050313X231222217. [Google Scholar] [CrossRef]
- Goggin, K.P.; Beckmann, N.; Bettin, K.; Carrillo-Marquez, M.; Wood, J.; Arnold, S.R. Lemierre’s Syndrome Due to the Zoonotic Anaerobe Bacteroides Pyogenes: Case Report and Literature Review. J. Pediatr. Infect. Dis. Soc. 2021, 10, 886–888. [Google Scholar] [CrossRef]
- Vecilla, D.F.; Matheus, M.P.R.; Hidalgo, G.I.; De Tuesta Del Arco, J.L.D. Osteomyelitis Caused by Pasteurella Multocida and Bacteroides Pyogenes after Cat Bite. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 125–128. [Google Scholar] [CrossRef]
- Fernández Vecilla, D.; Oiartzabal Elorriaga, U.; Urrutikoetxea Gutiérrez, M.J.; Pérez Ramos, I.S.; Díaz De Tuesta Del Arco, J.L. Jaw Osteomielitis and Myositis Caused by Bacteroides Pyogenes. Anaerobe 2023, 79, 102670. [Google Scholar] [CrossRef]
- Gual-de-Torrella, A.; Suárez-Barrenechea, A.I.; Del Toro, M.D. Infección de prótesis articular por Peptostreptococcus canis y Bacteroides pyogenes. Enfermedades Infecc. Microbiol. Clínica 2019, 37, 347–348. [Google Scholar] [CrossRef]
- Madsen, I.R.; Justesen, U.S. Bacteremia with Bacteroides Pyogenes after a Cat Bite. J. Clin. Microbiol. 2011, 49, 3092–3093. [Google Scholar] [CrossRef]
- Chen, H.-L.; Wang, X.; Li, J.; Fu, D.; Zhang, Q.-T.; Zhao, W.-L.; Ma, Y.-X.; Qi, R. A Severe Case Associated with Mixed Infections of Pasteurella Multocida, Bacteroides Pyogenes and Fusobacterium Necrophorum Due to a Snow Leopard Bite: A Case Report. Clin. Microbiol. Infect. 2025, 31, 657–659. [Google Scholar] [CrossRef]
- Shenoy, P.A.; Vishwanath, S.; Nagaraj, R.T.; Banerjee, B.; Krishna, M.S. Diabetic Foot Infection with Bacteroides Pyogenes. J. Glob. Infect. Dis. 2021, 13, 186–188. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, J.; Sato, T.; Kobayashi, N.; Sado, M.; Aung, M.S.; Kobayashi, N.; Fujii, S. Bacteroides Pyogenes Isolated from Appendiceal Abscess in a Patient without Animal Contact. New Microbes New Infect. 2021, 44, 100933. [Google Scholar] [CrossRef] [PubMed]
- Umemura, H.; Yamasaki, O.; Iwatsuki, K. A Cat Bite-Induced Skin Abscess Associated with Bacteroides Pyogenes, Identified by Mass Spectrometry. Eur. J. Dermatol. 2018, 28, 392–393. [Google Scholar] [CrossRef] [PubMed]
- Park, J.E.; Park, S.-Y.; Song, D.J.; Huh, H.J.; Ki, C.-S.; Peck, K.R.; Lee, N.Y. A Case of Bacteroides Pyogenes Bacteremia Secondary to Liver Abscess. Anaerobe 2016, 42, 78–80. [Google Scholar] [CrossRef]
