Treatment of Leishmania infantum Infections in Dogs
Abstract
:1. Introduction
2. Leishmanistatic Treatment
2.1. Allopurinol
2.1.1. Initial Treatment of Dogs with Manifest Leishmaniosis
2.1.2. Maintenance Treatment of Dogs Infected with L. infantum
Design | Dosage | Length | Dogs | Control Intervals | Outcome | Adverse Effects | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | O | Incl. | Excl. | Clinical Signs | Laboratory Alterations | Parasite Detection | ||||||
Indirect | Direct | |||||||||||
uncontrolled | AL 10 mg/kg /day | 2–24 m | 2–24 m | 10 | 1 (renal failure) | every 1–2 m initially, then longer | remission within 2–6 m in 9/10 dogs, relapse after 2–4 w of drug withdrawal in 3/4 dogs | normalization of hct in 1/3 dogs within 4 m, glob in 3/10 dogs, alb in 5/8 dogs | persistent high IgG/IgG2 in 8/10 dogs, decrease in IgG1 | pos. PCR/cultivation in LN of 8/9 and in PB of 4/9 dogs after clin. improvement | none | [41] |
placebo- controlled randomized blinded | AL 10 mg/kg q12h | 4 m | 4 m | 37 | 3 (renal failure) | every month | remission within 4 m in 1/34 dogs, reduction * of 11/13 signs | reduction * of 7/23 alterations | decrease * in IFAT titer/ELISA level, neg. in 2/34 dogs | decrease * in load (cytology) in BM and LN, persistent pos. BM PCR in all dogs | none | [44] |
uncontrolled | AL 10 mg/kg q12h | 90 d | 90 d | 6 | -- | 0, 90 d | score reduction * | slight improvement in serum protein pattern, worsening in 2/6 dogs | no * change in IFAT titer; pos. in 6/6 dogs | decrease in load (PCR) in skin *, PB and LN, re-increase in 3 dogs after 90 d | n.a. | [46] |
uncontrolled | AL 20 mg/kg q12h | until remission | 4–7 m | 19 | -- | every month | remission within 2 m | difference * in hb, hct (normalization in anemic dogs within 3 m), tp, alb, a/g, decrease * of CRP, HP, re-increase * of CRP after T | normalization of γ-glob within 6 m | n.a. | n.a. | [49] |
controlled experimental | AL 20 mg/kg /day | 3 m | 17 m | 6 | 1 (renal failure) | 0, 3, 5, 7, 10, 17 m | remission within 1 m | normalization of hct, wbc, a/g | no * difference in IgG and IgM | decrease * in load (PCR) in spleen | n.a. | [39] |
14 m | 0, 1, 2, 4, 5, 7, 11 m | decrease * of CRP, HP, SAA within 1 m | [38] | |||||||||
controlled | AL 10 mg/kg q12h | 18 m | n.a. | 19 | -- | before and after T | n.a. | increase* of CD4+ T-cells and CD4+/CD8+ ratio, decrease * of CD8+ T-cells | n.a. | n.a. | n.a. | [53] |
uncontrolled | AL 10–15 mg/kg q12h | 2–24 m | 2–36 m | 31 (9 w/o clin. signs) | 3 (renal failure, ascites) | ⌀ every 3 m | remission of skin lesion (11/12 dogs) within 1–5 m, lameness (5/5 dogs) within 2–3 m, reduced general condition (4/5 dogs) within 2 m | normalization of increased crea/urea in 1/3 dogs within 3 m and decreased a/g in 14/23 dogs within 1–16 m | decrease in IFAT titer of at least 3 steps in 10/31 dogs within 5–20 m, neg. ELISA in 7/27 dogs within 2–25 m | n.a. | xanthinuria | [40] |
controlled randomized | AL 20 mg/kg q24h | 90 d | 360 d (euth.) | 8 | -- | 0, 63, 90, 180, 360 d | improvement | n.a. | n.a. | decrease in load (PCR) in BM within 63 d, then re-increase; all dogs pos. after 1 y; partially pos. in other organs after euth. | none | [45] |
retrospective | AL at least 20 mg/kg /day | at least 3 m | several years | 46 | n.a. | 3, 6 m, every 6 m | clinical remission in 30/46 dogs within 3 m, additional leishmanicidal T in 16/46 dogs (after 0–23 m), overall survival time 6.4 y | n.a. | n.a. | n.a. | [43] | |
placebo- controlled randomized blinded | AL 20 mg/kg q24h | 1 w per month (8 m) | 1 y | 25 w/o signs | 6 (lost to follow-up) | 0, 1 y | persistent asymptomatic | n.a. | pos. IFAT in 1/19 initially neg. dogs | neg. BM PCR in 1/19 initially pos. dogs | n.a. | [60] |
2.1.3. Metaphylactic and Prophylactic Use
Design | Dosage | Length | Dogs | Control Intervals | Outcome | Adverse Effects | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | O | Incl. | Excl. | Clinical Signs | Laboratory Alterations | Parasite Detection | ||||||
Indirect | Direct | |||||||||||
controlled not randomized | AL 15 mg/kg q12h | until clin. remission (1–20 m) | 9 m | 11 | 9 (poor response) | 0, 9 m | poor improvement (and excl.) in 9/11 dogs within 1 m, remission in 2/11 dogs within 9 and 20 m | n.a. | neg. IFAT in 1/11 dogs | n.a. | n.a. | [54] |
MA 200 mg/kg q24h at 2 d intervals SC | until clin. remission or decreased IFAT titer (3–6 m) | 9–60 m | 40 | 18 (renal failure, relapse) | 0, 9 m | remission in 22/40 dogs, relapse (worsening condition) in 6/40 dogs | n.a. | neg. IFAT in 12/40 dogs | n.a | n.a. | ||
MA 100 mg/kg q24h SC +AL 15 mg/kg q12h | 1 m 9 m | 9–60 m | 45 | 8 (renal failure, relapse) | 0, 9 m | remission in 37/45 dogs (more * dogs than in other groups), relapse (titer increase) in 5/45 dogs | n.a. | neg. IFAT in 6/45 dogs | n.a | n.a. | ||
controlled random allocation | AL 15 mg/kg q12h | 60 d | 60 d | 6 | -- | 0, 10, 30, 60 d | improvement (start after 20 d), all dogs in good health | decrease * of CRP after 60 d, CP after 30 d, no * difference in SAA and HP | (no *) decrease in γ-glob | n.a. | n.a. | [48] |
MA 100 mg/kg q24h SC +AL 15 mg/kg q12h | 20 d 50 d | 50 d | 6 | -- | 0, 10, 20, 35, 50 d | improvement (start after 20 d), all dogs in good health | decrease * of CRP, CP after 10 d, slight re-increase of CRP after 50 d, no * difference in SAA, HP | (no *) decrease in γ-glob | n.a. | n.a. | ||
controlled not randomized | AL 10 mg/kg q12h | 180 d | 180 d | 9 | 4 (several reasons) | 0, 60, 120, 180 d | score reduction *, less effective than combined T | improvement, less effective than combined T | n.a. | reduction * of pos. BM cultures (1/4 initially pos. dogs) and sandfly infectivity (0/3 initially infective dogs) after 180 d | n.a. | [18] |
MA 35 mg/kg q12h SC | 28 d | 180 d | 11 | 2 (several reasons) | 0, 60, 120, 180 d | score reduction *, less effective than combined T | improvement, less effective than combined T | n.a. | reduction * of pos. BM cultures (1/9 initially pos. dogs) and sandfly infectivity (1/6 initially infective dogs) after 180 d | n.a. | ||
MA 35 mg/kg q12h SC +AL 10 mg/kg q12h | 28 d 180 d | 180 d | 12 | -- | 0, 60, 120, 180 d | score reduction *, more effective * than other T | improvement, more effective * than other T | n.a. | reduction * of pos. BM cultures (3/8 initially pos. dogs) and sandfly infectivity (0/8 initially infective dogs) after 180 d | n.a. | ||
retrospective | AL n.a. | n.a. | n.a. | 30 | -- | n.a. | longer * survival in dogs of all 3 groups compared to | identification of proteinuria, | n.a. | n.a. | n.a. | [15] |
MA n.a. | n.a. | n.a. | 1 | -- | n.a | untreated dogs (n = 14) (survival benefit of 1900 d), w/o difference * between | hypoalbuminemia, renal azotemia and lymphopenia as prognostic | n.a. | n.a. | n.a. | ||
MA + AL n.a. | n.a. | n.a. | 27 | -- | n.a. | dogs treated with AL and MA + AL | parameters in all treated dogs | n.a. | n.a. | n.a. | ||
retrospective | AL 15 mg/kg q12h | 12 m | 12 m at least | 6 | -- | ⌀ every 2 m | improvement in 6/6 dogs within 2 m (follow-up data beyond O: relapse after 2–11 m in 4/6 dogs) | remission in 2/6 dogs, persistent abnormal serum protein pattern in 4/6 dogs (relapse after O) | n.a. | pos. LN cytology during O in most available samples (no more detail) | n.a. | [55] |
MA 50 mg/kg q12h SC | until lab. remission | 12 m at least | 6 | -- | ⌀ every 2 m | remission in 5/6 dogs within 1 m, in 1/6 within 2–3 m, relapse in 3/6 dogs after 7–11 m | remission in 6/6 dogs within 2–4 m, lab. relapse prior to clin. relapse in 2/3 dogs | n.a. | pos. LN cytology in all 3/3 relapsed dogs | n.a. | ||
MA 37.5 mg/kg q6h SC | 21 d | 12 m at least | 6 | -- | ⌀ every 2 m | improvement in 6/6 dogs within 1.5 m, relapse in 3/6 dogs after 11–12 m, worsening of 1/6 dogs with renal failure after 8 m | remission in 1/6 dogs, persistent abnormal serum protein pattern in 5/6 dogs, relapse in 1/6 dogs after 12 m | n.a. | neg. LN cytology after end of T, gradually pos. afterwards | n.a. | ||
