Genomic Diversity and Antibiotic Resistance of Escherichia coli and Salmonella from Poultry Farms in Oyo State, Nigeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Location
2.2. Isolation and Identification of Salmonella Species
2.3. Isolation and Identification of Escherichia coli
2.4. Antimicrobial Susceptibility Testing
2.5. Whole Genome Sequencing
3. Results
3.1. Salmonella Results
3.2. E. coli Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef]
- Jonas, O.B.; Irwin, A.; Berthe, F.C.J.; Le Gall, F.G.; Marquez, P.V. Drug-Resistant Infections: A Threat to Our Economic Future; World Bank Group: Washington, DC, USA, 2017. [Google Scholar]
- FAO; UNEP; WHO; WOAH. One Health Joint Plan of Action (2022–2026). Working Together for the Health of Humans, Animals, Plants and the Environment; WHO: Rome, Italy, 2022. [Google Scholar]
- Havelaar, A.H.; Kirk, M.D.; Torgerson, P.R.; Gibb, H.J.; Hald, T.; Lake, R.J.; Praet, N.; Bellinger, D.C.; de Silva, N.R.; Gargouri, N.; et al. World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010. PLoS Med. 2015, 12, e1001923. [Google Scholar] [CrossRef]
- Federal Ministries of Agriculture, Rural Development, Environment and Health. National Action Plan for Antimicrobial Resistance 2017–2022; Federal Ministries of Agriculture, Rural Development, Environment and Health: Abuja, Nigeria, 2017.
- Federal Ministries of Agriculture, Rural Development, Environment and Health. One Health Strategic Plan 2019–2023; Federal Ministries of Agriculture, Rural Development, Environment and Health: Abuja, Nigeria, 2019.
- Sanni, A.O.; Onyango, J.; Rota, A.F.; Mikecz, O.; Usman, A.; PicaCiamarra, U.; Fasina, F.O. Underestimated economic and social burdens of non-Typhoidal Salmonella infections: The One Health perspective from Nigeria. One Health 2023, 16, 100546. [Google Scholar] [CrossRef] [PubMed]
- Omitola, O.O.; Taylor-Robinson, A.W. Emerging and re-emerging bacterial zoonoses in Nigeria: Current preventive measures and future approaches to intervention. Heliyon 2020, 6, e04095. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M. Poultry Production in Nigeria; CSIRO: Pullenvale, QLD, Australia, 2020; p. 2. [Google Scholar]
- Odunze, E.; Boussini, H.; Mikecz, O.; Pica-Ciamarra, U. Nigeria, Cattle and Poultry Sectors; FAO: Rome, Italy, 2018; p. 12. [Google Scholar]
- Sati, N.M.; Card, R.M.; Barco, L.; Muhammad, M.; Luka, P.D.; Chisnall, T.; Fagbamila, I.O.; Cento, G.; Nnadi, N.E.; Kankya, C.; et al. Antimicrobial Resistance and Phylogenetic Relatedness of Salmonella Serovars in Indigenous Poultry and Their Drinking Water Sources in North Central Nigeria. Microorganisms 2024, 12, 1529. [Google Scholar] [CrossRef]
- Jibril, A.H.; Okeke, I.N.; Dalsgaard, A.; Kudirkiene, E.; Akinlabi, O.C.; Bello, M.B.; Olsen, J.E. Prevalence and risk factors of Salmonella in commercial poultry farms in Nigeria. PLoS ONE 2020, 15, e0238190. [Google Scholar] [CrossRef]
- Fagbamila, I.O.; Barco, L.; Mancin, M.; Kwaga, J.; Ngulukun, S.S.; Zavagnin, P.; Lettini, A.A.; Lorenzetto, M.; Abdu, P.A.; Kabir, J.; et al. Salmonella serovars and their distribution in Nigerian commercial chicken layer farms. PLoS ONE 2017, 12, e0173097. [Google Scholar] [CrossRef] [PubMed]