- Kim, Y.; Yang, H.-S.; Oh, T.; Kim, M.; Lee, H. A Case of Bloodstream Infection of Bacteroides Pyogenes Identified by 16S rRNA, gyrB, and Hsp60 Gene Sequencing. Clin. Lab. 2016, 62, 1187–1189. [Google Scholar] [CrossRef]
- Lau, J.S.Y.; Korman, T.M.; Yeung, A.; Streitberg, R.; Francis, M.J.; Graham, M. Bacteroides Pyogenes Causing Serious Human Wound Infection from Animal Bites. Anaerobe 2016, 42, 172–175. [Google Scholar] [CrossRef]
- Lee, H.K.; Walls, G.; Anderson, G.; Sullivan, C.; Wong, C.A. Prolonged Bacteroides Pyogenes Infection in a Patient with Multiple Lung Abscesses. Respirol. Case Rep. 2024, 12, e01314. [Google Scholar] [CrossRef]
- Piorunek, M.; Brajer-Luftmann, B.; Walkowiak, J. Pasteurella Multocida Infection in Humans. Pathogens 2023, 12, 1210. [Google Scholar] [CrossRef]
- Runnstrom, M.; Hyde, R.; Shah, K. Pasteurella Multocida Prosthetic Joint Infection. IDCases 2018, 13, e00429. [Google Scholar] [CrossRef]
- Lopes Freitas, R.; Reis, F.; Ruiz Pena, E. Pasteurella Multocida Bacteremia in an Immunocompromised Patient With Esophageal Squamous Cell Carcinoma: A Case Report. Cureus 2024, 16, e75924. [Google Scholar] [CrossRef] [PubMed]
- Zafar, H.; Saier, M.H. Gut Bacteroides Species in Health and Disease. Gut Microbes 2021, 13, 1848158. [Google Scholar] [CrossRef] [PubMed]
- Markowska, K.; Szymanek-Majchrzak, K.; Pituch, H.; Majewska, A. Understanding Quorum-Sensing and Biofilm Forming in Anaerobic Bacterial Communities. Int. J. Mol. Sci. 2024, 25, 12808. [Google Scholar] [CrossRef] [PubMed]
- Nagy, E.; Boyanova, L.; Justesen, U.S. How to Isolate, Identify and Determine Antimicrobial Susceptibility of Anaerobic Bacteria in Routine Laboratories. Clin. Microbiol. Infect. 2018, 24, 1139–1148. [Google Scholar] [CrossRef]
- Alcalá, L.; Marín, M.; Ruiz, A.; Quiroga, L.; Zamora-Cintas, M.; Fernández-Chico, M.A.; Muñoz, P.; Rodríguez-Sánchez, B. Identifying Anaerobic Bacteria Using MALDI-TOF Mass Spectrometry: A Four-Year Experience. Front. Cell. Infect. Microbiol. 2021, 11, 521014. [Google Scholar] [CrossRef]
- Justesen, U.S.; Skov, M.N.; Knudsen, E.; Holt, H.M.; Søgaard, P.; Justesen, T. 16S rRNA Gene Sequencing in Routine Identification of Anaerobic Bacteria Isolated from Blood Cultures. J. Clin. Microbiol. 2010, 48, 946–948. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 15.0. 2025. Available online: https://www.eucast.org (accessed on 24 February 2025).