MA 50 mg/kg q12h SC with or followed +AL 15 mg/kg q12h | 8 w/until lab. remission 6 m after MA | 12 m at least | 6 | -- | ⌀ every 2 m | remission in 6/6 dogs within 1–3 m, no relapse | remission in 6/6 dogs within 2–5 m, no relapse | n.a. | neg. LN cytology (all of the few available samples) | n.a. | ||
controlled not randomized | AL 20 mg/kg q12h | 28 d | 29 d | 15 | -- | 0, 29 d | score reduction * of 38%, no remission, no * difference between T groups | increase * in low rbc, persistent normal wbc, crea, urea, ALT, persistent abnormal tp, glob, a/g, no * difference in IL-2, -6, -10 and IFN-γ levels | increase * in IFAT titer | n.a. | none | [56] |
MI 2 mg/kg q24h | 28 d | 29 d | 15 | -- | 0, 29 d | score reduction * of 16%, no remission, no * difference between T groups | no * increase in low rbc, persistent normal wbc, crea, urea, ALT, persistent abnormal tp, glob, a/g, no * difference in IL-2, -6, -10 and IFN-γ levels | no * increase in IFAT titer | n.a. | n.a. | ||
MI 2 mg/kg q24h +AL 20 mg/kg q12h | 28 d | 29 d | 15 | -- | 0, 29 d | score reduction * of 35%, no remission, no * difference between T groups | increase * in low rbc and a/g, persistent normal wbc, crea, urea, ALT, persistent abnormal tp, glob, a/g, no * difference in IL-2, -6, -10 and IFN-γ levels | no * increase in IFAT titer | n.a. | none for AL | ||
controlled not randomized | AL 20 mg/kg q12h | 28 d | 29 d | 15 | -- | 0, 29 d | score reduction * of 58%, remission in 1/15 dogs, similar efficacy of all T | n.a. | no * decrease in IFAT titer | decrease * in load (PCR) in skin; pos. in 15/15 dogs | none | [57] |
MI 2 mg/kg q24h | 28 d | 29 d | 15 | -- | 0, 29 d | score reduction * of 37%, similar efficacy of all T | n.a. | no * decrease in IFAT titer | decrease in load (PCR) in skin; pos. in 15/15 dogs | n.a. | ||
MI 2 mg/kg q24h +AL 20 mg/kg q12h | 28 d | 29 d | 15 | -- | 0, 29 d | score reduction * of 53%, similar efficacy of all T | n.a. | no * decrease in IFAT titer | decrease * in load (PCR) in skin; pos. in 15/15 dogs | none for AL |
2.1.4. Adverse Effects
2.1.5. Drug Resistance Potential
2.2. Conclusions on Leishmanistatic Treatment
3. Leishmanicidal Treatment
3.1. Meglumine Antimoniate
3.1.1. Initial Treatment
Design | Dosage | Length | Dogs | Control Intervals | Outcome | Adverse Effects | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | O | Incl. | Excl. | Clinical Signs | Laboratory Alterations | Parasite Detection | ||||||
Indirect | Direct | |||||||||||
experimental uncontrolled | MA 75 mg/kg q12h SC | 2 × 10 d (10 d apart) | 39–63 w | 6 | 1 (hepatic, renal failure) | 0, 31, 37, 60, 90 d, every 3 m | temporary remission, relapse in 5/5 dogs after 6‣10 m | normalization of tp and hematological alterations, (re-)increase in tp and γ-glob after 3 m | decrease in (dot-)ELISA and WB level, re-increase after 3–10 m | pos. LN cultivation between 1–42 d after T until end, PB pos. in 1 dog after 28 w | n.a. | [87] |
uncontrolled | MA 75 mg/kg q12h SC | 21 d | 180 d (euth.) | 7 (2/7 w/o signs) | -- | every 30 d | remission in all dogs within 60 d, relapse in 2 dogs after 150 d | remission of hematological and urinary alterations in all dogs within 60 d | n.a. | neg. LN/BM cytology until 180 d, then pos. in 4/7 dogs, pos. spleen or liver cytology or cultivation after 180 d in 5/7 dogs | n.a. | [89] |
uncontrolled | MA 100 mg/kg q24h SC | 2 × 28 d (1 m apart) | 210 d | 6 | -- | 0, 60, 120, 210 d | score reduction in 5/6 dogs, relapse in 1 dog at end O | n.a. | steady IFAT titers (IgG/-1/-2) in most dogs, increase in IgG1 in relapsed dog | pos. PCR of BM in 2/6, LN in 5/6, hair in 2/6, PB in 0/6 dogs (individual variations in load) | n.a. | [90] |
controlled not randomized | MA 100 mg/kg q24h SC +AL 10 mg/kg q12h | 30 d 1 y | 1 y | 28 (17/28 mild, 11/28 severe signs) | 2 (death) | 0, 1, 6, 12 m | remission in all dogs | no * difference in CD4/CD8+ ratio and CD8+, CD21+ to healthy dogs, difference * in CD4+ course between severely sick and healthy dogs | pos. Leishmania skin test in 11/11 initially neg. severely sick dogs | n.a. | n.a. | [50] |
uncontrolled | MA 100 mg/kg q24h SC +AL 10 mg/kg /day | 30 d 2 y | 2 y at least | 18 | -- | 0, 1 m, then every 3 m | improvement in all dogs between 1 and 6 m, persistent remission until end in 11/18 dogs, relapse after 9–24 m in 7/18 dogs | n.a. | decrease in IFAT titer after 1 m | decrease in load (PCR) in PB, skin and LN within 1–3 m, persistent * LN load in 50% of cured dogs, re-increase in relapsed dogs, neg. PCR of PB in 9/18, LN in 5/18, skin in 18/18 dogs | none | [94] |
uncontrolled | MA 80–100 mg/kg q24h SC +AL 10 mg/kg q12h | 1 m 12 m | 12 m | 37 | 8 (lost to follow-up) | 0, 30, 180, 365 d | improvement in all dogs within 30 d, remission within 6–12 m in most dogs, relapse in 1/37 dogs after 180 d | improvement in all dogs within 30 d, remission in 18/37 dogs after 180 d and 19/29 after 365 d, decrease * of UP/C, difference * in tp, alb, γ-glob, hct, hb, relapse in 1/37 dogs after 180 d | decrease * in ELISA level after 30 d, 6 m and 1 y, increase in relapsed dogs, neg. ELISA in 5 dogs during 1 y | decrease * in load (PCR) in PB within 30 d, increase in dogs with relapse and half AL dose, pos. PB PCR after 1 y in 9 previously neg. dogs | n.a. | [95] |
retrospective | MA 100 mg/kg q24h SC +AL 10 mg/kg q12h | 4 w at least 1 y | 2–9 y | 23 | -- | 0, 1, 3, 6 m, every 6 m | remission within 3 m in 20/23 dogs; durable in 8/23, relapse in 3/23 (>2 y), emergence of immune-mediated lesions in 8/23 (within 2 y), repeated MA cycle(s) in 10/23 dogs | normalization of tp and γ-glob within 1–3 m | slow decrease in ELISA level, neg. in 4/23 dogs after 1 y | n.a. | urolithiasis | [96] |
3.1.2. Adverse Effects
3.1.3. Drug Resistance Potential
3.2. Miltefosine
3.2.1. Initial Treatment
Design | Dosage | Length | Dogs | Control Intervals | Outcome | Adverse Effects | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | O | Incl. | Excl. | Clinical Signs | Laboratory Alterations | Parasite Detection | ||||||
Indirect | Direct | |||||||||||
uncontrolled | MI 2 mg/kg q24h | 30 d | 1 y | 18 | -- | every month | improvement in 90% of dogs within 1 m, relapse in some dogs after 9–12 m | n.a. | decrease in titer within 1 m | decrease in load (PCR) in PB and LN (mostly between 2–4 m and 5–6 m), re-increase in some dogs with relapse after 9–12 m | n.a. | [132] |
uncontrolled | MI 2 mg/kg q24h | 28 d | 56 d | 82 efficacy 94 safety | -- | 0, 14, 28, 42, 56 d | score reduction * of 61%, remission in 20% of dogs | normalization of hematological alterations in 50% of dogs but without * difference in number of dogs with specific alterations, less * dogs with low alb and a/g | decrease in IFAT titer (2-fold in 37%, 4-fold in 4% of dogs) | neg. BM cytology in 17/33 initially pos. dogs | mainly GI | [124] |
controlled not randomized | MI 100 mg/dog /day | 28 d | 2 y (euth.) | 5 | overall 2 (death after 22, 23 m) | 0 d, after T, every 3 m | improvement *, remission in 7/14 dogs after 2 y | persistent abnormal urea, increase in bili in group 3 after T, decrease * of IL-4 in groups 1 and 3, no * change in IL-10 and IFN-γ | decrease * of IgG (ELISA) after 180 d | decrease * in BM load (PCR) in 66% of dogs within 3 m, (re-)increase * in all dogs after 6 m, pos. spleen PCR in 13/14 dogs after 2 y (euth.) | vomiting | [133] |
MI 200 mg/dog /day | 28 d | 2 y (euth.) | 5 | |||||||||
MI 100 mg/dog /day | 45 d | 2 y (euth.) | 4 | |||||||||
uncontrolled | MI 2 mg/kg q24h | 28 d | 3 m | 35 | -- | 0, 2, 4, 6, 8, 10, 12 w | weight gain *, score reduction * of 68%, improvement in 94% of dogs | n.a. | n.a. | decrease * in load (PCR) in skin (99%) and sandfly infectivity (18/35 to 9/35 dogs) | none | [131] |