- Orum, T.G.; Ishola, O.O.; Adebowale, O.O. Occurrence and antimicrobial susceptibility patterns of Salmonella species from poultry farms in Ibadan, Nigeria. Afr. J. Lab. Med. 2022, 11, a1606. [Google Scholar] [CrossRef]
- Olorunleke, S.O.; Kirchner, M.; Duggett, N.; AbuOun, M.; Okorie-Kanu, O.J.; Stevens, K.; Card, R.M.; Chah, K.F.; Nwanta, J.A.; Brunton, L.A. Molecular characterization of extended spectrum cephalosporin resistant Escherichia coli isolated from livestock and in-contact humans in Southeast Nigeria. Front. Microbiol. 2022, 13, 937968. [Google Scholar] [CrossRef]
- Aworh, M.K.; Kwaga, J.; Okolocha, E.; Harden, L.; Hull, D.; Hendriksen, R.S.; Thakur, S. Extended-spectrum ss-lactamase-producing Escherichia coli among humans, chickens and poultry environments in Abuja, Nigeria. One Health Outlook 2020, 2, 8. [Google Scholar] [CrossRef]
- Ayeni, F.A.; Falgenhauer, J.; Schmiedel, J.; Schwengers, O.; Chakraborty, T.; Falgenhauer, L. Detection of blaCTX-M-27-encoding Escherichia coli ST206 in Nigerian poultry stocks. J. Antimicrob. Chemother. 2020, 75, 3070–3072. [Google Scholar] [CrossRef] [PubMed]
- Al-Mustapha, A.I.; Raufu, I.A.; Ogundijo, O.A.; Odetokun, I.A.; Tiwari, A.; Brouwer, M.S.M.; Adetunji, V.; Heikinheimo, A. Antibiotic resistance genes, mobile elements, virulence genes, and phages in cultivated ESBL-producing Escherichia coli of poultry origin in Kwara State, North Central Nigeria. Int. J. Food Microbiol. 2023, 389, 110086. [Google Scholar] [CrossRef] [PubMed]
- Tanko, N.; Bolaji, R.O.; Olayinka, A.T.; Olayinka, B.O. A systematic review on the prevalence of extended-spectrum beta lactamase-producing Gram-negative bacteria in Nigeria. J. Glob. Antimicrob. Resist. 2020, 22, 488–496. [Google Scholar] [CrossRef]
- Ndahi, M.D.; Hendriksen, R.; Helwigh, B.; Card, R.M.; Fagbamila, I.O.; Abiodun-Adewusi, O.O.; Ekeng, E.; Adetunji, V.; Adebiyi, I.; Andersen, J.K. Determination of antimicrobial use in commercial poultry farms in Plateau and Oyo States, Nigeria. Antimicrob. Resist. Infect. Control. 2023, 12, 30. [Google Scholar] [CrossRef]
- ISO 6579-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. ISO: Geneva, Switzerland, 2017. Available online: https://cdn.standards.iteh.ai/samples/56712/37da386eff674e07b35f9025371ee283/ISO-6579-1-2017.pdf (accessed on 10 June 2024).
- ISO 725:2005; General Requirements for the Competence of Testing and Calibration Laboratories. ISO: Geneva, Switzerland, 2005. Available online: https://cdn.standards.iteh.ai/samples/39883/2aebd702506f4f03a28333d3cb08c525/ISO-IEC-17025-2005.pdf (accessed on 10 June 2024).
- Shipp, C.R.; Rowe, B. A mechanised microtechnique for salmonella serotyping. J. Clin. Pathol. 1980, 33, 595–597. [Google Scholar] [CrossRef]
- Grimont, P.A.D.; Weill, F.-X. Antigenic Formulae of the Salmonella Serovars, 9th ed.; WHO Collaborating Centre for Reference and Research on Salmonella; Institut Pasteur: Paris, France, 2007; Available online: https://www.pasteur.fr/sites/default/files/veng_0.pdf (accessed on 4 February 2025).
