Analysis of Fecal Microbiome and Metabolome Changes in Goats When Consuming a Lower-Protein Diet with Varying Energy Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Fecal Sample Collection
2.3. Microbiome Analysis
2.4. Metabolomic Profiling
2.5. Statistical Analysis
3. Results
3.1. Overall Structure of Fecal Bacterial Communities
3.2. Analysis of Composition and Difference of Microbiota
3.3. Analysis of Differential Metabolites
3.4. Pearson Correlation Between Fecal Bacterial Communities (at Genus Level) and Metabolomics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- China National Commission of Animal Genetic Resources. Animal Genetic Resources in China: Sheep and Goats; China Agriculture Press: Beijing, China, 2011. [Google Scholar]
- Brand, T.S.; Van Der Merwe, D.A.; Swart, E.; Hoffman, L.C. Comparing the effect of age and dietary energy content on feedlot performance of Boer goats. Small Rumin. Res. 2017, 157, 40–46. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, J.; Lu, M.; Zhao, S.; Li, W.; Quan, G.; Xue, B. Effects of Dietary Energy Levels on Growth Performance, Nutrient Digestibility, Rumen Barrier and Microflora in Sheep. Animals 2024, 14, 2525. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yang, G.; Degen, A.; Ji, K.; Jiao, D.; Liang, Y.; Xiao, L.; Long, R.; Zhou, J. Effect of feed level and supplementary rumen protected lysine and methionine on growth performance, rumen fermentation, blood metabolites and nitrogen balance in growing Tan lambs fed low protein diets. Anim. Feed Sci. Technol. 2021, 279, 115024. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Dai, C.; Li, J.; Huang, P.; Li, Y.; Ding, X.; Huang, J.; Hussain, T.; Yang, H. Effects of dietary energy on growth performance, carcass characteristics, serum biochemical index, and meat quality of female Hu lambs. Anim. Nutr. 2020, 6, 499–506. [Google Scholar] [CrossRef]
- Zhu, W.; Xu, W.; Wei, C.; Zhang, Z.; Jiang, C.; Chen, X. Effects of decreasing dietary crude protein level on growth performance, nutrient digestion, serum metabolites, and nitrogen utilization in growing goat kids (Capra. hircus). Animals 2020, 10, 151. [Google Scholar] [CrossRef]
- Hwangbo, S.; Choi, S.; Kim, S.; Son, D.; Park, H.; Lee, S.; Jo, I. Effects of crude protein levels in total mixed rations on growth performance and meat quality in growing korean black goats. Asian Australas. Anim. Biosci. 2009, 22, 1133–1139. [Google Scholar] [CrossRef]
- Huang, S.; Ji, S.; Wang, F.; Huang, J.; Alugongo, G.M.; Li, S. Dynamic changes of the fecal bacterial community in dairy cows during early lactation. AMB Express 2020, 10, 167. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.; Li, B.; Hao, W.; Yin, W.; Ai, S.; Han, J.; Wang, R.; Duan, Z. Depicting fecal microbiota characteristic in yak, cattle, yak-cattle hybrid and tibetan sheep in different eco-regions of Qinghai-Tibetan Plateau. Microbiol. Spectr. 2022, 10, e0002122. [Google Scholar] [CrossRef]
- Liang, J.; Ali, S.; Lv, C.; Yang, H.; Zhao, X.; Ni, X.; Li, C.; Danzeng, B.; Wang, Y.; Quan, G. Dietary protein levels modulate the gut microbiome composition through fecal samples derived from lactating ewes. Front. Endocrinol. 2023, 14, 1194425. [Google Scholar] [CrossRef]
- Wei, X.; Wu, H.; Wang, Z.; Zhu, J.; Wang, W.; Wang, J.; Wang, Y.; Wang, C. Rumen-protected lysine supplementation improved amino acid balance, nitrogen utilization and altered hindgut microbiota of dairy cows. Anim. Nutr. 2023, 15, 320–331. [Google Scholar] [CrossRef]
- Jin, B.; Wang, R.; Hu, J.; Wang, Y.; Cheng, P.; Zhang, J.; Zhang, J.; Xue, G.; Zhu, Y.; Zhang, Y.; et al. Analysis of fecal microbiome and metabolome changes in goats with pregnant toxemia. BMC Vet. Res. 2024, 20, 2. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Ni, X.; Khan, M.; Zhao, X.; Yang, H.; Danzeng, B.; Raja, I.H.; Quan, G. Effects of dietary protein levels on sheep gut metabolite profiles during the lactating stage. Animals 2024, 14, 121. [Google Scholar] [CrossRef]