controlled randomized observer-blinded | MI 2 mg/kg q24h | 28 d | 6 m | 16 | -- | 0, 1, 2, 3, 4, 5, 6 m | no score reduction | persistent increased glob, no change in crea | n.a. | no * decrease in load (PCR) in spleen | n.a. | [140] |
controlled randomized | MI 2 mg/kg q24h | 28 d | 6 w | 60 | overall 29 MI+MA | every 14 d | score reduction * of 51%, no * intergroup difference | steady cbc and biochemistry w/o * intergroup difference in course, lower a/g *, higher tp * than MA dogs, increased γ-GT in 2% of dogs | decrease in IFAT titer in 9% of dogs, no correlation with clin. score | neg. BM cytology in 90%, no * intergroup difference | GI, general condition, PU/PD | [88] |
MA 100 mg/kg q24h or split q12h SC | 28 d | 6 w | 25 34 | (lost to follow-up) | every 14 d | score reduction * of 63%, no * intergroup difference | steady cbc and biochemistry w/o * intergroup difference in course, higher a/g * and lower tp * than MI dogs, increased γ-GT in 20% and crea in 11% of dogs | decrease in IFAT titer in 33% of dogs; no correlation with clin. score | neg. BM cytology in 91%, no * intergroup difference | GI, general condition, others (e.g., injection- site) | ||
controlled not randomized | MI 2 mg/kg q24h | 28 d | 29 d | 15 | -- | 0, 29 d | score reduction * of 3.5 points, no * difference to MI+AL | no * reduction of score, more dogs with proteinuria (11/15 to 12/15 dogs), no * difference in UP/C and USG, no * change of urinary NGAL, CisC and microalb | n.a. | n.a. | none | [134] |
MI 2 mg/kg q24h +AL 20 mg/kg q12h | 28 d | 29 d | 15 | -- | 0, 29 d | score reduction * of 6.1 points, no * difference to MI | no * reduction of score, increase * of alb, less dogs with proteinuria (13/15 to 11/15), no * difference in UP/C and USG, decrease * of NGAL, no * change in CisC and microalb | n.a. | n.a. | none | ||
uncontrolled | MI 2 mg/kg q24h +AL 10 mg/kg /day | 30 d 12 m | 12 m | 28 | 4 (adv. effects, death) | 0, 1, 3, 6, 9, 12 m | improvement * within 1 m, re-treatment in 8/24 dogs (each 4 dogs with and w/o relapse) within 6 m | n.a. | decrease in IFAT titer within 1 m | decrease * of load (PCR) in LN within 1 m; after re-treatment of dogs w/o relapse decrease * in LN | GI, reduced rbc and wbc | [135] |
controlled randomized | MI 2 mg/kg q24h +AL 10 mg/kg q12h | 28 d 180 d | 180 d | 18 | 3 (death, relapse) | 0, 30, 60, 90, 180 d | score reduction of 62% within 2 m, no * intergroup difference, relapse in 4 dogs between 90 and 180 d | lower * hct, hb, rbc, alb, glob, a/g than other group after 90 and 180 d | decrease or persistence of IFATtiter | pos. BM PCR in 12/14 dogs after 2 m, LN cytology in 1 dog, no * decrease in load in BM within 60 d, pos. LN cytology in 4/4 relapsed dogs | GI | [137] |
MI 1.2 mg/kg q24h, then 2.5 mg/kg q24h +AL 10 mg/kg q12h | 5 d 25 d 180 d | 180 d | 16 | -- | 0, 30, 60, 90, 180 d | score reduction of 72% within 2 m, no * intergroup difference | higher * hct, hb, rbc, alb, glob, a/g than other group after 90 and 180 d | decrease or persistence of IFAT titer | pos. BM (PCR) in 7/14 dogs after 2 m, LN cytology in 1 dog, no * decrease in load in BM within 60 d | GI | ||
retrospective | MI 2 mg/kg q24h +AL 10 mg/kg q12h | 28 d 2–12 m | 3.2–9 y | 173 | -- | 12 irreg. timepoints | improvement * (after 3 m) in 170, remission (16.7 m) in 152, relapse (27.2 m) in 30/173 dogs, improvement in 29/30 re-treated dogs (after 8.6 m), repeated relapse in 3/30 dogs | improvement (each alteration *) in 171/173 dogs (after mean 4.1 m) and 28/30 relapsed dogs (after mean 11 m) | decrease in ELISA level (after 2.6 m; 7.8 m after re-treatment), neg. at some point in 158 dogs (24/30 re- treated dogs) | n.a. | nausea/ vomiting | [138] |
uncontrolled | MI 2 mg/kg q24h +/− AL 10–15 mg/kg q12h +/-immuno- therapy | 28 d 30–180 d | 180 d | 21 (3/21 w/o signs) | -- | 0, 30, 180 d | progressive score reduction, increase in 3 dogs after T, less dogs in severe disease stages | decrease in inflammatory skin response, less dogs in severe disease stages | n.a. | decrease * in load (PCR) in skin in all dogs within 1 m, re-increase in 3/21 dogs after 6 m, neg. skin PCR in 8/21 dogs | n.a. | [136] |
controlled randomized | MI 2 mg/kg q24h +AL 10 mg/kg q12h | 28 d 7 m | 7 m | 37 | 3 (lost to follow-up) | 0, 14, 28, 84, 140, 196 d | improvement * within 3 m, score reduction of 90%, no * intergroup difference | increase in a/g within 3 m, no * intergroup difference in course of a/g, γ-glob, UP/C | decrease * in IFAT titer within 1 and 3 m, no * intergroup difference | decrease * in load (PCR) in BM within 1 m, intergroup difference * after 84 d (higher in MI) | none | [91] |
MA 50 mg/kg q12h, SC +AL 10 mg/kg q12h | 28 d 7 m | 7 m | 36 | 4 (lost to follow-up) | 0, 14, 28, 84, 140, 196 d | improvement * within 3 m, score reduction of 84%, no * intergroup difference | increase in a/g within 3 m, no * intergroup difference in course of a/g, γ-glob, UP/C | decrease * in IFAT titer after 3 m, no* intergroup difference | decrease * in load (PCR) in BM within 1 m, intergroup difference * after 84 d (higher in MI) | vomiting, asthenia | ||
retrospective | MI 2 mg/kg q24h +AL 10 mg/kg q24h | 30 d 6 y | 6 y | 9 | -- | 0, 1 m, every 3 m for 2 y, every 12 m | improvement * within 3 m, remission in 6/9 dogs after 1 y, relapse in 4/9 dogs (after 6, 28 and 48 m) | decrease * in IFAT score after 9 m, increase in dogs with relapse | decrease * in load (PCR) in LN within 3 m (35-fold), increase in dogs with relapse | itching (AL) | [70] | |
MA 100 mg/kg q24h SC +AL 10 mg/kg q24h | 30 d 6 y | 6 y | 9 | -- | 0, 1 m, every 3 m for 2 y, every 12 m | improvement * within 1 m, relapse in 1/9 dogs after 1 y remission in 9/9 dogs after 15 m | decrease * in IFAT score after 1 m, increase in dogs with relapse | decrease * in load (PCR) in LN within 1 m (50-fold lower after 3 m) until 9 m, increase in dog with relapse | itching (AL) | |||
controlled not randomized | MI 2 mg/kg q24h +AL 10 mg/kg q12h | 28 d 6 m | 3 m | 10 | 2 (adv. effects) | 0, 30, 90 d | score reduction * within 1 and 3 m, no * intergroup difference | decrease * of HP after 3 m, abnormal CRP in 2/8 dogs, HP in 5/8 dogs, ferr in 7/8 dogs, PON-1 in 1/8 dogs, alb in 3/8 dogs | n.a. | n.a. | vomiting | [93] |
MA 50 mg/kg q12h SC +AL 10 mg/kg q12h | 28 d 6 m | 3 m | 10 + 2 excl. MI | -- | 0, 30, 90 d | score reduction * (all timepoints), no * intergroup difference | difference * in CRP, ferr, PON-1, alb; abnormal CRP in 2/12 dogs, HP in 9/14 dogs, ferr in 9/12 dogs, PON-1 in 0/12 dogs, alb in 3/12 dogs | n.a. | n.a. | acute renal failure | ||
controlled not randomized | MI 2 mg/kg q24h +AL 10 mg/kg q12h | 4 w 6 m at least | 6 m | 6 at risk of hepatic/renal failure | -- | 0, 1, 2, 3, 6 m | remission within 3 m | decrease * and restoration of urea, decrease in ALT/AST, persistent high tp and γ-glob, normalization of α-2-glob within 3 m and urinalysis results, trend to normalization of cytokine gene expression | neg. IFAT in 5/6 dogs after 3 m, in 6/6 dogs after 6 m | neg. LN and BM cytology after 3 m | n.a. | [92] |
MA 100 mg/kg q24h (route not given) +AL 10 mg/kg q12h | 4 w 6 m at least | 6 m | 6 | -- | 0, 1, 2, 3, 6 m | remission within 3 m | normalization ALT/AST, a/g within 2 m, tp and γ-glob within 3 m, trend to normalization of cytokine gene expression | neg. IFAT in 6/6 dogs after 3 m | neg. LN and BM cytology after 3 m | n.a. |
3.2.2. Adverse Effects
3.2.3. Drug Resistance Potential
3.3. Conclusions on Leishmanicidal Treatment
4. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Disclaimer
References
- Moreno, J.; Alvar, J. Canine leishmaniasis: Epidemiological risk and the experimental model. Trends Parasitol. 2002, 18, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Solano-Gallego, L.; Miró, G.; Koutinas, A.; Cardoso, L.; Pennisi, M.G.; Ferrer, L.; Bourdeau, P.; Oliva, G.; Baneth, G.; The LeishVet, G. LeishVet guidelines for the practical management of canine leishmaniosis. Parasites Vectors 2011, 4, 86. [Google Scholar] [CrossRef] [PubMed]