- CLSI. M100, Performance Standards for Antimicrobial Susceptibility Testing, 35th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2025. [Google Scholar]
- Kierzkowska, M.; Majewska, A.; Szymanek-Majchrzak, K.; Sawicka-Grzelak, A.; Mlynarczyk, A.; Mlynarczyk, G. The Presence of Antibiotic Resistance Genes and Bft Genes as Well as Antibiotic Susceptibility Testing of Bacteroides Fragilis Strains Isolated from Inpatients of the Infant Jesus Teaching Hospital, Warsaw during 2007–2012. Anaerobe 2019, 56, 109–115. [Google Scholar] [CrossRef]
- Wallace, M.J.; Jean, S.; Wallace, M.A.; Burnham, C.-A.D.; Dantas, G. Comparative Genomics of Bacteroides Fragilis Group Isolates Reveals Species-Dependent Resistance Mechanisms and Validates Clinical Tools for Resistance Prediction. mBio 2022, 13, e03603-21. [Google Scholar] [CrossRef]
Author Year Reference | Age, Gender | Type of Infection | Contact with Animals | Treatment |
---|---|---|---|---|
2025 Chen [23] | 33, M | Subcutaneous abscess | Snow leopard bite | Multiple antibiotic therapies and surgical procedure |
2024 Lee [30] | 55, M | Multiple lung abscesses | Recent exposure to cats and dogs but no known bites | Multiple antibiotic therapies and surgical procedure |
2024 Sadhwani [17] | 81, F | Intramuscular abscess | Cat bite | Multiple antibiotic therapies and surgical procedure |
2023 Vecilla [13] 2023 Vecilla [20] case report regarding #1 2023 Vecilla [19] case report regarding #6 | #1 50, M | Jaw osteomyelitis and masseter myositis | Contact with his cat but no bites or scratches | Antibiotic therapy and surgical procedure |
#2 62, F | Cellulitis on the arm | Cat bite | Antibiotic therapy | |
#3 79, M | Surgical wound infection (tracheostomy) | Unknown | Antibiotic therapy | |
#4 82, M | Bacteremia | Unknown | Antibiotic therapy | |
#5 22, M | Ear, nose, and throat infection (fistula) | Unknown | Surgical procedure | |
#6 40, M | Osteomyelitis of the second metacarpal with bone destruction of its head | Cat bite | Multiple antibiotic therapies and surgical procedure | |
#7 37, F | Cellulitis on the hand | Cat bite | Antibiotic therapy | |
#8 57, M | Infected ulcer on the leg | Unknown | Antibiotic therapy | |
2021 Takahashi [25] | 79, F | Appendiceal abscess | No history of animal contact | Multiple antibiotic therapies and surgical procedure |
2021 Shenoy [24] | 55, M | Diabetic foot infection | Contact with domestic animals such as street dogs, cats, and cattle, without history of any animal bite | Multiple antibiotic therapies and surgical procedures |
2021 Majewska [3] | #1 67, M | Soft tissue necrosis within oral cavity and osteomyelitis of the mandible bone | No history of animal contact | Antibiotic therapy and surgical procedure |
#2 70, M | Odontogenic infection, chronic maxillary sinusitis (left) and osteomyelitis of the jaw bone | No history of animal contact | Antibiotic therapy and surgical procedure | |
#3 84, F | Phlegmon on the skin and necrotic lesions with fistulas | No history of animal contact | Antibiotic therapy and surgical procedure | |
#4 35, M | Trauma: multiple fracture of mandibular bones with displacement | No history of animal contact | Multiple antibiotic therapies and surgical procedure | |
#5 67, M | Osteomyelitis | No history of animal contact | Multiple antibiotic therapies and surgical procedures | |