- Ge, T.; Yang, C.; Li, B.; Huang, X.Y.; Zhao, L.Y.; Zhang, X.Q.; Tian, L.T.; Zhang, E.P. High-energy diet modify rumen microbial composition and microbial energy metabolism pattern in fattening sheep. BMC Vet. Res. 2023, 19, 32. [Google Scholar] [CrossRef]
- Liu, H.; Mao, K.; Peng, W.; Degen, A.; Zuo, G.; Yang, Y.; Han, J.; Wu, Q.; Wang, K.; Jiang, Q.; et al. Nano-Selenium Reduces Concentrations of Fecal Minerals by Altering Bacteria Composition in Feedlot Goats. Agriculture 2024, 14, 2233. [Google Scholar] [CrossRef]
- Conteville, L.C.; da Silva, J.V.; Andrade, B.G.; Cardoso, T.F.; Bruscadin, J.J.; de Oliveira, P.S.; Mourão, G.B.; Coutinho, L.L.; Palhares, J.C.; Berndt, A.; et al. Rumen and fecal microbiomes are related to diet and production traits in Bos indicus beef cattle. Front. Microbiol. 2023, 14, 1282851. [Google Scholar] [CrossRef]
- Mu, Y.; Lin, X.; Wang, Z.; Hou, Q.; Wang, Y.; Hu, Z. High-production dairy cattle exhibit different rumen and fecal bacterial community and rumen metabolite profile than low-production cattle. Microbiologyopen 2019, 8, e00673. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Liu, T.; Wang, W.; Yu, Y.; Neves, A.L.A.; Zhou, M.; Chen, X. Survey of the fecal microbiota of indigenous small ruminants living in different areas of Guizhou. Front. Microbiol. 2024, 15, 1415230. [Google Scholar] [CrossRef]
- Liu, H.; Ran, T.; Zhang, C.F.; Yang, W.Z.; Wu, X.K.; Degen, A.; Long, R.J.; Shi, Z.J.; Zhou, J.W. Comparison of rumen bacterial communities between yaks (Bos grunniens) and Qaidam cattle (Bos taurus) fed a low protein diet with different energy levels. Front. Microbiol. 2022, 13, 982338. [Google Scholar] [CrossRef] [PubMed]
- Min, B.R.; Gurung, N.; Shange, R.; Solaiman, S. Potential role of rumen microbiota in altering average daily gain and feed efficiency in meat goats fed simple and mixed pastures using bacterial tag-encoded FLX amplicon pyrosequencing. J. Anim. Sci. 2019, 97, 3523–3534. [Google Scholar] [CrossRef]
- Liu, S.; Wei, Z.; Deng, M.; Xian, Z.; Liu, D.; Liu, G.; Li, Y.; Sun, B.; Guo, Y. Effect of a high-starch or a high-fat diet on the milk performance, apparent nutrient digestibility, hindgut fermentation parameters and microbiota of lactating cows. Animals 2023, 13, 2508. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Zhu, L.; Xu, Y.; Liu, N.; Sun, X.; Hu, L.; Huang, H.; Wei, K.; Zhu, R. Dynamic Distribution of Gut Microbiota in Goats at Different Ages and Health States. Front. Microbiol. 2018, 9, 2509. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Shui, Y.; Deng, M.; Guo, Y.; Sun, B.; Liu, G.; Liu, D.; Li, Y. Effects of different dietary energy levels on growth performance, meat quality and nutritional composition, rumen fermentation parameters, and rumen microbiota of fattening Angus steers. Front. Microbiol. 2024, 15, 1378073. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, J.; Ahmad, A.A.; Bao, P.; Guo, X.; Long, R.; Ding, X.; Yan, P. Dietary energy levels affect growth performance through growth hormone and insulin-like growth factor 1 in yak (Bos grunniens). Animals 2019, 9, 39. [Google Scholar] [CrossRef] [PubMed]
- González, D.; Morales-Olavarria, M.; Vidal-Veuthey, B.; Cárdenas, J.P. Insights into early evolutionary adaptations of the Akkermansia genus to the vertebrate gut. Front. Microbiol. 2023, 14, 1238580. [Google Scholar] [CrossRef]