- Fischer, D.; Thomas, S.M.; Beierkuhnlein, C. Temperature-derived potential for the establishment of phlebotomine sandflies and visceral leishmaniasis in Germany. Geospat. Health 2010, 5, 59–69. [Google Scholar] [CrossRef]
- Gradoni, L.; Ferroglio, E.; Zanet, S.; Mignone, W.; Venco, L.; Bongiorno, G.; Fiorentino, E.; Cassini, R.; Grillini, M.; Simonato, G.; et al. Monitoring and detection of new endemic foci of canine leishmaniosis in northern continental Italy: An update from a study involving five regions (2018–2019). Vet. Parasitol. Reg. Stud. Rep. 2022, 27, 100676. [Google Scholar] [CrossRef] [PubMed]
- Morosetti, G.; Toson, M.; Trevisiol, K.; Idrizi, I.; Natale, A.; Lucchese, L.; Michelutti, A.; Ceschi, P.; Lorenzi, G.; Piffer, C.; et al. Canine leishmaniosis in the Italian northeastern Alps: A survey to assess serological prevalence in dogs and distribution of phlebotomine sand flies in the Autonomous Province of Bolzano—South Tyrol, Italy. Vet. Parasitol. Reg. Stud. Rep. 2020, 21, 100432. [Google Scholar] [CrossRef]
- Todeschini, R.; Musti, M.A.; Pandolfi, P.; Troncatti, M.; Baldini, M.; Resi, D.; Natalini, S.; Bergamini, F.; Galletti, G.; Santi, A.; et al. Re-emergence of human leishmaniasis in northern Italy, 2004 to 2022: A retrospective analysis. Eurosurveillance 2024, 29, 2300190. [Google Scholar] [CrossRef]
- Magri, A.; Galuppi, R.; Fioravanti, M.; Caffara, M. Survey on the presence of Leishmania sp. in peridomestic rodents from the Emilia-Romagna Region (North-Eastern Italy). Vet. Res. Commun. 2023, 47, 291–296. [Google Scholar] [CrossRef]
- Aleem, M.T.; Shaukat, A.; Hussain, J.; Ali, H.; Zaman, M.; Saeed, Z.; Abbas, R.; Ijaz, A.; Shahid, Z.; Mohsin, M. A review on recent advancement in the molecular diagnostics of Leishmania. J. Hell. Vet. Med. Soc. 2023, 74, 5547–5564. [Google Scholar]
- Saridomichelakis, M.N. Advances in the pathogenesis of canine leishmaniosis: Epidemiologic and diagnostic implications. Vet. Dermatol. 2009, 20, 471–489. [Google Scholar] [CrossRef]
- Baneth, G.; Petersen, C.; Solano-Gallego, L.; Sykes, J.E. 96—Leishmaniosis. In Greene’s Infectious Diseases of the Dog and Cat, 5th ed.; Sykes, J.E., Ed.; W.B. Saunders: Philadelphia, PA, USA, 2021; pp. 1179–1202. [Google Scholar]
- Iatta, R.; Paltrinieri, S.; Cavalera, M.A.; Scavone, D.; Otranto, D.; Zatelli, A. Assessment of circulating immune complexes in canine leishmaniosis and dirofilariosis. Vet. Res. Commun. 2023, 47, 707–712. [Google Scholar] [CrossRef]
- Proverbio, D.; Spada, E.; de Giorgi, G.B.; Perego, A.R. Proteinuria reduction after treatment with miltefosine and allopurinol in dogs naturally infected with leishmaniasis. Vet. World 2016, 9, 904–908. [Google Scholar] [CrossRef] [PubMed]
- Osuna, C.; Parody, N.; Cacheiro-Llaguno, C.; Renshaw-Calderón, A.; Carnés, J. Laboratory validation of an ELISA method to measure circulating immune complexes levels in canine visceral leishmaniasis. Vet. Immunol. Immunopathol. 2022, 254, 110518. [Google Scholar] [CrossRef] [PubMed]
- Solano-Gallego, L.; Koutinas, A.; Miró, G.; Cardoso, L.; Pennisi, M.G.; Ferrer, L.; Bourdeau, P.; Oliva, G.; Baneth, G. Directions for the diagnosis, clinical staging, treatment and prevention of canine leishmaniosis. Vet. Parasitol. 2009, 165, 1–18. [Google Scholar] [CrossRef]
- Geisweid, K.; Mueller, R.; Sauter-Louis, C.; Hartmann, K. Prognostic analytes in dogs with Leishmania infantum infection living in a non-endemic area. Vet. Rec. 2012, 171, 399. [Google Scholar] [CrossRef]
- Rhalem, A.; Sahibi, H.; Lasri, S.; Jaffe, C.L. Analysis of immune responses in dogs with canine visceral leishmaniasis before, and after, drug treatment. Vet. Immunol. Immunopathol. 1999, 71, 69–76. [Google Scholar] [CrossRef]
- Carrillo, E.; Moreno, J. Cytokine profiles in canine visceral leishmaniasis. Vet. Immunol. Immunopathol. 2009, 128, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Miró, G.; Gálvez, R.; Fraile, C.; Descalzo, M.A.; Molina, R. Infectivity to Phlebotomus perniciosus of dogs naturally parasitized with Leishmania infantum after different treatments. Parasites Vectors 2011, 4, 52. [Google Scholar] [CrossRef]
- Travi, B.L.; Tabares, C.J.; Cadena, H.; Ferro, C.; Osorio, Y. Canine visceral leishmaniasis in Colombia: Relationship between clinical and parasitologic status and infectivity for sand flies. Am. J. Trop. Med. Hyg. 2001, 64, 119–124. [Google Scholar] [CrossRef]
- Courtenay, O.; Quinnell, R.J.; Garcez, L.M.; Shaw, J.J.; Dye, C. Infectiousness in a cohort of brazilian dogs: Why culling fails to control visceral leishmaniasis in areas of high transmission. J. Infect. Dis. 2002, 186, 1314–1320. [Google Scholar] [CrossRef]
- Athanasiou, L.V.; Saridomichelakis, M.N.; Kontos, V.I.; Spanakos, G.; Rallis, T.S. Treatment of canine leishmaniosis with aminosidine at an optimized dosage regimen: A pilot open clinical trial. Vet. Parasitol. 2013, 192, 91–97. [Google Scholar] [CrossRef]
- Tiwari, N.; Gedda, M.R.; Tiwari, V.K.; Singh, S.P.; Singh, R.K. Limitations of current therapeutic options, possible drug targets and scope of natural products in control of leishmaniasis. Mini Rev. Med. Chem. 2018, 18, 26–41. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Kashif, M.; Srivastava, P.; Manna, P.P. Recent Advances in chemotherapeutics for leishmaniasis: Importance of the cellular biochemistry of the parasite and its molecular interaction with the host. Pathogens 2023, 12, 706. [Google Scholar] [CrossRef] [PubMed]
- Kapil, S.; Singh, P.K.; Silakari, O. An update on small molecule strategies targeting leishmaniasis. Eur. J. Med. Chem. 2018, 157, 339–367. [Google Scholar] [CrossRef]
- Chawla, B.; Madhubala, R. Drug targets in Leishmania. J. Parasites Dis. 2010, 34, 1–13. [Google Scholar] [CrossRef]
- Haldar, A.K.; Sen, P.; Roy, S. Use of antimony in the treatment of leishmaniasis: Current status and future directions. Mol. Biol. Int. 2011, 2011, 571242. [Google Scholar] [CrossRef] [PubMed]
- Istanbullu, H.; Bayraktar, G. Toward new antileishmanial compounds: Molecular targets for leishmaniasis treatment. In Leishmaniasis—General Aspects of a Stigmatized Disease; de Azevedo Calderon, L., Ed.; IntechOpen: Rijeka, Croatia, 2021. [Google Scholar]
- Dorlo, T.P.; Balasegaram, M.; Beijnen, J.H.; de Vries, P.J. Miltefosine: A review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J. Antimicrob. Chemother. 2012, 67, 2576–2597. [Google Scholar] [CrossRef]
- Braga, S.S. Multi-target drugs active against leishmaniasis: A paradigm of drug repurposing. Eur. J. Med. Chem. 2019, 183, 111660. [Google Scholar] [CrossRef]
- Zhang, H.; Yan, R.; Liu, Y.; Yu, M.; He, Z.; Xiao, J.; Li, K.; Liu, G.; Ning, Q.; Li, Y. Progress in antileishmanial drugs: Mechanisms, challenges, and prospects. PLoS Negl. Trop. Dis. 2025, 19, e0012735. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Marr, J.J. Antileishmanial effect of allopurinol. Antimicrob. Agents Chemother. 1974, 5, 469–472. [Google Scholar] [CrossRef]
- Shapiro, T.A.; Were, J.B.; Danso, K.; Nelson, D.J.; Desjardins, R.E.; Pamplin, C.L., 3rd. Pharmacokinetics and metabolism of allopurinol riboside. Clin. Pharmacol. Ther. 1991, 49, 506–514. [Google Scholar] [CrossRef]
- Yasur-Landau, D.; Jaffe, C.L.; David, L.; Baneth, G. Allopurinol resistance in Leishmania infantum from dogs with disease relapse. PLoS Negl. Trop. Dis. 2016, 10, e0004341. [Google Scholar] [CrossRef] [PubMed]
- Marr, J.J.; Berens, R.L. Antileishmanial effect of allopurinol. II. Relationship of adenine metabolism in Leishmania species to the action of allopurinol. J. Infect. Dis. 1977, 136, 724–732. [Google Scholar] [CrossRef]
- Were, J.B.; Shapiro, T.A. Effects of probenecid on the pharmacokinetics of allopurinol riboside. Antimicrob. Agents Chemother. 1993, 37, 1193–1196. [Google Scholar] [CrossRef] [PubMed]