- Amore, G.; Beloeil, P.-A.; Garcia Fierro, R.; Guerra, B.; Rizzi, V.; Stoicescu, A.-V. Manual for reporting 2023 antimicrobial resistance data under Directive 2003/99/EC and Commission Implementing Decision (EU)2020/1729. EFSA Support. Publ. 2024, 21, 8585E. [Google Scholar] [CrossRef]
- Schwarz, S.; Silley, P.; Simjee, S.; Woodford, N.; van Duijkeren, E.; Johnson, A.P.; Gaastra, W. Assessing the antimicrobial susceptibility of bacteria obtained from animals. Vet. Microbiol. 2010, 141, 1–4. [Google Scholar] [CrossRef]
- Seemann, T.; Bulach, A.; Schultz, D.M.; Kwong, M.B.; Howden, J.C. Nullarbor and Prokka. 2020. Available online: https://Github.Com/Tseemann/Nullarbor (accessed on 13 April 2025).
- Hawkey, J.; Le Hello, S.; Doublet, B.; Granier, S.A.; Hendriksen, R.S.; Fricke, W.F.; Ceyssens, P.J.; Gomart, C.; Billman-Jacobe, H.; Holt, K.E.; et al. Global phylogenomics of multidrug-resistant Salmonella enterica serotype Kentucky ST198. Microb. Genom. 2019, 5, e000269. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Feldgarden, M.; Brover, V.; Gonzalez-Escalona, N.; Frye, J.G.; Haendiges, J.; Haft, D.H.; Hoffmann, M.; Pettengill, J.B.; Prasad, A.B.; Tillman, G.E.; et al. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci. Rep. 2021, 11, 12728. [Google Scholar] [CrossRef]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Alikhan, N.F.; Mohamed, K.; Fan, Y.; Agama Study, G.; Achtman, M. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res. 2020, 30, 138–152. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, A.M.; Darriba, D.; Flouri, T.; Morel, B.; Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019, 35, 4453–4455. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Storey, N.; Cawthraw, S.; Turner, O.; Rambaldi, M.; Lemma, F.; Horton, R.; Randall, L.; Duggett, N.A.; AbuOun, M.; Martelli, F.; et al. Use of genomics to explore AMR persistence in an outdoor pig farm with low antimicrobial usage. Microb. Genom. 2022, 8, 000782. [Google Scholar] [CrossRef]
- Sanchez Leon, M.; Fashae, K.; Kastanis, G.; Allard, M. Draft Genome Sequences of 23 Salmonella enterica Strains Isolated from Cattle in Ibadan, Nigeria, Representing 21 Salmonella Serovars. Genome Announc. 2017, 5, e01128-17. [Google Scholar] [CrossRef]
- Dickson, D.I.; Chibuogwu, I.A.; Ezeonu, I.M. Serotyping and molecular typing of Salmonella species isolated from wastewater in Nsukka, Nigeria. Afr. J. Microbiol. Res. 2016, 10, 883–889. [Google Scholar] [CrossRef]
- EFSA; ECDC. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2021–2022. EFSA J. 2024, 22, e8583. [Google Scholar] [CrossRef]
- Akinyemi, K.O.; Ajoseh, S.O.; Fakorede, C.O. A systemic review of literatures on human Salmonella enterica serovars in Nigeria (1999–2018). J. Infect. Dev. Ctries 2021, 15, 1222–1235. [Google Scholar] [CrossRef]
- WHO. WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; World Health Organisation: Rome, Italy, 2024. [Google Scholar]
