Assessment of Antimicrobial Activity and Safety of Pediococcus pentosaceus Isolated from Ginseng as a Functional Cosmetic Ingredient
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Identification of LAB from Ginseng
2.2. Bacterial Strains and Culture Conditions
2.3. Disk Diffusion Assay
2.4. Broth Microdilution Assay
2.5. Biofilm Formation Inhibition Assay
2.6. Scanning Electron Microscopy (SEM) of Bacteria
2.7. Cell Culture and Viability
2.8. Adhesion Assay and Anti-Adhesion Activity of THG-219
2.9. Galleria mellonella Larval Model for Toxicity and Antimicrobial Activity
2.10. Acid, Bile, and Heat Tolerance Assay
2.11. Statistical Analysis
3. Results
3.1. Identification and Biological Characteristics of Strain THG-219
3.2. Antibacterial Activity of THG-219
3.3. Inhibition of Biofilm Formation by THG-219
3.4. SEM Observation of Morphological Alterations in Bacterial Cells
3.5. Antibacterial Activity of Purified THG-219 Against Pathogens Assessed by Disk Diffusion
3.6. Cytotoxic Effect of THG-29
3.7. Adhesion Ability and Anti-Adhesion Ability of THG-219 to Caco-2 and HaCaT Cells
3.8. Toxicity and Antimicrobial Evaluation of THG-219 Using the Galleria mellonella Larvae Infection Model
3.9. Acid, Bile, and Heat Tolerance of THG-219
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schommer, N.N.; Gallo, R.L. Structure and Function of the Human Skin Microbiome. Trends Microbiol. 2013, 21, 660–668. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nakatsuji, T.; Chen, T.H.; Two, A.M.; Chun, K.A.; Narala, S.; Geha, R.S.; Hata, T.R.; Gallo, R.L. Staphylococcus aureus Exploits Epidermal Barrier Defects in Atopic Dermatitis to Trigger Cytokine Expression. J. Investig. Dermatol. 2016, 136, 2192–2200. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.M.; Horswill, A.R. Staphylococcus epidermidis—Skin Friend or Foe? PLoS Pathog. 2020, 16, E1009026. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.J.; Oliveira, A.L.S.; Santos Pedrosa, S.; Pintado, M.; Pinto-Ribeiro, I.; Madureira, A.R. Skin Microbiota and the Cosmetic Industry. Microb. Ecol. 2023, 86, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.H.; Lee, C.Y.; Chung, D.K. Probiotic Lactic Acid Bacteria and Skin Health. Crit. Rev. Food Sci. Nutr. 2016, 56, 2331–2337. [Google Scholar] [CrossRef]
- Elvebakken, H.F.; Christensen, I.B.; Vedel, C.; Kjærulff, S. A proof of concept: Clinical anti-aging efficacy and safety of Lactiplantibacillus plantarum LB244R® applied topically in a double-blinded placebo-controlled study. J. Cosmet. Dermatol. 2024, 23, 1233–1242. [Google Scholar] [CrossRef]
- Sultana, R.; McBain, A.J.; O’Neill, C.A. Strain-Dependent Augmentation of Tight-Junction Barrier Function in Human Primary Epidermal Keratinocytes by Lactobacillus and Bifidobacterium Lysates. Appl. Environ. Microbiol. 2013, 79, 4887–4894. [Google Scholar] [CrossRef]
- Ong, J.S.; Taylor, T.D.; Yong, C.C.; Khoo, B.Y.; Sasidharan, S.; Choi, S.B.; Ohno, H.; Liong, M.T. Lactobacillus Plantarum USM8613 Aids in Wound Healing and Suppresses Staphylococcus aureus Infection at Wound Sites. Probiotics Antimicrob. Proteins 2020, 12, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Khmaladze, I.; Butler, É.; Fabre, S.; Gillbro, J.M. Lactobacillus reuteri DSM 17938—A Comparative Study on the Effect of Probiotics and Lysates on Human Skin. Exp. Dermatol. 2019, 28, 822–828. [Google Scholar] [CrossRef]
- Di Marzio, L.; Cinque, B.; De Simone, C.; Cifone, M.G. Effect of the Lactic Acid Bacterium Streptococcus thermophilus on Ceramide Levels in Human Keratinocytes in Vitro and Stratum Corneum in Vivo. J. Investig. Dermatol. 1999, 113, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Dou, J.; Feng, N.; Guo, F.; Chen, Z.; Liang, J.; Wang, T.; Guo, X.; Xu, Z. Applications of Probiotic Constituents in Cosmetics. Molecules 2023, 28, 6765. [Google Scholar] [CrossRef] [PubMed]