#6 73, M | Cholecystitis | No history of animal contact | Antibiotic therapy | |
#7 89, F | Phlegmon of the right hand | Cat bite | Antibiotic therapy and surgical procedure | |
#8 72, F | Urinary tract infection | No history of animal contact | Antibiotic therapy and surgical procedure | |
#9 79, F | Subcutaneous tissue inflammation and phlegmon of the right foot | No history of animal contact | Surgical procedure | |
#10 10, F | Skin and soft tissue infection | Dog bite | Not reported | |
#11 35, F | Skin and soft tissue infection | Dog bite | Not reported | |
#12 39, F | Skin and soft tissue infection | Animal contact not clear (incomplete medical history) | Not reported | |
#13 55, M | Skin and soft tissue infection | Animal contact not clear (incomplete medical history) | Not reported | |
2021 Goggin [18] | 7, M | Lemierre’s syndrome | Contact with 3 domestic dogs, that often slept with him and roused him in the morning by licking his head, neck, and ears. No history of any animal bite | Multiple antibiotic therapies and surgical procedure |
2019 Gual-de-Torrella [21] | 53, F | Abscess from the surgical wound of primary knee arthroplasty of the patella. Eschar of the surgical wound | Contact with her domestic dog, without history of bites or scratches (patient has an open surgical wound) | Multiple antibiotic therapies and surgical procedure |
2018 Umemura [26] | 53, F | Abscess on the left foot | Cat bite | Multiple antibiotic therapies and surgical procedure |
2016 Park [27] | 77, F | Bacteremia secondary to liver abscess | No history of animal bite | Antibiotic therapy and surgical procedure |
2016 Lau [29] | #1 46, F | Skin and soft tissue infection | Dog bite on the left index finger | Multiple antibiotic therapies and surgical procedure |
#2 46, M | Skin and soft tissue infection | Cat bite on the right lower leg | Multiple antibiotic therapies and surgical procedures | |
#3 69, F | Abscess on the right forearm | Cat bite | Multiple antibiotic therapies and surgical procedure | |
#4 47, F | Skin and soft tissue infection | Dog bite on the left index finger | Multiple antibiotic therapies and surgical procedure | |
#5 76, M | Skin and soft tissue infection | Contact with his two dogs without history of any animal bite | Multiple antibiotic therapies and surgical procedures | |
#6 10, M | Skin and soft tissue infection | Dog bite on the right-hand 1st webspace | Multiple antibiotic therapies and surgical procedures | |
#7 67, M | Joint infection | Cat bite on the left-hand 2nd metacarpophalangeal joint | Multiple antibiotic therapies and surgical procedures | |
2016 Kim [28] | 51, F | Bloodstream infection | No history of animal contact | Multiple antibiotic therapies |
2011 Madsen [22] | 60, M | Skin and soft tissue infection, and bacteremia | Cat bite on the left wrist | Multiple antibiotic therapies and surgical procedures |
Gender | 21 M; 18 F |
---|---|
Age | Range: 7–89 Average: 55.6 |
Type of infection | Skin and soft tissue infection, n = 24 Bone infection, n = 5 Intra-abdominal infection, n = 4 Bloodstream infection, n = 1 Intramuscular abscess, n = 1 Joint prosthesis infection, n = 1 Lemierre’s syndrome, n = 1 Lung abscess, n = 1 Urinary tract infection, n = 1 |
Contact with animal | Yes, n = 22 (16 animal bites: cats, n = 10; dogs, n = 5; snow leopard, n = 1; 6, no history of animal bite); No history of animal contact, n = 10 Animal contact not clear or incomplete medical history, n = 7 |