- WOAH. WOAH List of Antimicrobial Agents of Veterinary Importance; World Organisation for Animal Health: Paris, France, 2024. [Google Scholar]
- Parisi, A.; Crump, J.A.; Glass, K.; Howden, B.P.; Furuya-Kanamori, L.; Vilkins, S.; Gray, D.J.; Kirk, M.D. Health Outcomes from Multidrug-Resistant Salmonella Infections in High-Income Countries: A Systematic Review and Meta-Analysis. Foodborne Pathog. Dis. 2018, 15, 428–436. [Google Scholar] [CrossRef]
- Card, R.M.; Chisnall, T.; Begum, R.; Sarker, M.S.; Hossain, M.S.; Sagor, M.S.; Mahmud, M.A.; Uddin, A.; Karim, M.R.; Lindahl, J.F. Multidrug-resistant non-typhoidal Salmonella of public health significance recovered from migratory birds in Bangladesh. Front. Microbiol. 2023, 14, 1162657. [Google Scholar] [CrossRef] [PubMed]
- Kwoji, I.D.; Musa, J.A.; Daniel, N.; Mohzo, D.L.; Bitrus, A.A.; Ojo, A.A.; Ezema, K.U. Extended-spectrum beta-lactamase-producing Escherichia coli in chickens from small-scale (backyard) poultry farms in Maiduguri, Nigeria. Int. J. One Health 2019, 5, 26–30. [Google Scholar] [CrossRef]
- Yang, J.T.; Zhang, L.J.; Lu, Y.; Zhang, R.M.; Jiang, H.X. Genomic Insights into Global bla(CTX-M-55)-Positive Escherichia coli Epidemiology and Transmission Characteristics. Microbiol. Spectr. 2023, 11, e0108923. [Google Scholar] [CrossRef] [PubMed]
Isolate Information | Ampicillin | Quinolones | Gentamicin | Sulfamethoxazole | Tetracycline | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Isolate ID | Farm | Serovar | Sequence Type | MIC | Genotype | CIP MIC | NAL MIC | Genotype | MIC | Genotype | MIC | Genotype | MIC | Genotype |
VFS002 | 20 | Derby | 9580 | >32 | blaTEM-215 | 1 | 16 | qnrS13 | >16 | aac(3)-IIe | >512 | sul2 | >32 | tet(A) |
VFS005 | 20 | Derby | 9580 | >32 | blaTEM-215 | 1 | 16 | qnrS13, qnrB19 | >16 | aac(3)-IIe | >512 | sul2 | >32 | tet(A) |
VFS008 | 9 | Derby | - | >32 | blaTEM-215 | 1 | 16 | qnrS1, qnrB19 | >16 | aac(3)-IIe | >512 | sul2 | >32 | tet(A) |
VFS009 | 15 | Dugbe | 4615 | ≤1 | ≤0.015 | ≤4 | ≤0.5 | 64 | ≤2 | |||||
VFS013 | 10 | Dugbe | 4615 | ≤1 | ≤0.015 | ≤4 | ≤0.5 | 32 | ≤2 | |||||
VFS007 | 19 | Elisabethville | - | ≤1 | blaTEM-215 | 1 | 16 | qnrS1, qnrB19 | ≤0.5 | aac(3)-IIe | 16 | sul2 | >32 | tet(A) |
VFS011 | 9 | Glostrup | 4961 | 2 | 0.5 | 32 | qnrS1, qnrB19 | ≤0.5 | 128 | ≤2 | ||||
VFS014 | 22 | Isangi | 8475 | ≤1 | ≤0.015 | ≤4 | ≤0.5 | 64 | ≤2 | |||||
VFS019 | 22 | Isangi | 8475 | ≤1 | ≤0.015 | ≤4 | ≤0.5 | 32 | ≤2 | |||||
VFS020 | 3 | Isangi | 8475 | ≤1 | ≤0.015 | ≤4 | ≤0.5 | 64 | ≤2 | |||||
VFS021 | 6 | Isangi | 8475 | ≤1 | ≤0.015 | ≤4 | ≤0.5 | 64 | ≤2 | |||||
VFS022 | 22 | Isangi | 8475 | ≤1 | ≤0.015 | ≤4 | ≤0.5 | 64 | ≤2 | |||||
VFS015 | 20 | Ituri | 455 | ≤1 | 0.5 | 32 | qnrB19 | ≤0.5 | 64 | ≤2 | ||||
VFS016 | 3 | Ituri | 455 | ≤1 | 0.5 | 32 | qnrB19 | ≤0.5 | 64 | ≤2 | ||||
VFS024 | 20 | Ituri | 455 | ≤1 | 0.5 | 32 | qnrB19 | ≤0.5 | 256 | ≤2 | ||||