- Merenstein, D.; Pot, B.; Leyer, G.; Ouwehand, A.C.; Preidis, G.A.; Elkins, C.A.; Hill, C.; Lewis, Z.T.; Shane, A.L.; Zmora, N.; et al. Emerging Issues in Probiotic Safety: 2023 Perspectives. Gut Microbes 2023, 15, 2185034. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K. Animal Testing and Marketing Bans of the EU Cosmetics Legislation. Eur. J. Risk Regul. 2015, 6, 613–621. [Google Scholar] [CrossRef]
- Horlacher, N.; Oey, I.; Agyei, D. Learning from Tradition: Health-Promoting Potential of Traditional Lactic Acid Fermentation to Drive Innovation in Fermented Plant-Based Dairy Alternatives. Fermentation 2023, 9, 452. [Google Scholar] [CrossRef]
- Truong, V.L.; Jeong, W.S. Red Ginseng (Panax Ginseng Meyer) Oil: A Comprehensive Review of Extraction Technologies, Chemical Composition, Health Benefits, Molecular Mechanisms, and Safety. J. Ginseng Res. 2022, 46, 214–224. [Google Scholar] [CrossRef]
- Gupta, S.; Abu-Ghannam, N. Probiotic Fermentation of Plant Based Products: Possibilities and Opportunities. Crit. Rev. Food Sci. Nutr. 2012, 52, 183–199. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Pyar, H.; Kok, P. Confirmation of the Identity of Lactobacillus Species Using Carbohydrate Fermentation Test (API 50 CHL) Identification System. J. Appl. Sci. 2019, 19, 797–802. [Google Scholar] [CrossRef]
- Zaidan, M.; Noor Rain, A.; Badrul, A.; Adlin, A.; Norazah, A.; Zakiah, I. In Vitro Screening of Five Local Medicinal Plants for Antibacterial Activity Using Disc Diffusion Method. Trop. Biomed. 2005, 22, 165–170. [Google Scholar] [PubMed]
- Palepou, M.; Johnson, A.; Cookson, B.; Beattie, H.; Charlett, A.; Woodford, N. Evaluation of Disc Diffusion and Etest for Determining the Susceptibility of Staphylococcus aureus to Mupirocin. J. Antimicrob. Chemother. 1998, 42, 577–583. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). M07-A10: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Tenth Edition; Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2018. [Google Scholar]
- Stewart, P.S.; William, M.R. The Use of Crystal Violet to Assess Biofilm Formation in the Laboratory. J. Microbiol. Methods 2001, 44, 369–373. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Zhang, S.; Li, Y. Evaluation of the Effect of Lactobacillus Strains on the Adhesion of Candida Albicans to Vaginal Epithelial Cells. J. Appl. Microbiol. 2017, 123, 1041–1050. [Google Scholar] [CrossRef]
- Khoa, D.B.; Takeda, M. Expression Analysis of Inhibitor of Apoptosis and Related Caspases in the Midgut and Silk Gland of the Greater Wax Moth, Galleria mellonella, during Metamorphosis and under Starvation. Gene 2012, 510, 133–141. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, C.; Du, G.; Chen, J. Enhanced Acid Tolerance in Lactobacillus casei by Adaptive Evolution and Compared Stress Response during Acid Stress. Biotechnol. Bioprocess Eng. 2012, 17, 283–289. [Google Scholar] [CrossRef]
- Mulaw, G.; Sisay Tessema, T.; Muleta, D.; Tesfaye, A. In Vitro Evaluation of Probiotic Properties of Lactic Acid Bacteria Isolated from Some Traditionally Fermented Ethiopian Food Products. Int. J. Microbiol. 2019, 2019, 7179514. [Google Scholar] [CrossRef]
- Hao, F.; Fu, N.; Ndiaye, H.; Woo, M.W.; Jeantet, R.; Chen, X.D. Thermotolerance, Survival, and Stability of Lactic Acid Bacteria after Spray Drying as Affected by the Increase of Growth Temperature. Food Bioprocess Technol. 2021, 14, 120–132. [Google Scholar] [CrossRef]
- Baig, M.A.; Turner, M.S.; Liu, S.Q.; Al-Nabulsi, A.A.; Shah, N.P.; Ayyash, M.M. Potential Probiotic Pediococcus pentosaceus M41 Modulates Its Proteome Differentially for Tolerances Against Heat, Cold, Acid, and Bile Stresses. Front. Microbiol. 2021, 12, 731410. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lim, S.M. Bile salts degradation and cholesterol assimilation ability of Pediococcus pentosaceus MLK67 isolated from mustard leaf Kimchi. Korean J. Microbiol. 2011, 47, 231–240. [Google Scholar]
- Raccach, M.; Tilley, H.R. Thermal inactivation of the frozen thawed traditional meat starter culture, Pediococcus pentosaceus, in a meat model system. Meat Sci. 2006, 72, 751–756. [Google Scholar] [CrossRef]