- Bartges, J.W.; Osborne, C.A.; Felice, L.J.; Koehler, L.A.; Ulrich, L.K.; Bird, K.A.; Chen, M.; Sawchuk, R.J. Bioavailability and pharmacokinetics of intravenously and orally administered allopurinol in healthy beagles. Am. J. Vet. Res. 1997, 58, 504–510. [Google Scholar] [CrossRef]
- Jesus, L.; Arenas, C.; Domínguez-Ruiz, M.; Silvestrini, P.; Englar, R.E.; Roura, X.; Leal, R.O. Xanthinuria secondary to allopurinol treatment in dogs with leishmaniosis: Current perspectives of the Iberian veterinary community. Comp. Immunol. Microbiol. Infect. Dis. 2022, 83, 101783. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Subiela, S.; Strauss-Ayali, D.; Cerón, J.J.; Baneth, G. Acute phase protein response in experimental canine leishmaniasis. Vet. Parasitol. 2011, 180, 197–202. [Google Scholar] [CrossRef]
- Strauss-Ayali, D.; Baneth, G.; Jaffe, C.L. Splenic immune responses during canine visceral leishmaniasis. Vet. Res. 2007, 38, 547–564. [Google Scholar] [CrossRef]
- Helm, M.; Müller, W.; Schaarschmidt, D.; Grimm, F.; Deplazes, P. Allopurinol therapy in imported dogs with leishmaniasis treated outside the endemic area. Schweiz. Arch. Tierheilkde 2013, 155, 559–567. [Google Scholar] [CrossRef]
- Cavaliero, T.; Arnold, P.; Mathis, A.; Glaus, T.; Hofmann-Lehmann, R.; Deplazes, P. Clinical, serologic, and parasitologic follow-up after long-term allopurinol therapy of dogs naturally infected with Leishmania infantum. J. Vet. Intern. Med. 1999, 13, 330–334. [Google Scholar] [CrossRef]
- Moritz, A.; Steuber, S.; Greiner, M. Clinical follow-up examination after treatment of canine leishmaniasis. Tokai J. Exp. Clin. Med. 1998, 23, 279–283. [Google Scholar]
- de Jong, M.K.; Rappoldt, A.; Broere, F.; Piek, C.J. Survival time and prognostic factors in canine leishmaniosis in a non-endemic country treated with a two-phase protocol including initial allopurinol monotherapy. Parasites Vectors 2023, 16, 163. [Google Scholar] [CrossRef] [PubMed]
- Koutinas, A.F.; Saridomichelakis, M.N.; Mylonakis, M.E.; Leontides, L.; Polizopoulou, Z.; Billinis, C.; Argyriadis, D.; Diakou, N.; Papadopoulos, O. A randomised, blinded, placebo-controlled clinical trial with allopurinol in canine leishmaniosis. Vet. Parasitol. 2001, 98, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, L.F.M.; Miranda, D.F.H.; Moura, L.D.; Pinho, F.A.; Werneck, G.L.; Khouri, R.; Reed, S.G.; Duthie, M.S.; Barral, A.; Barral-Netto, M.; et al. Allopurinol therapy provides long term clinical improvement, but additional immunotherapy is required for sustained parasite clearance, in L. infantum-infected dogs. Vaccine X 2020, 4, 100048. [Google Scholar] [CrossRef]
- Pennisi, M.G.; Reale, S.; Giudice, S.L.; Masucci, M.; Caracappa, S.; Vitale, M.; Vitale, F. Real-time PCR in dogs treated for leishmaniasis with allopurinol. Vet. Res. Commun. 2005, 29 (Suppl. S2), 301–303. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Subiela, S.; Pardo-Marín, L.; Tecles, F.; Baneth, G.; Cerón, J.J. Serum C-reactive protein and ferritin concentrations in dogs undergoing leishmaniosis treatment. Res. Vet. Sci. 2016, 109, 17–20. [Google Scholar] [CrossRef]
- Martínez-Subiela, S.; Bernal, L.J.; Cerón, J.J. Serum concentrations of acute-phase proteins in dogs with leishmaniosis during short-term treatment. Am. J. Vet. Res. 2003, 64, 1021–1026. [Google Scholar] [CrossRef]
- Sasanelli, M.; Paradies, P.; de Caprariis, D.; Greco, B.; De Palo, P.; Palmisano, D.; Carelli, G. Acute-phase proteins in dogs naturally infected with Leishmania infantum during and after long-term therapy with allopurinol. Vet. Res. Commun. 2007, 31 (Suppl. S1), 335–338. [Google Scholar] [CrossRef]
- Miranda, S.; Martorell, S.; Costa, M.; Ferrer, L.; Ramis, A. Characterization of circulating lymphocyte subpopulations in canine leishmaniasis throughout treatment with antimonials and allopurinol. Vet. Parasitol. 2007, 144, 251–260. [Google Scholar] [CrossRef]
- Moreno, J.; Nieto, J.; Chamizo, C.; González, F.; Blanco, F.; Barker, D.C.; Alvar, J. The immune response and PBMC subsets in canine visceral leishmaniasis before, and after, chemotherapy. Vet. Immunol. Immunopathol. 1999, 71, 181–195. [Google Scholar] [CrossRef]
- Guarga, J.L.; Moreno, J.; Lucientes, J.; Gracia, M.J.; Peribáñez, M.A.; Alvar, J.; Castillo, J.A. Canine leishmaniasis transmission: Higher infectivity amongst naturally infected dogs to sand flies is associated with lower proportions of T helper cells. Res. Vet. Sci. 2000, 69, 249–253. [Google Scholar] [CrossRef]
- Papadogiannakis, E.; Andritsos, G.; Kontos, V.; Spanakos, G.; Koutis, C.; Velonakis, E. Determination of CD4+ and CD8+ T cells in the peripheral blood of dogs with leishmaniosis before and after prolonged allopurinol monotherapy. Vet. J. 2010, 186, 262–263. [Google Scholar] [CrossRef] [PubMed]
- Denerolle, P.; Bourdoiseau, G. Combination allopurinol and antimony treatment versus antimony alone and allopurinol alone in the treatment of canine leishmaniasis (96 cases). J. Vet. Intern. Med. 1999, 13, 413–415. [Google Scholar] [CrossRef]
- Paradies, P.; Sasanelli, M.; Amato, M.E.; Greco, B.; De Palo, P.; Lubas, G. Monitoring the reverse to normal of clinico-pathological findings and the disease free interval time using four different treatment protocols for canine leishmaniosis in an endemic area. Res. Vet. Sci. 2012, 93, 843–847. [Google Scholar] [CrossRef] [PubMed]
- Dias Á, F.L.R.; Ayres, E.; de Oliveira Martins, D.T.; Maruyama, F.H.; de Oliveira, R.G.; de Carvalho, M.R.; Almeida, A.; Teixeira, A.L.S.; Mendonça, A.J.; Sousa, V.R.F. Comparative study of the use of miltefosine, miltefosine plus allopurinol, and allopurinol in dogs with visceral leishmaniasis. Exp. Parasitol. 2020, 217, 107947. [Google Scholar] [CrossRef]
- Ayres, E.; Dias Á, F.L.R.; Monteiro, B.R.G.; Pazzini, S.S.; Barbosa, M.E.C.; Silva, E.B.D.; Macedo, L.; Sousa, V.R.F.; Dutra, V.; Nakazato, L.; et al. Clinical and parasitological impact of short-term treatment using miltefosine and allopurinol monotherapy or combination therapy in canine visceral leishmaniasis. Rev. Bras. Parasitol. Vet. 2022, 31, e007222. [Google Scholar] [CrossRef] [PubMed]
- Costa, E.P.; Samoel, G.V.A.; Rosa, G.D.; Osmari, V.; Souza, M.L.; Lopes, L.F.D.; Vogel, F.S.F.; Botton, S.A.; Sangioni, L.A. Antibody dynamics in dogs submitted to different canine visceral leishmaniasis treatment protocols. Rev. Bras. Parasitol. Vet. 2025, 34, e014824. [Google Scholar] [CrossRef]
- Ginel, P.J.; Lucena, R.; López, R.; Molleda, J.M. Use of allopurinol for maintenance of remission in dogs with leishmaniasis. J. Small Anim. Pract. 1998, 39, 271–274. [Google Scholar] [CrossRef]
- Saridomichelakis, M.N.; Mylonakis, M.E.; Leontides, L.S.; Billinis, C.; Koutinas, A.F.; Galatos, A.D.; Gouletsou, P.; Diakou, A.; Kontos, V.I. Periodic administration of allopurinol is not effective for the prevention of canine leishmaniosis (Leishmania infantum) in the endemic areas. Vet. Parasitol. 2005, 130, 199–205. [Google Scholar] [CrossRef]
- Baneth, G.; Solano-Gallego, L. Leishmaniasis. Vet. Clin. N. Am. Small Anim. Pract. 2022, 52, 1359–1375. [Google Scholar] [CrossRef]
- Pereira, M.A.; Santos, R.; Nóbrega, C.; Mega, C.; Cruz, R.; Esteves, F.; Santos, C.; Coelho, C.; Mesquita, J.R.; Vala, H.; et al. A questionnaire-based survey on the long-term management of canine leishmaniosis by veterinary practitioners. Animals 2022, 12, 731. [Google Scholar] [CrossRef]
- Gothe, R.; Nolte, I.; Kraft, W. Leishmaniasis in dogs in Germany: Epidemiological case analysis and alternatives to conventional causal therapy. Tierarztl. Prax. 1997, 25, 68–73. [Google Scholar] [PubMed]
- European Scientific Counsel Companion Animal Parasites (ESCCAP). German Adaption of Guideline 5: Control of Vector-Borne Diseases in Dogs and Cats; ESCCAP: Worcestershire, UK, 2011; Available online: https://www.esccap.de/empfehlung/vbds/ (accessed on 6 March 2025).