Monomicrobial infection | 9 samples |
Polymicrobial infection | 30 samples (6 patients with more than one samples; at least 1 was polymicrobial) Other anaerobic bacteria, n = 24 (Pasteurella spp. n = 10) Only aerobic bacteria, n = 6 |
Underlying disease | Medical history not always complete, n = 10 No underlying disease, n = 11 Diabetes mellitus, n = 6 Oncologic history, n = 3 Diabetes mellitus and oncologic history, n = 3 Hepatitis infection, n = 2 Recent surgery, n = 1 Cardiac disease, n = 1 Systemic Lupus Erythematosus, n = 1 |
Hospitalization | Yes, n = 31 (3 patients in ICU wards) No, n = 8 (Range: 2–61 days, average: 16 days) |
Treatment | Antibiotic and surgical reatment, n= 26 Only antibiotic treatment, n = 7 Only surgical treatment *, n = 2 Treatment not reported, n = 4 |
Author Year Reference | Type of Sample | Method of Identification | Antibiotic Resistance Phenotype (MIC mg/L) | Co-Isolated Bacteria |
---|---|---|---|---|
2025 Chen [23] | Purulent exudate | 16S rRNA sequencing | NR | Fusobacterium necrophorum; Pasteurella multocida |
Venous blood | ||||
2024 Lee [30] | Lung abscesses | NR | AST not performed because it was expected to be susceptible to metronidazole | Different bacteria for 4 years. In the sample with B. pyogenes: Fusobacterium nucleatum and mixed anaerobes |
2024 Sadhwani [17] | Intraoperative sample from abscess | NR | AMC-susceptible | Pasteurella multocida |
2023 Vecilla [13] 2023 Vecilla [20] case report regarding #1 2023 Vecilla [19] case report regarding #6 | #1 Pus from masseter muscle abscess | MALDI-TOF mass spectrometry | AMC-, CLI-, IMP-, MEM-, MTZ-, MXF-, TZP-susceptible | No (monomicrobial) |
#2 Swab from wound | MALDI-TOF mass spectrometry | AMC-, CLI-, IMP-, MEM-, MTZ-, MXF-, TZP-susceptible | No (monomicrobial) | |
#3 Swab from surgical wound | MALDI-TOF mass spectrometry | AMC-, CLI-, IMP-, MEM-, MTZ-, MXF-, TZP-susceptible | Proteus mirabilis, Gemella morbillorum, Streptococcus mitis, and Corynebacterium amycolatum | |
#4 Blood culture | MALDI-TOF mass spectrometry | AMC-, CLI-, IMP-, MEM-, MTZ-, MXF-, TZP-susceptible | No (monomicrobial) | |
#5 Pus from fistula | MALDI-TOF mass spectrometry | AMC-, CLI-, IMP-, MEM-, MTZ-, MXF-, TZP-susceptible | P. mirabilis, Klebsiella oxytoca, and Streptococcus constellatus | |
#6 Intraoperatively taken tissue | MALDI-TOF mass spectrometry | AMC-, CLI-, IMP-, MEM-, MTZ-, MXF-, TZP-susceptible | Pasteurella multocida | |
#7 Pus from abscess | MALDI-TOF mass spectrometry | AMC-, CLI-, IMP-, MEM-, MTZ-, MXF-, TZP-susceptible | Pasteurella multocida | |
#8 Swab from a wound | MALDI-TOF mass spectrometry | AMC-, CLI-, IMP-, MEM-, MTZ-, MXF-, TZP-susceptible | Pseudomonas aeruginosa and Prevotella intermedia | |
2021 Takahashi [25] | Intraoperative appendiceal abscess obtained by intra-abdominal drainage | MALDI-TOF mass spectrometry Biochemical test (identified as Prevotella melaninogenica) 16S rRNA sequencing | NR | Escherichia coli; Bacteroides thetaiotaomicron; Peptostreptococcus micros |
2021 Shenoy [24] | Intraoperative soft tissue specimens | MALDI-TOF mass spectrometry Biochemical test (identified as Prevotella oralis) 16S rRNA sequencing | CLI-, IPM-, MEM-, MTZ-, PIP-susceptible. Β-lactamase-negative | MRSA; Streptococcus dysgalactiae |