- Rodrigues, V.F.; Elias-Oliveira, J.; Pereira, S.; Pereira, J.A.; Barbosa, S.C.; Machado, M.S.G.; Carlos, D. Akkermansia muciniphila and gut immune system: A good friendship that attenuates inflammatory bowel disease, obesity, and diabetes. Front. Immunol. 2022, 13, 934695. [Google Scholar] [CrossRef]
- Yi, S.; Wu, H.; Liu, Y.; Dai, D.; Meng, Q.; Chai, S.; Liu, S.; Zhou, Z. Concentrate supplementation improves cold-season environmental fitness of grazing yaks: Responsive changes in the rumen microbiota and metabolome. Front. Microbiol. 2023, 14, 1247251. [Google Scholar] [CrossRef] [PubMed]
- Biddle, A.; Stewart, L.; Blanchard, J.; Leschine, S. Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity 2013, 5, 627–640. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, W.; Lee, Y.K.; Xie, J.; Zhang, H. Spatial heterogeneity and co-occurrence of mucosal and luminal microbiome across swine intestinal tract. Front. Microbiol. 2018, 9, 48. [Google Scholar] [CrossRef]
- Vahidi, M.F.; Gharechahi, J.; Behmanesh, M.; Ding, X.Z.; Han, J.L.; Salekdeh, G.H. Diversity of microbes colonizing forages of varying lignocellulose properties in the sheep rumen. PeerJ 2021, 9, e10463. [Google Scholar] [CrossRef]
- Wu, Z.L.; Yang, X.; Zhang, J.; Wang, W.; Liu, D.; Hou, B.; Bai, T.; Zhang, R.; Zhang, Y.; Liu, H.; et al. Effects of forage type on the rumen microbiota, growth performance, carcass traits, and meat quality in fattening goats. Front. Vet. Sci. 2023, 10, 1147685. [Google Scholar] [CrossRef]
- Perea, K.; Perz, K.; Olivo, S.K.; Williams, A.; Lachman, M.; Ishaq, S.L.; Thomson, J.; Yeoman, C.J. Feed efficiency phenotypes in lambs involve changes in ruminal, colonic, and small-intestine-located microbiota. J. Anim. Sci. 2017, 95, 2585–2592. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Deng, K.; Diao, Q. Prediction of methane emission from sheep based on data measured in vivo from open-circuit respiratory studies. Asian Australas. J. Anim. Sci. 2019, 32, 1389–1396. [Google Scholar] [CrossRef] [PubMed]
Items | Dietary Energy Levels | SEM | p-Values | |||||
---|---|---|---|---|---|---|---|---|
LE | MLE | MHE | HE | Energy | Energy-L | Energy-Q | ||
Sobs | 1556 | 1585 | 1610 | 1380 | 47.0 | 0.310 | 0.236 | 0.176 |
Shannon | 5.33 | 5.29 | 5.43 | 5.19 | 0.053 | 0.485 | 0.581 | 0.355 |
Simpson | 0.018 | 0.022 | 0.014 | 0.017 | 0.0017 | 0.322 | 0.450 | 0.950 |
Ace | 1936 | 2013 | 2049 | 1733 | 62.6 | 0.290 | 0.308 | 0.123 |
Chao | 1886 | 1964 | 1999 | 1697 | 60.1 | 0.297 | 0.326 | 0.121 |
Coverage | 0.990 | 0.989 | 0.989 | 0.991 | 0.0004 | 0.290 | 0.430 | 0.091 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Chen, A.; Wang, W.; Peng, W.; Mao, K.; Yang, Y.; Wu, Q.; Zeng, M.; Wang, K.; Han, J.; et al. Analysis of Fecal Microbiome and Metabolome Changes in Goats When Consuming a Lower-Protein Diet with Varying Energy Levels. Microorganisms 2025, 13, 941. https://doi.org/10.3390/microorganisms13040941
Liu H, Chen A, Wang W, Peng W, Mao K, Yang Y, Wu Q, Zeng M, Wang K, Han J, et al. Analysis of Fecal Microbiome and Metabolome Changes in Goats When Consuming a Lower-Protein Diet with Varying Energy Levels. Microorganisms. 2025; 13(4):941. https://doi.org/10.3390/microorganisms13040941
Chicago/Turabian StyleLiu, Hu, Anmiao Chen, Wenji Wang, Weishi Peng, Kaiyu Mao, Yuanting Yang, Qun Wu, Meng Zeng, Ke Wang, Jiancheng Han, and et al. 2025. "Analysis of Fecal Microbiome and Metabolome Changes in Goats When Consuming a Lower-Protein Diet with Varying Energy Levels" Microorganisms 13, no. 4: 941. https://doi.org/10.3390/microorganisms13040941
APA StyleLiu, H., Chen, A., Wang, W., Peng, W., Mao, K., Yang, Y., Wu, Q., Zeng, M., Wang, K., Han, J., & Zhou, H. (2025). Analysis of Fecal Microbiome and Metabolome Changes in Goats When Consuming a Lower-Protein Diet with Varying Energy Levels. Microorganisms, 13(4), 941. https://doi.org/10.3390/microorganisms13040941