- Oliva, G.; Roura, X.; Crotti, A.; Maroli, M.; Castagnaro, M.; Gradoni, L.; Lubas, G.; Paltrinieri, S.; Zatelli, A.; Zini, E. Guidelines for treatment of leishmaniasis in dogs. J. Am. Vet. Med. Assoc. 2010, 236, 1192–1198. [Google Scholar] [CrossRef]
- Torres, M.; Pastor, J.; Roura, X.; Tabar, M.D.; Espada, Y.; Font, A.; Balasch, J.; Planellas, M. Adverse urinary effects of allopurinol in dogs with leishmaniasis. J. Small Anim. Pract. 2016, 57, 299–304. [Google Scholar] [CrossRef]
- Bartges, J.W.; Osborne, C.A.; Lulich, J.P.; Kruger, J.M.; Sanderson, S.L.; Koehler, L.A.; Ulrich, L.K. Canine urate urolithiasis. Etiopathogenesis, diagnosis, and management. Vet. Clin. N. Am. Small Anim. Pract. 1999, 29, 161–191. [Google Scholar] [CrossRef] [PubMed]
- Kaempfle, M.; Bergmann, M.; Koelle, P.; Hartmann, K. High performance liquid chromatography analysis and description of purine content of diets suitable for dogs with Leishmania infection during allopurinol treatment-a pilot trial. Animals 2023, 13, 3060. [Google Scholar] [CrossRef]
- Roura, X.; Cortadellas, O.; Day, M.J.; Benali, S.L.; Zatelli, A. Canine leishmaniosis and kidney disease: Q&A for an overall management in clinical practice. J. Small Anim. Pract. 2021, 62, e1–e19. [Google Scholar] [CrossRef] [PubMed]
- Manna, L.; Corso, R.; Galiero, G.; Cerrone, A.; Muzj, P.; Gravino, A.E. Long-term follow-up of dogs with leishmaniosis treated with meglumine antimoniate plus allopurinol versus miltefosine plus allopurinol. Parasites Vectors 2015, 8, 289. [Google Scholar] [CrossRef]
- Plevraki, K.; Koutinas, A.F.; Kaldrymidou, H.; Roumpies, N.; Papazoglou, L.G.; Saridomichelakis, M.N.; Savvas, I.; Leondides, L. Effects of allopurinol treatment on the progression of chronic nephritis in canine leishmaniosis (Leishmania infantum). J. Vet. Intern. Med. 2006, 20, 228–233. [Google Scholar] [CrossRef]
- Moritz, A. Die Therapie der kaninen Leishmaniose. Prakt. Tierarzt 2011, 8, 479–486. [Google Scholar]
- Osborne, C.A.; Bartges, J.; Lulich, J.; Albasan, H.; Weiss, C. Canine purine urolithiasis: Causes, detection, management and prevention. Small Anim. Clin. Nutr. 2010, 5, 833–853. [Google Scholar]
- Budde, J.A.; McCluskey, D.M. Allopurinol. In Plumb’s Veterinary Drug Handbook, 10th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2023; pp. 37–39. [Google Scholar]
- World Health Organization (WHO). Control of the Leishmaniasis; WHO Technical Report Series No. 949; WHO: Geneva, Switzerland. 2010. Available online: https://www.who.int/publications/i/item/WHO-TRS-949 (accessed on 6 March 2025).
- Maia, C.; Nunes, M.; Marques, M.; Henriques, S.; Rolão, N.; Campino, L. In vitro drug susceptibility of Leishmania infantum isolated from humans and dogs. Exp. Parasitol. 2013, 135, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Yasur-Landau, D.; Jaffe, C.L.; Doron-Faigenboim, A.; David, L.; Baneth, G. Induction of allopurinol resistance in Leishmania infantum isolated from dogs. PLoS Negl. Trop. Dis. 2017, 11, e0005910. [Google Scholar] [CrossRef] [PubMed]
- Frézard, F.; Demicheli, C. New delivery strategies for the old pentavalent antimonial drugs. Expert Opin. Drug Deliv. 2010, 7, 1343–1358. [Google Scholar] [CrossRef]
- Slappendel, R.J. Canine leishmaniasis. A review based on 95 cases in the Netherlands. Vet. Q. 1988, 10, 1–16. [Google Scholar] [CrossRef]
- Noli, C.; Auxilia, S.T. Treatment of canine Old World visceral leishmaniasis: A systematic review. Vet. Dermatol. 2005, 16, 213–232. [Google Scholar] [CrossRef]
- Frézard, F.; Demicheli, C.; Ribeiro, R.R. Pentavalent antimonials: New perspectives for old drugs. Molecules 2009, 14, 2317–2336. [Google Scholar] [CrossRef]
- Muniz-Junqueira, M.I.; de Paula-Coelho, V.N. Meglumine antimonate directly increases phagocytosis, superoxide anion and TNF-alpha production, but only via TNF-alpha it indirectly increases nitric oxide production by phagocytes of healthy individuals, in vitro. Int. Immunopharmacol. 2008, 8, 1633–1638. [Google Scholar] [CrossRef] [PubMed]
- Tassi, P.; Ormas, P.; Madonna, M.; Carli, S.; Belloli, C.; De Natale, G.; Ceci, L.; Marcotrigiano, G.O. Pharmacokinetics of N-methylglucamine antimoniate after intravenous, intramuscular and subcutaneous administration in the dog. Res. Vet. Sci. 1994, 56, 144–150. [Google Scholar] [CrossRef]
- Valladares, J.E.; Alberola, J.; Esteban, M.; Arboix, M. Disposition of antimony after the administration of N-methylglucamine antimoniate to dogs. Vet. Rec. 1996, 138, 181–183. [Google Scholar] [CrossRef]
- Valladares, J.E.; Riera, C.; Alberola, J.; Gállego, M.; Portús, M.; Cristòfol, C.; Franquelo, C.; Arboix, M. Pharmacokinetics of meglumine antimoniate after administration of a multiple dose in dogs experimentally infected with Leishmania infantum. Vet. Parasitol. 1998, 75, 33–40. [Google Scholar] [CrossRef]
- Slappendel, R.J.; Teske, E. The effect of intravenous or subcutaneous administration of meglumine antimonate (Glucantime) in dogs with leishmaniasis. A randomized clinical trial. Vet. Q. 1997, 19, 10–13. [Google Scholar] [CrossRef]
- Riera, C.; Valladares, J.E.; Gállego, M.; Aisa, M.J.; Castillejo, S.; Fisa, R.; Ribas, N.; Carrió, J.; Alberola, J.; Arboix, M. Serological and parasitological follow-up in dogs experimentally infected with Leishmania infantum and treated with meglumine antimoniate. Vet. Parasitol. 1999, 84, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Mateo, M.; Maynard, L.; Vischer, C.; Bianciardi, P.; Miró, G. Comparative study on the short term efficacy and adverse effects of miltefosine and meglumine antimoniate in dogs with natural leishmaniosis. Parasitol. Res. 2009, 105, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Ikeda-Garcia, F.A.; Lopes, R.S.; Marques, F.J.; de Lima, V.M.; Morinishi, C.K.; Bonello, F.L.; Zanette, M.F.; Perri, S.H.; Feitosa, M.M. Clinical and parasitological evaluation of dogs naturally infected by Leishmania (Leishmania) chagasi submitted to treatment with meglumine antimoniate. Vet. Parasitol. 2007, 143, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Corpas-López, V.; Merino-Espinosa, G.; Acedo-Sánchez, C.; Díaz-Sáez, V.; Morillas-Márquez, F.; Martín-Sánchez, J. Hair parasite load as a new biomarker for monitoring treatment response in canine leishmaniasis. Vet. Parasitol. 2016, 223, 20–25. [Google Scholar] [CrossRef]
- Miró, G.; Oliva, G.; Cruz, I.; Cañavate, C.; Mortarino, M.; Vischer, C.; Bianciardi, P. Multicentric, controlled clinical study to evaluate effectiveness and safety of miltefosine and allopurinol for canine leishmaniosis. Vet. Dermatol. 2009, 20, 397–404. [Google Scholar] [CrossRef]
- Santos, M.F.; Alexandre-Pires, G.; Pereira, M.A.; Marques, C.S.; Gomes, J.; Correia, J.; Duarte, A.; Gomes, L.; Rodrigues, A.V.; Basso, A.; et al. Meglumine antimoniate and miltefosine combined with allopurinol sustain pro-inflammatory immune environments during canine leishmaniosis treatment. Front. Vet. Sci. 2019, 6, 362. [Google Scholar] [CrossRef]
- Daza González, M.A.; Fragío Arnold, C.; Fermín Rodríguez, M.; Checa, R.; Montoya, A.; Portero Fuentes, M.; Rupérez Noguer, C.; Martínez Subiela, S.; Cerón, J.J.; Miró, G. Effect of two treatments on changes in serum acute phase protein concentrations in dogs with clinical leishmaniosis. Vet. J. 2019, 245, 22–28. [Google Scholar] [CrossRef]
- Manna, L.; Reale, S.; Vitale, F.; Picillo, E.; Pavone, L.M.; Gravino, A.E. Real-time PCR assay in Leishmania-infected dogs treated with meglumine antimoniate and allopurinol. Vet. J. 2008, 177, 279–282. [Google Scholar] [CrossRef]