VFS001 | 12 | Kentucky | 198 | ≤1 | >8 | >64 | parC_S80I, gyrA_D87G, gyrA_S83F | 16 | aac(3)-Id | >512 | sul1 | >32 | tet(A) | |
VFS003 | 6 | Kentucky | 198 | ≤1 | >8 | >64 | parC_S80I, gyrA_D87G, gyrA_S83F | 16 | aac(3)-Id | >512 | sul1 | >32 | tet(A) | |
VFS010 | 5 | Labadi | 2176 | ≤1 | 0.5 | 32 | qnrB19 | ≤0.5 | 128 | ≤2 | ||||
VFS006 | 16 | Larochelle | 22 | ≤1 | 0.5 | 32 | qnrB19 | ≤0.5 | 16 | ≤2 | ||||
VFS017 | 15 | Larochelle | 22 | ≤1 | blaTEM-215 | 0.5 | 32 | qnrS13, qnrB19 | ≤0.5 | 32 | sul2 | ≤2 | ||
VFS025 | 15 | Larochelle | 22 | ≤1 | 0.5 | 32 | qnrB19 | ≤0.5 | 32 | ≤2 | ||||
VFS018 | 8 | Limete | 2617 | ≤1 | 0.5 | 32 | qnrB19 | ≤0.5 | 128 | ≤2 | ||||
VFS023 | 15 | Nigeria | 8405 | ≤1 | 0.5 | 32 | qnrB19 | ≤0.5 | 32 | ≤2 | ||||
VFS004 | 3 | Telelkebir | 2222 | 2 | 0.5 | 16 | qnrB19 | ≤0.5 | 32 | ≤2 |
Antimicrobial Class | Antibiotic | Number of Resistant Isolates | % Resistant |
---|---|---|---|
Penicillins (aminopenicillins) | Ampicillin | 33 | 70% |
Cephalosporins (3rd and 4th generation) | Cefotaxime | 18 | 33% |
Ceftazidime | 18 | 33% | |
Carbapenems | Meropenem | 0 | 0% |
Aminoglycosides | Amikacin | 0 | 0% |
Gentamicin | 21 | 45% | |
Amphenicols | Chloramphenicol | 20 | 43% |
Macrolides | Azithromycin | 9 | 19% |
Polymyxins | Colistin | 0 | 0% |
Quinolones | Ciprofloxacin | 42 | 89% |
Nalidixic Acid | 37 | 79% | |
Sulphonamides | Sulfamethoxazole | 31 | 66% |
Dihydrofolate reductase inhibitors | Trimethoprim | 29 | 62% |
Tetracyclines | Tetracycline | 37 | 79% |
Glycylcyclines | Tigecycline | 0 | 0% |
Multidrug resistant | 35 | 74% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adetunji, V.O.; Davies, A.; Chisnall, T.; Ndahi, M.D.; Fagbamila, I.O.; Ekeng, E.; Adebiyi, I.; Falodun, O.I.; Card, R.M. Genomic Diversity and Antibiotic Resistance of Escherichia coli and Salmonella from Poultry Farms in Oyo State, Nigeria. Microorganisms 2025, 13, 1174. https://doi.org/10.3390/microorganisms13061174
Adetunji VO, Davies A, Chisnall T, Ndahi MD, Fagbamila IO, Ekeng E, Adebiyi I, Falodun OI, Card RM. Genomic Diversity and Antibiotic Resistance of Escherichia coli and Salmonella from Poultry Farms in Oyo State, Nigeria. Microorganisms. 2025; 13(6):1174. https://doi.org/10.3390/microorganisms13061174
Chicago/Turabian StyleAdetunji, Victoria Olusola, Alistair Davies, Tom Chisnall, Mwapu Dika Ndahi, Idowu Oluwabunmi Fagbamila, Eme Ekeng, Ini Adebiyi, Olutayo Israel Falodun, and Roderick M. Card. 2025. "Genomic Diversity and Antibiotic Resistance of Escherichia coli and Salmonella from Poultry Farms in Oyo State, Nigeria" Microorganisms 13, no. 6: 1174. https://doi.org/10.3390/microorganisms13061174
APA StyleAdetunji, V. O., Davies, A., Chisnall, T., Ndahi, M. D., Fagbamila, I. O., Ekeng, E., Adebiyi, I., Falodun, O. I., & Card, R. M. (2025). Genomic Diversity and Antibiotic Resistance of Escherichia coli and Salmonella from Poultry Farms in Oyo State, Nigeria. Microorganisms, 13(6), 1174. https://doi.org/10.3390/microorganisms13061174