- Burianek, L.L.; Yousef, A.E. Solvent Extraction of Bacteriocins from Liquid Cultures. Lett. Appl. Microbiol. 2000, 31, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.; Guan, Y.; Yi, H.; Lai, S.; Sun, Y.; Cao, S. Antibacterial activity and mechanism of plant flavonoids to gram-positive bacteria predicted from their lipophilicities. Sci. Rep. 2021, 11, 10471. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fugaban, J.I.I.; Vazquez Bucheli, J.E.; Kim, B.; Holzapfel, W.H.; Todorov, S.D. Safety and Beneficial Properties of Bacteriocinogenic Pediococcus acidilactici and Pediococcus pentosaceus Isolated from Silage. Lett. Appl. Microbiol. 2021, 73, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Junqueira, J.C. Galleria mellonella as a model host for human pathogens: Recent studies and new perspectives. Virulence 2012, 3, 474–476. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Curtis, A.; Binder, U.; Kavanagh, K. Galleria mellonella Larvae as a Model for Investigating Fungal—Host Interactions. Front. Fungal Biol. 2022, 3, 893494. [Google Scholar] [CrossRef]
- Cutuli, M.A.; Petronio Petronio, G.; Vergalito, F.; Magnifico, I.; Pietrangelo, L.; Venditti, N.; Di Marco, R. Galleria mellonella as a consolidated in vivo model hosts: New developments in antibacterial strategies and novel drug testing. Virulence 2019, 10, 527–541. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Da Silva Vale, A.; de Melo Pereira, G.V.; de Oliveira, A.C.; de Carvalho Neto, D.P.; Herrmann, L.W.; Karp, S.G.; Soccol, V.T.; Soccol, C.R. Production, Formulation, and Application of Postbiotics in the Treatment of Skin Conditions. Fermentation 2023, 9, 264. [Google Scholar] [CrossRef]
- Wang, Y.; Kuo, S.; Shu, M.; Yu, J.; Huang, S.; Dai, A.; Two, A.; Gallo, R.L.; Huang, C.M. Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: Implications of probiotics in acne vulgaris. Appl. Microbiol. Biotechnol. 2014, 98, 411–424. [Google Scholar] [CrossRef]
- Scharschmidt, T.C.; Fischbach, M.A. What lives on our skin: Ecology, genomics and therapeutic opportunities of the skin microbiome. Drug Discov. Today Dis. Mech. 2013, 10, e83–e89. [Google Scholar] [CrossRef]
Acid Produced from | P. pentosaceus THG-219 | P. pentosaceus DSM 20336T |
---|---|---|
Glycerol | w 2 | − 3 |
D-Xylose | + 1 | − |
Lactose | − | + |
Melibiose | − | + |
Sucrose | − | + |
D-raffinose | + | − |
Strain | Minimum Inhibition Concentration (mg/mL) | |
S. epidermidis KCTC 1917 | S. aureus KCTC 3881 | |
P. pentosaceus THG-219 | 1.25 | 0.625 |
P. pentosaceus KACC 12311 | 2.5 | 0.625 |
Minimal Bactericidal Concentration (mg/mL) | ||
S. epidermidis KCTC 1917 | S. aureus KCTC 3881 | |
P. pentosaceus THG-219 | 5 | 5 |
P. pentosaceus KACC 12311 | 5 | 5 |
Indicator | Zone of Inhibition (mm) | ||
---|---|---|---|
CFS 20 mg/disc | EA 20 mg/disc | AF 20 mg/disc | |
S. epidermidis KCTC 1917 | 15 | 20 | nd * |
S. aureus KCTC 3881 | 19 | 22 | nd * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.; Zheng, Q.; Nguyen, T.T.M.; Yi, G.-S.; Yang, S.-J.; Yi, T.-H. Assessment of Antimicrobial Activity and Safety of Pediococcus pentosaceus Isolated from Ginseng as a Functional Cosmetic Ingredient. Microorganisms 2025, 13, 1093. https://doi.org/10.3390/microorganisms13051093
Jin X, Zheng Q, Nguyen TTM, Yi G-S, Yang S-J, Yi T-H. Assessment of Antimicrobial Activity and Safety of Pediococcus pentosaceus Isolated from Ginseng as a Functional Cosmetic Ingredient. Microorganisms. 2025; 13(5):1093. https://doi.org/10.3390/microorganisms13051093
Chicago/Turabian StyleJin, Xiangji, Qiwen Zheng, Trang Thi Minh Nguyen, Gyeong-Seon Yi, Su-Jin Yang, and Tae-Hoo Yi. 2025. "Assessment of Antimicrobial Activity and Safety of Pediococcus pentosaceus Isolated from Ginseng as a Functional Cosmetic Ingredient" Microorganisms 13, no. 5: 1093. https://doi.org/10.3390/microorganisms13051093
APA StyleJin, X., Zheng, Q., Nguyen, T. T. M., Yi, G.-S., Yang, S.-J., & Yi, T.-H. (2025). Assessment of Antimicrobial Activity and Safety of Pediococcus pentosaceus Isolated from Ginseng as a Functional Cosmetic Ingredient. Microorganisms, 13(5), 1093. https://doi.org/10.3390/microorganisms13051093