- Solano-Gallego, L.; Di Filippo, L.; Ordeix, L.; Planellas, M.; Roura, X.; Altet, L.; Martínez-Orellana, P.; Montserrat, S. Early reduction of Leishmania infantum-specific antibodies and blood parasitemia during treatment in dogs with moderate or severe disease. Parasites Vectors 2016, 9, 235. [Google Scholar] [CrossRef]
- Torres, M.; Bardagí, M.; Roura, X.; Zanna, G.; Ravera, I.; Ferrer, L. Long term follow-up of dogs diagnosed with leishmaniosis (clinical stage II) and treated with meglumine antimoniate and allopurinol. Vet. J. 2011, 188, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Frézard, F.; Michalick, M.S.; Soares, C.F.; Demicheli, C. Novel methods for the encapsulation of meglumine antimoniate into liposomes. Braz. J. Med. Biol. Res. 2000, 33, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Sallovitz, J.M.; Zonco Menghini, M.I.; Lanusse, C.E. Impact of liposomes as delivery systems in veterinary medicine. Vet. Res. 1998, 29, 409–430. [Google Scholar]
- Valladares, J.E.; Riera, C.; González-Ensenyat, P.; Díez-Cascón, A.; Ramos, G.; Solano-Gallego, L.; Gállego, M.; Portús, M.; Arboix, M.; Alberola, J. Long term improvement in the treatment of canine leishmaniosis using an antimony liposomal formulation. Vet. Parasitol. 2001, 97, 15–21. [Google Scholar] [CrossRef]
- Schettini, D.A.; Ribeiro, R.R.; Demicheli, C.; Rocha, O.G.; Melo, M.N.; Michalick, M.S.; Frézard, F. Improved targeting of antimony to the bone marrow of dogs using liposomes of reduced size. Int. J. Pharm. 2006, 315, 140–147. [Google Scholar] [CrossRef]
- Schettini, D.A.; Costa Val, A.P.; Souza, L.F.; Demicheli, C.; Rocha, O.G.; Melo, M.N.; Michalick, M.S.; Frézard, F. Pharmacokinetic and parasitological evaluation of the bone marrow of dogs with visceral leishmaniasis submitted to multiple dose treatment with liposome-encapsulated meglumine antimoniate. Braz. J. Med. Biol. Res. 2005, 38, 1879–1883. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, R.R.; Moura, E.P.; Pimentel, V.M.; Sampaio, W.M.; Silva, S.M.; Schettini, D.A.; Alves, C.F.; Melo, F.A.; Tafuri, W.L.; Demicheli, C.; et al. Reduced tissue parasitic load and infectivity to sand flies in dogs naturally infected by Leishmania (Leishmania) chagasi following treatment with a liposome formulation of meglumine antimoniate. Antimicrob. Agents Chemother. 2008, 52, 2564–2572. [Google Scholar] [CrossRef]
- da Silva, S.M.; Amorim, I.F.; Ribeiro, R.R.; Azevedo, E.G.; Demicheli, C.; Melo, M.N.; Tafuri, W.L.; Gontijo, N.F.; Michalick, M.S.; Frézard, F. Efficacy of combined therapy with liposome-encapsulated meglumine antimoniate and allopurinol in treatment of canine visceral leishmaniasis. Antimicrob. Agents Chemother. 2012, 56, 2858–2867. [Google Scholar] [CrossRef]
- Dos Santos, C.C.P.; Ramos, G.S.; De Paula, R.C.; Faria, K.F.; Moreira, P.O.L.; Pereira, R.A.; Melo, M.N.; Tafuri, W.L.; Demicheli, C.; Ribeiro, R.R.; et al. Therapeutic efficacy of a mixed formulation of conventional and PEGylated liposomes containing meglumine antimoniate, combined with allopurinol, in dogs naturally infected with Leishmania infantum. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef]
- Daza González, M.A.; Miró, G.; Fermín Rodríguez, M.; Rupérez Noguer, C.; Fragío Arnold, C. Short term impacts of meglumine antimoniate treatment on kidney function in dogs with clinical leishmaniosis. Res. Vet. Sci. 2019, 126, 131–138. [Google Scholar] [CrossRef]
- Bianciardi, P.; Brovida, C.; Valente, M.; Aresu, L.; Cavicchioli, L.; Vischer, C.; Giroud, L.; Castagnaro, M. Administration of miltefosine and meglumine antimoniate in healthy dogs: Clinicopathological evaluation of the impact on the kidneys. Toxicol. Pathol. 2009, 37, 770–775. [Google Scholar] [CrossRef] [PubMed]
- Pardo-Marín, L.; Martínez-Subiela, S.; Pastor, J.; Tvarijonaviciute, A.; Garcia-Martinez, J.D.; Segarra, S.; Cerón, J.J. Evaluation of various biomarkers for kidney monitoring during canine leishmaniosis treatment. BMC Vet. Res. 2017, 13, 31. [Google Scholar] [CrossRef]
- Pierantozzi, M.; Roura, X.; Paltrinieri, S.; Poggi, M.; Zatelli, A. Variation of proteinuria in dogs with leishmaniasis treated with meglumine antimoniate and allopurinol: A retrospective study. J. Am. Anim. Hosp. Assoc. 2013, 49, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Paltrinieri, S.; Mangiagalli, G.; Ibba, F. Use of urinary γ-glutamyl transferase (GGT) to monitor the pattern of proteinuria in dogs with leishmaniasis treated with N-methylglucamine antimoniate. Res. Vet. Sci. 2018, 119, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Ikeda-Garcia, F.A.; Lopes, R.S.; Ciarlini, P.C.; Marques, F.J.; Lima, V.M.; Perri, S.H.; Feitosa, M.M. Evaluation of renal and hepatic functions in dogs naturally infected by visceral leishmaniasis submitted to treatment with meglumine antimoniate. Res. Vet. Sci. 2007, 83, 105–108. [Google Scholar] [CrossRef]
- Baneth, G.; Shaw, S.E. Chemotherapy of canine leishmaniosis. Vet. Parasitol. 2002, 106, 315–324. [Google Scholar] [CrossRef]
- Digiaro, S.; Recchia, A.; Colella, A.; Cucciniello, S.; Greco, B.; Buonfrate, D.; Paradies, P. Treatment of canine leishmaniasis with meglumine antimoniate: A clinical study of tolerability and efficacy. Animals 2024, 14, 2244. [Google Scholar] [CrossRef]
- Aste, G.; Di Tommaso, M.; Steiner, J.M.; Williams, D.A.; Boari, A. Pancreatitis associated with N-methyl-glucamine therapy in a dog with leishmaniasis. Vet. Res. Commun. 2005, 29 (Suppl. S2), 269–272. [Google Scholar] [CrossRef]
- Boari, A.; Pierantozzi, M.; Aste, G.; Pantaleo, S.; Di Silverio, F.; Fanini, G.; Lorentzen, L.; Williams, D.A. The association between N-methylglucamine antimoniate and pancreatitis in dogs with leishmaniasis. In Veterinary Science: Current Aspects in Biology, Animal Pathology, Clinic and Food Hygiene; Pugliese, A., Gaiti, A., Boiti, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 65–69. [Google Scholar]
- Viñeta, C.; Castro, J.; López, M.C.; Frau, M.; Costas, A.; Arenas, C.; Roura, X. Is pancreatitis associated with meglumine antimoniate treatment for canine leishmaniosis? A multicentric prospective study. Parasites Vectors 2024, 17, 532. [Google Scholar] [CrossRef]
- Xenoulis, P.G.; Saridomichelakis, M.N.; Chatzis, M.K.; Kasabalis, D.; Petanides, T.; Suchodolski, J.S.; Steiner, J.M. Prospective evaluation of serum pancreatic lipase immunoreactivity and troponin I concentrations in Leishmania infantum-infected dogs treated with meglumine antimonate. Vet. Parasitol. 2014, 203, 326–330. [Google Scholar] [CrossRef]
- Luciani, A.; Sconza, S.; Civitella, C.; Guglielmini, C. Evaluation of the cardiac toxicity of N-methyl-glucamine antimoniate in dogs with naturally occurring leishmaniasis. Vet. J. 2013, 196, 119–121. [Google Scholar] [CrossRef]
- Aït-Oudhia, K.; Gazanion, E.; Sereno, D.; Oury, B.; Dedet, J.P.; Pratlong, F.; Lachaud, L. In vitro susceptibility to antimonials and amphotericin B of Leishmania infantum strains isolated from dogs in a region lacking drug selection pressure. Vet. Parasitol. 2012, 187, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Carrió, J.; Portús, M. In vitro susceptibility to pentavalent antimony in Leishmania infantum strains is not modified during in vitro or in vivo passages but is modified after host treatment with meglumine antimoniate. BMC Pharmacol. 2002, 2, 11. [Google Scholar] [CrossRef] [PubMed]
- Gómez Pérez, V.; García-Hernandez, R.; Corpas-López, V.; Tomás, A.M.; Martín-Sanchez, J.; Castanys, S.; Gamarro, F. Decreased antimony uptake and overexpression of genes of thiol metabolism are associated with drug resistance in a canine isolate of Leishmania infantum. Int. J. Parasitol. Drugs Drug Resist. 2016, 6, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Gramiccia, M.; Gradoni, L.; Orsini, S. Decreased sensitivity to meglumine antimoniate (Glucantime) of Leishmania infantum isolated from dogs after several courses of drug treatment. Ann. Trop. Med. Parasitol. 1992, 86, 613–620. [Google Scholar] [CrossRef]