2021 Majewska [3] | #1 Pus from an abscess | MALDI-TOF mass spectrometry | AMC-, IPM-, MTZ-susceptible; CLI-, PEN-resistant | Eikenella corrodens, Enterococcus faecalis; Streptococcus pneumoniae |
#2 Swab from the alveolar jaw | MALDI-TOF mass spectrometry | AMC-, CLI-, IPM-, MTZ-susceptible; PEN-resistant | Enterococcus faecalis; Streptococcus parasanguinis | |
#3 Wound swab | MALDI-TOF mass spectrometry | AMC-, CLI-, IPM-, MTZ-susceptible; PEN-resistant | Staphylococcus epidermidis | |
#4 Intraoperative tissue | MALDI-TOF mass spectrometry | AMC-, CLI-, IPM-, MTZ-, PEN-susceptible | Fusobacterium nucleatum; Streptococcus anginosus | |
#4 Transtracheal aspirate | MALDI-TOF mass spectrometry | No (monomicrobial) | ||
#5 Intraoperatively taken tissue | MALDI-TOF mass spectrometry | AMC-, CLI-, IPM-, MTZ-, PEN-susceptible | Finegoldia magna; Proteus mirabilis | |
#6 Bile | MALDI-TOF mass spectrometry | AMC-, CLI-, IPM-, MTZ-, PEN-susceptible | Clostridium perfringens; Escherichia coli | |
#7 Pus from an abscess | MALDI-TOF mass spectrometry | AMC-, CLI-, IPM-, MTZ-susceptible; PEN-resistant | No (monomicrobial) | |
#8 Urine (ureteral catheter) | MALDI-TOF mass spectrometry | AMC-, CLI-, IPM-, MTZ-, PEN-susceptible | Veilonella atypica | |
#9 Wound swab | MALDI-TOF mass spectrometry | AMC-, CLI-, IPM-, MTZ-, PEN-susceptible | No (monomicrobial) | |
#9 Wound swab (29 days later) | MALDI-TOF mass spectrometry | AMC-, CLI-, IPM-, MTZ-susceptible; PEN-resistant | MRSA; Enterococcus faecalis; Pseudomonas aeruginosa; Alcaligenes faecalis | |
#10 Wound swab | MALDI-TOF mass spectrometry | AMC-, CLI-, IPM-, MTZ-, PEN-susceptible | Fusobacterium nucleatum; Pasteurella multocida | |
#11 Wound swab | MALDI-TOF mass spectrometry | AMC-, CLI-, IPM-, MTZ-susceptible; PEN-resistant | Peptostreptococcus harei; Cutibacterium acnes | |
#12 Wound swab | MALDI-TOF mass spectrometry | AMC-, CLI-, IPM-, MTZ-susceptible; PEN-resistant | Fusobacterium nucleatum; Staphylococcus aureus | |
#13 Wound swab | MALDI-TOF mass spectrometry | AMC-, CLI-, IPM-, MTZ-, PEN-susceptible | Pasteurella canis | |
2021 Goggin [18] | Intraoperative samplefrom abscess | Biochemical test (identified as Prevotella oralis) 16S rRNA sequencing | NR | Alcaligenes xylosoxidans spp. xylosoxidans, Gemella species, Granulicatella elegans, Staphylococcus epidermidis, non-hemolytic diphtheroides |
2019 Gual-de-Torrella [21] | Four intraoperative specimens (osteoarticular biopsy, wound exudate, joint fluid, synovial tissue) and prosthesis | MALDI-TOF mass spectrometry | AMC-, CLI-, IPM-, MTZ-, PEN-, TZP-susceptible | Peptostreptococcus canis |
Prosthesis, osteoarticular biopsy, joint fluid (after 10 days of treatment) | MALDI-TOF mass spectrometry (recovered only from the prosthesis culture) | NR | No (monomicrobial) | |
2018 Umemura [26] | Pus discharge from abscess | MALDI-TOF mass spectrometry | PEN-, cephem-, and new quinolone-susceptible | No, but minocycline (3 weeks of therapy) might have killed other pathogens before the culture |
2016 Park [27] | Blood culture | MALDI-TOF mass spectrometry (identified as Bacteroides pyogenes by Bruker system; identified as Bacteroides uniformis by VITEK MS) Biochemical test for blood culture sample (identified as Prevotella oralis) 16S rRNA sequencing for blood culture sample | NR | No (monomicrobial) |