- Sindermann, H.; Engel, J. Development of miltefosine as an oral treatment for leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 2006, 100 (Suppl. S1), S17–S20. [Google Scholar] [CrossRef]
- Croft, S.L.; Snowdon, D.; Yardley, V. The activities of four anticancer alkyllysophospholipids against Leishmania donovani, Trypanosoma cruzi and Trypanosoma brucei. J. Antimicrob. Chemother. 1996, 38, 1041–1047. [Google Scholar] [CrossRef]
- Woerly, V.; Maynard, L.; Sanquer, A.; Eun, H.M. Clinical efficacy and tolerance of miltefosine in the treatment of canine leishmaniosis. Parasitol. Res. 2009, 105, 463–469. [Google Scholar] [CrossRef]
- Unger, C.; Damenz, W.; Fleer, E.A.; Kim, D.J.; Breiser, A.; Hilgard, P.; Engel, J.; Nagel, G.; Eibl, H. Hexadecylphosphocholine, a new ether lipid analogue. Studies on the antineoplastic activity in vitro and in vivo. Acta Oncol. 1989, 28, 213–217. [Google Scholar] [CrossRef]
- Benaim, G.; Paniz-Mondolfi, A. Unmasking the Mechanism behind miltefosine: Revealing the disruption of intracellular Ca2+ homeostasis as a rational therapeutic target in leishmaniasis and chagas disease. Biomolecules 2024, 14, 406. [Google Scholar] [CrossRef]
- Zeisig, R.; Rudolf, M.; Eue, I.; Arndt, D. Influence of hexadecylphosphocholine on the release of tumor necrosis factor and nitroxide from peritoneal macrophages in vitro. J. Cancer Res. Clin. Oncol. 1995, 121, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Wadhone, P.; Maiti, M.; Agarwal, R.; Kamat, V.; Martin, S.; Saha, B. Miltefosine promotes IFN-gamma-dominated anti-leishmanial immune response. J. Immunol. 2009, 182, 7146–7154. [Google Scholar] [CrossRef]
- Santos, M.F.; Alexandre-Pires, G.; Pereira, M.A.; Gomes, L.; Rodrigues, A.V.; Basso, A.; Reisinho, A.; Meireles, J.; Santos-Gomes, G.M.; Pereira da Fonseca, I. Immunophenotyping of peripheral blood, lymph node, and bone marrow T lymphocytes during canine leishmaniosis and the impact of antileishmanial chemotherapy. Front. Vet. Sci. 2020, 7, 375. [Google Scholar] [CrossRef]
- Virbac. Milteforan®; Technical Data Sheet; Virbac: Carros, France. 2024. Available online: https://vet-es.virbac.com/home/productos/perros/antiparasitarios/milteforan.html (accessed on 6 March 2025).
- Dos Santos Nogueira, F.; Avino, V.C.; Galvis-Ovallos, F.; Pereira-Chioccola, V.L.; Moreira, M.A.B.; Romariz, A.; Molla, L.M.; Menz, I. Use of miltefosine to treat canine visceral leishmaniasis caused by Leishmania infantum in Brazil. Parasites Vectors 2019, 12, 79. [Google Scholar] [CrossRef]
- Manna, L.; Gravino, A.E.; Picillo, E.; Decaro, N.; Buonavoglia, C. Leishmania DNA quantification by real-time PCR in naturally infected dogs treated with miltefosine. Ann. N. Y. Acad. Sci. 2008, 1149, 358–360. [Google Scholar] [CrossRef] [PubMed]
- Andrade, H.M.; Toledo, V.P.; Pinheiro, M.B.; Guimarães, T.M.; Oliveira, N.C.; Castro, J.A.; Silva, R.N.; Amorim, A.C.; Brandão, R.M.; Yoko, M.; et al. Evaluation of miltefosine for the treatment of dogs naturally infected with L. infantum (=L. chagasi) in Brazil. Vet. Parasitol. 2011, 181, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.; Ayres, E.; Maruyama, F.H.; Monteiro, B.R.G.; de Freitas, M.S.; de Almeida, A.; Mendonça, A.J.; Sousa, V.R.F. Monitoring of serum and urinary biomarkers during treatment of canine visceral leishmaniasis. Vet. World 2020, 13, 1620–1626. [Google Scholar] [CrossRef]
- Manna, L.; Vitale, F.; Reale, S.; Picillo, E.; Neglia, G.; Vescio, F.; Gravino, A.E. Study of efficacy of miltefosine and allopurinol in dogs with leishmaniosis. Vet. J. 2009, 182, 441–445. [Google Scholar] [CrossRef]
- Rosar, A.S.; Martins, C.L.; Menin, Á.; Reck, C.; Grisard, E.C.; Wagner, G.; Steindel, M.; Stoco, P.H.; Quaresma, P.F. Clinical, histopathological and parasitological follow-up of dogs naturally infected by Leishmania infantum before and after miltefosine treatment and associated therapies. PLoS ONE 2025, 20, e0313167. [Google Scholar] [CrossRef]
- Iarussi, F.; Paradies, P.; Foglia Manzillo, V.; Gizzarelli, M.; Caratozzolo, M.F.; Navarro, C.; Greco, B.; Rubino, G.T.R.; Oliva, G.; Sasanelli, M. Comparison of two dosing regimens of miltefosine, both in combination with allopurinol, on clinical and parasitological findings of dogs with leishmaniosis: A pilot study. Front. Vet. Sci. 2020, 7, 577395. [Google Scholar] [CrossRef]
- Gizzarelli, M.; Foglia Manzillo, V.; Inglese, A.; Montagnaro, S.; Oliva, G. Retrospective long-term evaluation of miltefosine-allopurinol treatment in canine leishmaniosis. Pathogens 2023, 12, 864. [Google Scholar] [CrossRef] [PubMed]
- Hernández, L.; Gálvez, R.; Montoya, A.; Checa, R.; Bello, A.; Bosschaerts, T.; Jansen, H.; Rupérez, C.; Fortin, A.; Miró, G. First study on efficacy and tolerability of a new alkylphosphocholine molecule (oleylphosphocholine-OlPC) in the treatment of canine leishmaniosis due to Leishmania infantum. Parasitol. Res. 2014, 113, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Lima, I.; Fraga, D.; Berman, J. Oleylphosphocholine versus miltefosine for canine leishmaniasis. Am. J. Trop. Med. Hyg. 2025, 112, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Roatt, B.M.; de Oliveira Cardoso, J.M.; De Brito, R.C.F.; Coura-Vital, W.; de Oliveira Aguiar-Soares, R.D.; Reis, A.B. Recent advances and new strategies on leishmaniasis treatment. Appl. Microbiol. Biotechnol. 2020, 104, 8965–8977. [Google Scholar] [CrossRef]
- Gonçalves, G.; Campos, M.P.; Gonçalves, A.S.; Medeiros, L.C.S.; Figueiredo, F.B. Increased Leishmania infantum resistance to miltefosine and amphotericin B after treatment of a dog with miltefosine and allopurinol. Parasites Vectors 2021, 14, 599. [Google Scholar] [CrossRef]
- de Jong, M.K.; van Eijk, D.; Broere, F.; Piek, C.J. Owners’ experiences of administering meglumine antimoniate injections to dogs with leishmaniosis: An online questionnaire study. Vet. Rec. 2024, 194, e4089. [Google Scholar] [CrossRef]
Drug | Indication | Main Adverse Effects | Remarks | Dose | Length of Treatment |
---|---|---|---|---|---|
allopurinol (AL) |
| xanthine urolithiasis |
| 10 mg/kg, q12h, PO consider dose adjustment in case of xanthine mineralization or renal disease | at least 6 months, thereafter withdrawal only in case of remission and marked decrease in antibody levels (or no antibodies) |
meglumine antimoniate (MA) | signs of disease (combined with AL) |
|
| 100 mg/kg, q24h or 50 mg/kg, q12h, SC or IV consider dose adjustment in case of renal disease | 28 days, prolongation (2–3 weeks) possible in severe cases |
miltefosine (MI) | signs of disease (combined with AL) | gastrointestinal signs |
| 2 mg/kg, q24h, PO | 28 days, therapeutic effect beyond application period |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaempfle, M.; Hartmann, K.; Bergmann, M. Treatment of Leishmania infantum Infections in Dogs. Microorganisms 2025, 13, 1018. https://doi.org/10.3390/microorganisms13051018
Kaempfle M, Hartmann K, Bergmann M. Treatment of Leishmania infantum Infections in Dogs. Microorganisms. 2025; 13(5):1018. https://doi.org/10.3390/microorganisms13051018
Chicago/Turabian StyleKaempfle, Melanie, Katrin Hartmann, and Michèle Bergmann. 2025. "Treatment of Leishmania infantum Infections in Dogs" Microorganisms 13, no. 5: 1018. https://doi.org/10.3390/microorganisms13051018
APA StyleKaempfle, M., Hartmann, K., & Bergmann, M. (2025). Treatment of Leishmania infantum Infections in Dogs. Microorganisms, 13(5), 1018. https://doi.org/10.3390/microorganisms13051018