Pus from liver abscess | Klebsiella pneumoniae | |||
2016 Lau [29] | #1 Wound swab | MALDI-TOF mass spectrometry Biochemical test (performed only on 5 isolates, identified as Prevotella oralis, n = 4; and Prevotella melaninogenica, n = 1) 16S rRNA sequencing | NR | No (monomicrobial) |
#2 Wound swab | NR | Pasteurella multocida | ||
#3 Wound swab | NR | No (monomicrobial) | ||
#4 Wound swab | NR | Pasteurella canis Pasteurella stomatis Staphylococcus pseudointermedius | ||
#5 NA | AMC 0.094, MTZ 0.50, MXF 0.047, PEN 0.016, TZP 0.064 | Staphylococcus aureus Morganella morganii Atopobium deltae | ||
#6 Wound swab | NR | Pasteurella dagmatis | ||
#7 Wound swab | AMC 0.032, MTZ 0.025, MXF 0.047, PEN 0.016, TZP 0.016 | No (monomicrobial) | ||
2016 Kim [28] | Blood culture | Biochemical test (identified as Prevotella oralis) 16S rRNA sequencing | CLI > 256, CRO 0.064, MEM 0.016, MTZ 0.5, PEN 0.032, TZP 0.016 | No (monomicrobial) |
2011 Madsen [22] | Pus discharge from abscess | Biochemical test (identified as Bacteroides capillosus) 16S rRNA sequencing | CLI, MEM, MTZ, PEN, TZP susceptible | Pasteurella multocida |
Blood culture | No (monomicrobial) |
Type of Identification | N. of Test | Results | Instrument |
---|---|---|---|
MALDI-TOF mass spectrometry | 33 | Bacteroides pyogenes was misidentified as: Bacteroides uniformis (n = 1, by Vitek MS) In 5 samples, the Vitek MS instrument was not able to identify the pathogen | Bruker (n = 17) Vitek MS (n = 21) Not Reported (n = 1) |
Biochemical test | 11 | Bacteroides pyogenes was misidentified as: Prevotella oralis (n = 8) Prevotella melaninogenica (n = 2) Bacteroides capillosus (n = 1) | VITEK 2 ANC Card (n = 9) API Rapid ID 32A anaerobe identification system (n = 2) |
16S rRNA sequencing | 14 | Bacteroides pyogenes Matching score: 94–100% | Sanger Sequencing (n = 10) Next-Generation Sequencing (n = 2) Not Reported (n = 2) |
Antibiotic | N. of Test Performed | Susceptible N. (%) |
---|---|---|
Amoxicillin–clavulanate | 25 | 25 (100%) |
Clindamycin | 25 | 23 (92%) |
Imipenem | 23 | 23 (100%) |
Meropenem | 11 | 11 (100%) |
Metronidazole | 28 | 28 (100%) |
Moxifloxacin | 10 | 10 (100%) |
Penicillin | 19 | 12 (63.2%) |
Piperacillin–tazobactam | 13 | 13 (100%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mauri, C.; Giubbi, C.; Consonni, A.; Briozzo, E.; Meroni, E.; Luzzaro, F.; Tonolo, S. The Emergence of Bacteroides pyogenes as a Human Pathogen of Animal Origin: A Narrative Review. Microorganisms 2025, 13, 1200. https://doi.org/10.3390/microorganisms13061200
Mauri C, Giubbi C, Consonni A, Briozzo E, Meroni E, Luzzaro F, Tonolo S. The Emergence of Bacteroides pyogenes as a Human Pathogen of Animal Origin: A Narrative Review. Microorganisms. 2025; 13(6):1200. https://doi.org/10.3390/microorganisms13061200
Chicago/Turabian StyleMauri, Carola, Chiara Giubbi, Alessandra Consonni, Elena Briozzo, Elisa Meroni, Francesco Luzzaro, and Silvia Tonolo. 2025. "The Emergence of Bacteroides pyogenes as a Human Pathogen of Animal Origin: A Narrative Review" Microorganisms 13, no. 6: 1200. https://doi.org/10.3390/microorganisms13061200
APA StyleMauri, C., Giubbi, C., Consonni, A., Briozzo, E., Meroni, E., Luzzaro, F., & Tonolo, S. (2025). The Emergence of Bacteroides pyogenes as a Human Pathogen of Animal Origin: A Narrative Review. Microorganisms, 13(6), 1200. https://doi.org/10.3390/microorganisms13061200